Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = converted upland field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2370 KiB  
Article
Effects of Land Use Conversion from Upland Field to Paddy Field on Soil Temperature Dynamics and Heat Transfer Processes
by Jun Yi, Mengyi Xu, Qian Ren, Hailin Zhang, Muxing Liu, Yuanhang Fei, Shenglong Li, Hanjiang Nie, Qi Li, Xin Ni and Yongsheng Wang
Land 2025, 14(7), 1352; https://doi.org/10.3390/land14071352 - 26 Jun 2025
Viewed by 342
Abstract
Investigating soil temperature and the heat transfer process is essential for understanding water–heat changes and energy balance in farmland. The conversion from upland fields (UFs) to paddy fields (PFs) alters the land cover, irrigation regimes, and soil properties, leading to differences in soil [...] Read more.
Investigating soil temperature and the heat transfer process is essential for understanding water–heat changes and energy balance in farmland. The conversion from upland fields (UFs) to paddy fields (PFs) alters the land cover, irrigation regimes, and soil properties, leading to differences in soil temperature, thermal properties, and heat fluxes. Our study aimed to quantify the effects of converting UFs to PFs on soil temperature and heat transfer processes, and to elucidate its underlying mechanisms. A long-term cultivated UF and a newly developed PF (converted from a UF in May 2015) were selected for this study. Soil water content (SWC) and temperature were monitored hourly over two years (June 2017 to June 2019) in five soil horizons (i.e., 10, 20, 40, 60, and 90 cm) at both fields. The mean soil temperature differences between the UF and PF at each depth on the annual scale varied from −0.1 to 0.4 °C, while they fluctuated more significantly on the seasonal (−0.9~1.8 °C), monthly (−1.5~2.5 °C), daily (−5.6~4.9 °C), and hourly (−7.3~11.3 °C) scales. The SWC in the PF was significantly higher than that in the UF, primarily due to differences in tillage practices, which resulted in a narrower range of soil temperature variation in the PF. Additionally, the SWC and soil physicochemical properties significantly altered the soil’s thermal properties. Compared with the UF, the volumetric heat capacity (Cs) at the depths of 10, 20, 40, 60, and 90 cm in the PF changed by 8.6%, 19.0%, 5.5%, −4.3%, and −2.9%, respectively. Meanwhile, the thermal conductivity (λθ) increased by 1.5%, 18.3%, 19.0%, 9.0%, and 25.6%, respectively. Moreover, after conversion from the UF to the PF, the heat transfer direction changed from downward to upward in the 10–20 cm soil layer, resulting in a 42.9% reduction in the annual average soil heat flux (G). Furthermore, the differences in G between the UF and PF were most significant in the summer (101.9%) and most minor in the winter (12.2%), respectively. The conversion of the UF to the PF increased the Cs and λθ, ultimately reducing the range of soil temperature variation and changing the direction of heat transfer, which led to more heat release from the soil. This study reveals the effects of farmland use type conversion on regional land surface energy balance, providing theoretical underpinnings for optimizing agricultural ecosystem management. Full article
Show Figures

Figure 1

14 pages, 3178 KiB  
Article
Emissions of Greenhouse Gases and NO from Rice Fields and a Peach Orchard as Affected by N Input and Land-Use Conversion
by Pinshang Xu, Zhaoqiang Han, Jie Wu, Zhutao Li, Jinyang Wang and Jianwen Zou
Agronomy 2022, 12(8), 1850; https://doi.org/10.3390/agronomy12081850 - 4 Aug 2022
Cited by 12 | Viewed by 3580
Abstract
Nitrogen (N) inputs and land-use conversion are management practices that affect soil greenhouse gas (GHG) and nitric oxide (NO) emissions. Here, we measured soil methane (CH4), nitrous oxide (N2O), and NO fluxes from rice fields and a peach orchard [...] Read more.
Nitrogen (N) inputs and land-use conversion are management practices that affect soil greenhouse gas (GHG) and nitric oxide (NO) emissions. Here, we measured soil methane (CH4), nitrous oxide (N2O), and NO fluxes from rice fields and a peach orchard that converted from paddies to assess the impacts of nitrogen (N) inputs and land-use conversion on their emissions. Treatments included four paddy field treatments (PN0, PN160, PN220, and PN280) and one peach orchard treatment (ON280) with number indicating the N-input rate of kg N ha−1. The results showed that cumulative emissions of CH4, N2O and NO ranged from 28.6 to 85.3 kg C ha−1, 0.5 to 4.0 kg N ha−1 and 0.2 to 0.3 kg N ha−1 during the rice-growing season, respectively. In terms of greenhouse gas intensity, the PN280 treatment is the recommended N application rate. Land-use conversion significantly reduced the global warming potential from croplands. The conversion shifted soils from an essential source of CH4 to a small net sink. In addition, N2O emissions from the rice–wheat rotation system were 1.8 times higher than from the orchard, mainly due to the difference in the N application rate. In summary, to reduce agriculture-induced GHG emissions, future research needs to focus on the effects of N inputs on rice-upland crop rotation systems. Full article
Show Figures

