CuO Nanorods Immobilized Agar-Alginate Biopolymer: A Green Functional Material for Photocatalytic Degradation of Amaranth Dye
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals Used
2.2. Synthesis of CuO/Alg-Agar BNC
2.3. Characterization of CuO/Alg-Agar BNC
2.4. Response Surface Methodology (RSM) and Experimental Design
2.5. Photocatalytic Activity
3. Results and Discussion
3.1. Characterization of CuO/Alg-Agar BNC
3.2. RSM and Statistical Analysis Approach
3.2.1. Analysis of Variance (ANOVA)
3.2.2. Three Dimensional Response Surface Morphology and Its Interpretation
3.3. Kinetic Studies of Photodegradation
3.4. Scavenger Effect and Degradation Mechanism
3.5. Reusability Test
3.6. Comparison with the Literature
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muhmood, T.; Xia, M.; Lei, W.; Wang, F.; Mahmood, A. Fe-ZrO2 Imbedded Graphene like Carbon Nitride for Acarbose (ACB) Photo-Degradation Intermediate Study. Adv. Powder Technol. 2018, 29, 3233–3240. [Google Scholar] [CrossRef]
- Muhmood, T.; Uddin, A. Fabrication of Spherical-Graphitic Carbon Nitride via Hydrothermal Method for Enhanced Photo-Degradation Ability towards Antibiotic. Chem. Phys. Lett. 2020, 753, 137604. [Google Scholar] [CrossRef]
- Shahmoradi, F.; Taghizadeh, M.; Taghizadeh, A. Environmental Technology & Innovation Clean Synthesis of Rock Candy-like Metal—Organic Framework Biocomposite for Toxic Contaminants Remediation. Environ. Technol. Innov. 2021, 23, 101747. [Google Scholar] [CrossRef]
- Morajkar, P.P.; Naik, A.P.; Bugde, S.T.; Naik, B.R. Photocatalytic and Microbial Degradation of Amaranth Dye; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, K.A.; Huang, C.; Tong, S. Enhanced Degradation of Toxic Azo Dye, Amaranth, in Water Using Oxone Catalyzed by MIL-101-NH2 under Visible Light Irradiation. Sep. Purif. Technol. 2019, 227, 115632. [Google Scholar] [CrossRef]
- Rosu, M.; Coros, M.; Pogacean, F.; Magerusan, L. Graphical Abstract SC. Solid State Sci. 2017, 70, 13–20. [Google Scholar] [CrossRef]
- Guerrero-Coronilla, I.; Morales-Barrera, L.; Cristiani-Urbina, E. Kinetic, Isotherm and Thermodynamic Studies of Amaranth Dye Biosorption from Aqueous Solution onto Water Hyacinth Leaves. J. Environ. Manag. 2015, 152, 99–108. [Google Scholar] [CrossRef]
- Omrani, E.; Ahmadpour, A.; Heravi, M.; Rohani, T. Novel ZnTi LDH/h-BN Nanocomposites for Removal of Two Different Organic Contaminants: Simultaneous Visible Light Photodegradation of Amaranth and Diazepam Journal of Water Process Engineering Novel ZnTi LDH/h-BN Nanocomposites for Removal of Two Different Organic Contaminants: Simultaneous Visible Light Photodegradation of Amaranth and Diazepam. J. Water Process Eng. 2022, 47, 102581. [Google Scholar] [CrossRef]
- Anjaneya, O.; Shrishailnath, S.S.; Guruprasad, K.; Nayak, A.S.; Mashetty, S.B.; Karegoudar, T.B. International Biodeterioration & Biodegradation Decolourization of Amaranth Dye by Bacterial Bio Fi Lm in Batch and Continuous Packed Bed Bioreactor. Int. Biodeterior. Biodegrad. 2013, 79, 64–72. [Google Scholar] [CrossRef]
- Haritha, E.; Mohana, S.; Madhavi, G.; Elango, G.; Arunachalam, P. Catunaregum Spinosa Capped Ag NPs and Its Photocatalytic Application against Amaranth Toxic Azo Dye Catunaregum Spinosa Capped Ag NPs and Its Photocatalytic Application against Amaranth Toxic Azo Dye. J. Mol. Liq. 2016, 225, 531–535. [Google Scholar] [CrossRef]
- López, J.; Ortíz, A.A.; Dominguez, D.; León, J.N.D.; De Galindo, J.T.E.; Hogan, T.; Gómez, S.; Tiznado, H.; Herrera, G.S. Magnetic nanostructured based on cobalt–Zinc Ferrites designed for photocatalytic dye degradation. J. Phys. Chem. Solids 2020, 150, 109869. [Google Scholar] [CrossRef]
- Hitam, C.N.C.; Jalil, A.A. A Review on Exploration of Fe2O3 Photocatalyst towards Degradation of Dyes and Organic Contaminants. J. Environ. Manag. 2020, 258, 110050. [Google Scholar] [CrossRef]
- Sadeghfar, F.; Zalipour, Z.; Taghizadeh, M.; Taghizadeh, A.; Ghaedi, M. Photodegradation Processes. Interface Sci. Technol. 2021, 32, 55–124. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Wang, L.; Meng, X. Bismuth Chromate (Bi2CrO6): A Promising Semiconductor in Photocatalysis. J. Catal. 2020, 382, 40–48. [Google Scholar] [CrossRef]
- Byrne, C.; Subramanian, G.; Pillai, S.C. Journal of Environmental Chemical Engineering Recent Advances in Photocatalysis for Environmental Applications. J. Environ. Chem. Eng. 2018, 6, 3531–3555. [Google Scholar] [CrossRef]
- Sikiru, A.; Popoola, L.T.; Aderibigbe, E.I. Solar Photocatalytic Degradation of Organic Pollutants in Textile Industry Wastewater by ZnO/Pumice Composite Photocatalyst. J. Environ. Chem. Eng. 2020, 8, 103907. [Google Scholar] [CrossRef]
- Karimifard, S.; Alavi Moghaddam, M.R. Application of Response Surface Methodology in Physicochemical Removal of Dyes from Wastewater: A Critical Review. Sci. Total Environ. 2018, 640–641, 772–797. [Google Scholar] [CrossRef]
- Banerjee, S.; Pillai, S.C.; Falaras, P.; O’shea, K.E.; Byrne, J.A.; Dionysiou, D.D. New Insights into the Mechanism of Visible Light Photocatalysis. J. Phys. Chem. Lett. 2014, 5, 2543–2554. [Google Scholar] [CrossRef] [Green Version]
- Alam, U.; Khan, A.; Ali, D.; Bahnemann, D.; Muneer, M. Comparative Photocatalytic Activity of Sol-Gel Derived Rare Earth Metal (La, Nd, Sm and Dy)-Doped ZnO Photocatalysts for Degradation of Dyes. RSC Adv. 2018, 8, 17582–17594. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.J.; Chinnamuthu, P. Colloids and Surfaces A: Physicochemical and Engineering Aspects Highly Efficient Natural-Sunlight-Driven Photodegradation of Organic Dyes with Combustion Derived Ce-Doped CuO Nanoparticles. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 625, 126864. [Google Scholar] [CrossRef]
- Uma, H.B.; Ananda, S.; Kumar, M.S.V. Electrochemical Synthesis and Characterization of CuO/ZnO/SnO Nano Photocatalyst: Evaluation of Its Application towards Photocatalysis, Photo-Voltaic and Antibacterial Properties. Chem. Data Collect. 2021, 32, 100658. [Google Scholar] [CrossRef]