Figure 1

18 pages, 37686 KiB  
Article
Spatiotemporal Heterogeneity Monitoring of Cropland Evolution and Its Impact on Grain Production Changes in the Southern Sanjiang Plain of Northeast China
by Tao Pan and Ru Zhang
Land 2022, 11(8), 1159; https://doi.org/10.3390/land11081159 - 26 Jul 2022
Cited by 1 | Viewed by 1735
Abstract
High-speed cropland changes are taking place in Northeast China, bringing about the sustainable changes in ecological landscape and food production; however, the lack of continuous research limits the revelation of new findings in this region. The integrated approach of land migration tracking, ecological [...] Read more.
High-speed cropland changes are taking place in Northeast China, bringing about the sustainable changes in ecological landscape and food production; however, the lack of continuous research limits the revelation of new findings in this region. The integrated approach of land migration tracking, ecological landscape and mathematical statistics was established to conduct a comprehensive survey of land change–landscape–food security in a typical grain-planting region of Northeast China to reveal new changes from 1990 to 2020. Results display that the cropland area continued to increase from 25,885.16 km2 in 1990 to 31,144.46 km2 in 2020, leading to the loss of forest land, grassland, water body and unused land. For cropland structure, the proportion of paddy fields in cropland increased rapidly from 7.18 to 39.53% during 1990–2020; in contrast, upland crops decreased sharply. The richness of landscape presented gradually complex characteristics with SHDI from 0.258 to 0.671 and other ecological indicators underwent similar changes with strong regularity. Total grain production displayed a continuous increase, with values from 523.79 × 104 t to 1839.12 × 104 t, increasing by 2.51 times from 1990 to 2020. We also revealed the contribution rate of unchanged upland crops to grain increments was the largest (i.e., 46.29%), and the conversion of internal cropland structure (i.e., the paddy fields converted from upland crops) contributed 12.17% from 1990 to 2020, showing a positive signal for food security. These new findings provide studies on land use change, ecological landscape and food security in China and abroad. Full article
(This article belongs to the Special Issue Trends in Land Change Monitoring)
Show Figures

Figure 1

15 pages, 3360 KiB  
Article
Evaluating Maize Drought and Wet Stress in a Converted Japanese Paddy Field Using a SWAP Model
by Kosuke Hamada, Hisayoshi Inoue, Hidetoshi Mochizuki, Mayuko Asakura, Yuta Shimizu and Takeshi Takemura
Water 2020, 12(5), 1363; https://doi.org/10.3390/w12051363 - 12 May 2020
Cited by 4 | Viewed by 4113
Abstract
Japanese government recommend farmers to cultivate upland crops in paddy fields (“converted fields”) to suppress the overproduction of rice. Converted fields are subject to excessively wet and dry conditions that reduce the yield of non-rice crops. Drought and wet stresses are critical to [...] Read more.
Japanese government recommend farmers to cultivate upland crops in paddy fields (“converted fields”) to suppress the overproduction of rice. Converted fields are subject to excessively wet and dry conditions that reduce the yield of non-rice crops. Drought and wet stresses are critical to crop growth within specific growth periods. To provide data for use in mitigating crop yield reduction, we evaluated drought and wet stresses in maize (Zea mays L.). A SWAP (soil–water–atmosphere–plant) model was applied to a converted maize field. Observations were carried out in 2019 and 2018 for model calibration and validation. Thereafter, we evaluated the water stress of maize in 2019 (actual conditions) and at a tillage depth 11 cm deeper (scenario conditions). We found that (1) drought and wet stresses occurred within the relevant critical growth periods under actual conditions; (2) in the critical periods, the drought and wet stresses under scenario conditions were 33%–75% and 10%–82%, respectively, of those under actual conditions; (3) water stress at depths of 10 and 20 cm was lower under the scenario conditions than under the actual conditions. These results indicate that deeper tillage may mitigate both drought and wet stresses and can be used to reduce water stress damage in converted fields. Full article
(This article belongs to the Special Issue Water Retention and Movement in Soils and Horticultural Substance)
Show Figures