- Singh, J.; Soni, R.K.; Zno-Cuo, A. Colloids and Surfaces A: Physicochemical and Engineering Aspects Efficient Charge Separation in Ag Nanoparticles Functionalized ZnO Nanoflakes/CuO Nanoflowers Hybrids for Improved Photocatalytic and SERS Activity. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127005. [Google Scholar] [CrossRef]
- Rana, A.; Hasan, I.; Koo, B.H.; Khan, R.A. Green Synthesized CeO2 Nanowires Immobilized with Alginate-Ascorbic Acid Biopolymer for Advance Oxidative Degradation of Crystal Violet. Colloids Surf. A Physicochem. Eng. Asp. 2022, 637, 128225. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Z.; Liu, D.; Gao, Z. Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes. Nanoscale Res. Lett. 2017, 12, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakibul, M.; Shahriyar, S.; Kabir, A.; Farhad, F.U. Colloids and Surfaces A: Physicochemical and Engineering Aspects Synthesis, Characterization and Visible Light-Responsive Photocatalysis Properties of Ce Doped CuO Nanoparticles: A Combined Experimental and DFT + U Study. Colloids Surf. A Physicochem. Eng. Asp. 2021, 617, 126386. [Google Scholar] [CrossRef]
- Cai, Y.; Yang, F.; Wu, L.; Shu, Y.; Qu, G.; Fakhri, A.; Gupta, V.K. Hydrothermal-ultrasonic synthesis of CuO nanorods and CuWO4 nanoparticles for catalytic reduction, photocatalysis activity, and antibacterial properties. Mater. Chem. Phys. 2020, 258, 123919. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, J.; Zhang, Z.; Zhang, W.; Wang, A.; Tian, F. Green Synthesis of CuO Nanoparticles-Loaded ZnO Nanowires Arrays with Enhanced Photocatalytic Activity. Mater. Chem. Phys. 2021, 267, 124703. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, K.; Thakur, N.; Chauhan, S. Eco-Friendly Ocimum Tenuiflorum Green Route Synthesis of CuO Nanoparticles: Characterizations on Photocatalytic and Antibacterial Activities. J. Environ. Chem. Eng. 2021, 9, 105395. [Google Scholar] [CrossRef]
- Pavithra, N.S.; Manukumar, K.N.; Viswanatha, R.; Nagaraju, G. Combustion-Derived CuO Nanoparticles: Application Studies on Lithium-Ion Battery and Photocatalytic Activities. Inorg. Chem. Commun. 2021, 130, 108689. [Google Scholar] [CrossRef]
- George, A.; Antoni, D.M.; Venci, X.; Raj, A.D.; Irudayaraj, A.A.; Josephine, L.; Sundaram, S.J.; Al-mohaimeed, A.M.; Al, D.A.; Chen, T.; et al. Photocatalytic Effect of CuO Nanoparticles Flower-like 3D Nanostructures under Visible Light Irradiation with the Degradation of Methylene Blue (MB) Dye for Environmental Application. Environ. Res. 2022, 203, 111880. [Google Scholar] [CrossRef]
- Ngoc, H.; Pansambal, S.; Ghotekar, S.; Oza, R. New Frontiers in the Plant Extract Mediated Biosynthesis of Copper Oxide (CuO) Nanoparticles and Their Potential Applications: A Review. Environ. Res. 2022, 203, 111858. [Google Scholar] [CrossRef]
- Francavilla, M.; Pineda, A.; Romero, A.A.; Colmenares, J.C.; Vargas, C.; Monteleone, M.; Luque, R. Efficient and Simple Reactive Milling Preparation of Photocatalytically Active Porous ZnO Nanostructures Using Biomass Derived Polysaccharides. Green Chem. 2014, 16, 2876–2885. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Preparation of Pectin/Agar-Based Functional Films Integrated with Zinc Sulfide Nano Petals for Active Packaging Applications. Colloids Surf. B Biointerfaces 2021, 207, 111999. [Google Scholar] [CrossRef]
- Thomas, M.; Naikoo, G.A.; Sheikh, M.U.D.; Bano, M.; Khan, F. Effective Photocatalytic Degradation of Congo Red Dye Using Alginate/Carboxymethyl Cellulose/TiO2 Nanocomposite Hydrogel under Direct Sunlight Irradiation. J. Photochem. Photobiol. A Chem. 2016, 327, 33–43. [Google Scholar] [CrossRef]
- Tahir, C.; Zhong, Z.; Zhou, H.; Xiao, Y. Constructing Porous Beads with Modified Polysulfone-Alginate and TiO2 as a Robust and Recyclable Photocatalyst for Wastewater Treatment. J. Water Process Eng. 2020, 38, 101601. [Google Scholar] [CrossRef]
- Singh, R.; Bhateria, R. Optimization and Experimental Design of the Pb2+ Adsorption Process on a Nano-Fe3O4—Based Adsorbent Using the Response Surface Methodology. ACS Omega 2020, 5, 28305–28318. [Google Scholar] [CrossRef]
- Allouss, D.; Essamlali, Y.; Amadine, O.; Chakir, A.; Zahouily, M. Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: Adsorption kinetics, isotherm, thermodynamics and reusability studies. RSC Adv. 2019, 9, 37858–37869. [Google Scholar] [CrossRef]
- Hasan, I.; Binsharfan, I.I.; Khan, R.A. L-Ascorbic Acid-g-Polyaniline Mesoporous Silica Nanocomposite for Efficient Removal of Crystal Violet: A Batch and Fixed Bed Breakthrough Studies. Nanomaterials 2020, 10, 2402. [Google Scholar] [CrossRef]
- Bassi, A.; Hasan, I.; Qanungo, K.; Koo, B.H.; Khan, R.A. Visible Light Assisted Mineralization of Malachite Green Dye by Green Synthesized Xanthan Gum/Agar@ZnO Bionanocomposite. J. Mol. Struct. 2022, 1256, 132518. [Google Scholar] [CrossRef]
- Hasan, I.; Shekhar, C.; Bin Sharfan, I.I.; Khan, R.A.; Alsalme, A. Ecofriendly Green Synthesis of the ZnO-Doped CuO@Alg Bionanocomposite for Efficient Oxidative Degradation of p-Nitrophenol. ACS Omega 2020, 5, 32011–32022. [Google Scholar] [CrossRef]
- Suresh, S.; Karthikeyan, S.; Jayamoorthy, K. FTIR and multivariate analysis to study the effect of bulk and nano copper oxide on peanut plant leaves. J. Sci. Adv. Mater. Devices 2016, 1, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Hasan, I.; Walia, S.; Alharbi, K.H.; Abu, M.; Alsalme, A.; Ahmad, R. Multi-Walled Carbon Nanotube Coupled β -Cyclodextrin/PANI Hybrid Photocatalyst for Advance Oxidative Degradation of Crystal Violet. J. Mol. Liq. 2020, 317, 114216. [Google Scholar] [CrossRef]
- Nagaraj, E.; Karuppannan, K.; Shanmugam, P.; Venugopal, S. Exploration of Bio-Synthesized Copper Oxide Nanoparticles Using Pterolobium Hexapetalum Leaf Extract by Photocatalytic Activity and Biological Evaluations. J. Clust. Sci. 2019, 30, 1157–1168. [Google Scholar] [CrossRef]
- Aroussi, S.; Dahamni, M.A.; Ghamnia, M.; Tonneau, D.; Fauquet, C. Characterization of Some Physical and Photocatalytic Properties of CuO Nanofilms Synthesized by a Gentle Chemical Technique. Condens. Matter 2022, 7, 37. [Google Scholar] [CrossRef]
- Buledi, J.A.; Pato, A.H.; Kanhar, A.H.; Solangi, A.R.; Batool, M.; Ameen, S.; Palabiyik, I.M. Heterogeneous Kinetics of CuO Nanoflakes in Simultaneous Decolorization of Eosin Y and Rhodamine B in Aqueous Media. Appl. Nanosci. 2021, 11, 1241–1256. [Google Scholar] [CrossRef]
- Gupta, S.S.R.; Kantam, M.L. Finely Dispersed CuO on Nitrogen-Doped Carbon Hollow Nanospheres for Selective Oxidation of Sp3. New J. Chem. 2021, 45, 16179–16186. [Google Scholar] [CrossRef]
- Gulati, U.; Rajesh, U.C.; Rawat, D.S. RGO@ CuO Nanocomposites From A Renewable Copper Mineral Precursor: A Green Approach For Decarboxylative C(Sp3)-H Activation Of Proline Amino Acid To Afford Value-Added Synthons. ACS Sustain. Chem. Eng. 2018, 6, 10039–10051. [Google Scholar] [CrossRef]
- Su, X.; Feng, G.; Yu, L.; Li, Q.; Zhang, H.; Song, W.; Hu, G. In-Situ Green Synthesis of CuO on 3D Submicron-Porous/Solid Copper Current Collectors as Excellent Supercapacitor Electrode Material. J. Mater. Sci. Mater. Electron. 2019, 30, 3545–3551. [Google Scholar] [CrossRef]
- Yang, H.; Liu, J.; Wang, Y.; He, C.; Zhang, L.; Mu, Y.; Li, W. Bioelectrochemistry Bioelectrochemical Decolorization of a Reactive Diazo Dye: Kinetics, Optimization with a Response Surface Methodology, and Proposed Degradation Pathway. Bioelectrochemistry 2019, 128, 9–16. [Google Scholar] [CrossRef]
- Hasan, I.; Shekhar, C.; Alharbi, W.; Khanjer, M.A. Polymers A Highly E Ffi Cient Ag Nanoparticle-Immobilized Alginate-g-Polyacrylonitrile Hybrid Photocatalyst for the Degradation of Nitrophenols. Polymers 2020, 12, 3049. [Google Scholar] [CrossRef]
- Sharma, A.K.; Kaith, B.S.; Tanwar, V.; Bhatia, J.K.; Sharma, N.; Bajaj, S.; Panchal, S. RSM-CCD optimized sodium alginate/gelatin based ZnS-nanocomposite hydrogel for the effective removal of biebrich scarlet and crystal violet dyes. Int. J. Biol. Macromol. 2019, 129, 214–226. [Google Scholar] [CrossRef]
- Bhardwaj, B.; Kumar, R.; Singh, P.K. An Improved Surface Roughness Prediction Model Using Box-Cox Transformation with RSM in End Milling of EN 353. J. Mech. Sci. Technol. 2014, 28, 5149–5157. [Google Scholar] [CrossRef]
- Jawad, A.H.; Alkarkhi, A.F.M.; Mubarak, N.S.A. Photocatalytic Decolorization of Methylene Blue by an Immobilized TiO2 Film under Visible Light Irradiation: Optimization Using Response Surface Methodology (RSM). Desalin. Water Treat. 2015, 56, 161–172. [Google Scholar] [CrossRef]
- Hasan, I.; Bassi, A.; Alharbi, K.H.; Binsharfan, I.I. Sonophotocatalytic Degradation of Malachite Green by Nanocrystalline Chitosan-Ascorbic Acid@NiFe2O4 Spinel Ferrite. Coatings 2020, 10, 1200. [Google Scholar] [CrossRef]
- Kane, S.N.; Mishra, A.; Dutta, A.K. Preface: International Conference on Recent Trends in Physics (ICRTP 2016). J. Phys. Conf. Ser. 2016, 755, 6–13. [Google Scholar] [CrossRef]
- Mondol, B.; Sarker, A.; Shareque, A.M.; Dey, S.C.; Islam, M.T.; Das, A.K.; Shamsuddin, S.M.; Molla, M.A.I.; Sarker, M. Preparation of Activated Carbon/TiO2 Nanohybrids for Photodegradation of Reactive Red-35 Dye Using Sunlight. Photochem 2021, 1, 54–66. [Google Scholar] [CrossRef]
- Pelaez, M.; Falaras, P.; Likodimos, V.; O’Shea, K.; de la Cruz, A.A.; Dunlop, P.S.M.; Byrne, J.A.; Dionysiou, D.D. Use of Selected Scavengers for the Determination of NF-TiO2 Reactive Oxygen Species during the Degradation of Microcystin-LR under Visible Light Irradiation. J. Mol. Catal. A Chem. 2016, 425, 183–189. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, P. Photocatalytic Decomposition of Perfluorooctanoic Acid (PFOA) by TiO2 in the Presence of Oxalic Acid. J. Hazard. Mater. 2011, 192, 1869–1875. [Google Scholar] [CrossRef]
- Xu, D.; Kong, Q.; Wang, X.; Lou, T. Preparation of Carboxymethyl Cellulose/Chitosan-CuO Giant Vesicles for the Adsorption and Catalytic Degradation of Dyes. Carbohydr. Polym. 2022, 291, 119630. [Google Scholar] [CrossRef]
- Yadav, R.; Chundawat, T.S.; Surolia, P.K.; Vaya, D. Photocatalytic Degradation of Textile Dyes Using β-CD-CuO/ZnO Nanocomposite. J. Phys. Chem. Solids 2022, 165, 110691. [Google Scholar] [CrossRef]
- Sree, G.S.; Botsa, S.M.; Reddy, B.J.M.; Ranjitha, K.V.B. Enhanced UV–Visible Triggered Photocatalytic Degradation of Brilliant Green by Reduced Graphene Oxide Based NiO and CuO Ternary Nanocomposite and Their Antimicrobial Activity. Arab. J. Chem. 2020, 13, 5137–5150. [Google Scholar] [CrossRef]
- Zhao, P.; Zhao, Y.; Guo, Y.; Guo, R.; Tian, Y.; Zhao, W. Preparation of CuO/ΓAl2O3 Catalyst for Degradation of Azo Dyes (Reactive Brilliant Red X–3B): An Optimization Study. J. Clean. Prod. 2021, 328, 129624. [Google Scholar] [CrossRef]
- Gudipati, T.; Zaman, M.B.; Singh, P.; Poolla, R. Enhanced Photocatalytic Activity of Biogenically Synthesized CuO Nanostructures against Xylenol Orange and Rhodamine B Dyes. Inorg. Chem. Commun. 2021, 130, 108677. [Google Scholar] [CrossRef]
Factor | Name | Units | Minimum | Maximum | Coded Low | Coded High | Mean | Std. Dev. |
---|---|---|---|---|---|---|---|---|
A | Irradiation Time | min | 24.89 | 50.11 | −1 ↔ 30.00 | +1 ↔ 45.00 | 37.50 | 6.36 |
B | pH | 2.32 | 5.68 | −1 ↔ 3.00 | +1 ↔ 5.00 | 4.00 | 0.8478 | |
C | AN Conc | mg L−1 | 26.36 | 93.64 | −1 ↔ 40.00 | +1 ↔ 80.00 | 60.00 | 16.96 |
Constituents | Wavenumber (cm−1) | Types of Functional Groups | Reference |
---|---|---|---|
Agar | 3330 2981 1632 1370 1044 | -OH stretching -CH stretching C=O stretching C-OH stretching C-O-C stretching | [39] |
CuO | 3386 1092 870 600 | -OH stretching -OH bending -H2O rocking Cu-O stretching | [40] |
CuO/Alg-Agar BNC | 3378 1092 870 600 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 249.67 | 9 | 27.74 | 6.57 | 0.0035 | significant |
A-Irradiation Time | 10.78 | 1 | 10.78 | 2.55 | 0.1413 | |
B-pH | 9.40 | 1 | 9.40 | 2.23 | 0.1666 | |
C-AN Conc | 158.02 | 1 | 158.02 | 37.40 | 0.0001 | |
AB | 0.3002 | 1 | 0.3002 | 0.0710 | 0.7952 | |
AC | 1.63 | 1 | 1.63 | 0.3868 | 0.5479 | |
BC | 0.3415 | 1 | 0.3415 | 0.0808 | 0.7820 | |
A2 | 1.53 | 1 | 1.53 | 0.3611 | 0.5613 | |
B2 | 23.23 | 1 | 23.23 | 5.50 | 0.0410 | |
C2 | 38.13 | 1 | 38.13 | 9.02 | 0.0133 | |
Residual | 42.25 | 10 | 4.23 | |||
Lack of Fit | 12.87 | 5 | 2.57 | 0.4382 | 0.8069 | not significant |
Pure Error | 29.38 | 5 | 5.88 | |||
Cor Total | 291.92 | 19 |
S.N. | AN Concentration (mgL−1) | Rate Constant (k1) (min−1) | Half-Life t1/2 (min) | R2 |
---|---|---|---|---|
1. | 20 | 0.06 | 9.94 | 0.99 |
2. | 40 | 0.09 | 7.68 | 0.99 |
3. | 60 | 0.11 | 5.87 | 0.99 |
4. | 80 | 0.13 | 5.33 | 0.99 |
Material | Light Source | Time (min) | Concentration (mg L–1) | Dosage (mg) | Dye | Efficiency (%) | Reference |
---|---|---|---|---|---|---|---|
Carboxymethyl cellulose/chitosan-CuO | Halide lamp | 30 | 500 | 30 | Acid black | 88.60 | [59] |
β-CD-CuO/ZnO | Halide lamp | 180 | 10 | 50 | Methylene Blue | 89.15 | [60] |
NiO-CuO-RGO | Visible light | 60 | 10 | 50 | Brilliant dye | 91 | [61] |
CuO/γ-Al2O3 | Visible LED light | 150 | 0.30 | 5 | Brilliant Red B | 90.72 | [62] |
Ce-doped CuO | Visible light | 40 | 10 | 10 | Methylene Blue | 87.72 | [20] |
Biogenically synthesized CuO | Visible light | 90 | 4 | 40 | Xylenol Orange | 87 | [63] |
CuO/Alg-Agar BNC | Visible solar light | 45 | 80 | 20 | Amaranth | 95 | Present Study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bassi, A.; Qanungo, K.; Hasan, I.; Alshayiqi, A.A.; Ababtain, A.S.; Alharthi, F.A. CuO Nanorods Immobilized Agar-Alginate Biopolymer: A Green Functional Material for Photocatalytic Degradation of Amaranth Dye. Polymers 2023, 15, 553. https://doi.org/10.3390/polym15030553
Bassi A, Qanungo K, Hasan I, Alshayiqi AA, Ababtain AS, Alharthi FA. CuO Nanorods Immobilized Agar-Alginate Biopolymer: A Green Functional Material for Photocatalytic Degradation of Amaranth Dye. Polymers. 2023; 15(3):553. https://doi.org/10.3390/polym15030553
Chicago/Turabian StyleBassi, Akshara, Kushal Qanungo, Imran Hasan, Alanoud Abdullah Alshayiqi, Alanood Sulaiman Ababtain, and Fahad A. Alharthi. 2023. "CuO Nanorods Immobilized Agar-Alginate Biopolymer: A Green Functional Material for Photocatalytic Degradation of Amaranth Dye" Polymers 15, no. 3: 553. https://doi.org/10.3390/polym15030553
APA StyleBassi, A., Qanungo, K., Hasan, I., Alshayiqi, A. A., Ababtain, A. S., & Alharthi, F. A. (2023). CuO Nanorods Immobilized Agar-Alginate Biopolymer: A Green Functional Material for Photocatalytic Degradation of Amaranth Dye. Polymers, 15(3), 553. https://doi.org/10.3390/polym15030553