Figure 1

14 pages, 869 KiB  
Article
Growth and K Nutrition of Sesame (Sesamum indicum L.) Seedlings as Affected by Balancing Soil Exchangeable Cations Ca, Mg, and K of Continuously Monocropped Soil from Upland Fields Converted Paddy
by Cosmas Wacal, Naoki Ogata, Daniel Basalirwa, Daisuke Sasagawa, Tsugiyuki Masunaga, Sadahiro Yamamoto and Eiji Nishihara
Agronomy 2019, 9(12), 819; https://doi.org/10.3390/agronomy9120819 - 29 Nov 2019
Cited by 9 | Viewed by 6264
Abstract
Growth of sesame is known to be limited by poor K nutrition as a result of imbalance in soil exchangeable cations that cause a competitive ion effect in continuous monocropping from upland fields converted paddy. We hypothesized that balancing soil exchangeable cations will [...] Read more.
Growth of sesame is known to be limited by poor K nutrition as a result of imbalance in soil exchangeable cations that cause a competitive ion effect in continuous monocropping from upland fields converted paddy. We hypothesized that balancing soil exchangeable cations will improve the K nutrition and growth of sesame plants. Therefore, the specific objectives of this study were to determine the effect of balancing soil exchangeable cations Ca, Mg, and K of continuously monocropped soils on the growth and cation uptake of sesame seedlings and also identify a suitable source of nutrients for improving K nutrition. A pot experiment was conducted under greenhouse condition in a 3 × 3 factorial design consisting of three levels of balancing treatments i.e. inorganic fertilizer for Ca, Mg, and K, rice husk biochar to increase K content, and the three durations of continuous monocropping soils of one year, two years, and four years from upland fields converted paddy. Balancing soil exchangeable cations was aimed at achieving optimal base saturations (CaO, 75%; MgO, 25%; and K2O, 10%). Results showed that balancing exchangeable cations did not significantly affect growth and cation uptake in the one and two-year soils but significant effect was observed in the four-year soil. Overall, plant height and dry weight increased for the balancing treatments of inorganic fertilizer K and rice husk biochar. Balancing exchangeable cations with biochar was more beneficial than with inorganic fertilizers. The four-year soil’s growth increase was attributed to an increase in K concentration and uptake due to the decrease in the soil Ca/K and Mg/K ratios to that of acceptable levels, which eliminated competitive ion effect as the soil K saturation increased above 5.0%, enhancing sesame growth. Therefore, a balanced soil exchangeable Ca, Mg, and K that eliminates a competitive ion effect will improve sesame growth and K nutrition although future research should focus on ensuring balanced cation rations under field conditions in continuous monocropping. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 4140 KiB  
Article
Fatty Acid Composition of Sesame (Sesamum indicum L.) Seeds in Relation to Yield and Soil Chemical Properties on Continuously Monocropped Upland Fields Converted from Paddy Fields
by Cosmas Wacal, Naoki Ogata, Daniel Basalirwa, Daisuke Sasagawa, Masako Kato, Takuo Handa, Tsugiyuki Masunaga, Sadahiro Yamamoto and Eiji Nishihara
Agronomy 2019, 9(12), 801; https://doi.org/10.3390/agronomy9120801 - 24 Nov 2019
Cited by 24 | Viewed by 16400
Abstract
We evaluated the fatty acid compositions in relation to yield and soil nutrients from four fields A, B, C, and D with continuous monocropping histories of 0–3 years, respectively, in Japan from 2015 to 2016. Results showed that, in both evaluation years, seed [...] Read more.
We evaluated the fatty acid compositions in relation to yield and soil nutrients from four fields A, B, C, and D with continuous monocropping histories of 0–3 years, respectively, in Japan from 2015 to 2016. Results showed that, in both evaluation years, seed yield did not significantly differ among the fields although field A produced the highest mean seed yield and 1000-seed weight. Between fields A and C, 1000-seed weight showed significant differences. The contents of seed-saturated fatty acids lauric and myristic decreased in only fields C and D whereas oleic, linoleic, and linolenic acids increased in field D. Only field A produced the highest contents of lauric and myristic acids whereas field D produced the highest contents of linoleic and linolenic acids. The soil total N and exchangeable K contents tended to decrease as exchangeable Mg content significantly increased on the fields with long duration of cropping, fields C and D. Principal component analysis revealed significant positive correlations between soil exchangeable K, and total N contents with 1000-seed weight and lauric acid, as exchangeable Mg content was related with oleic, linoleic, and linolenic acids. Therefore, the high oleic, linoleic, and linolenic acids from field D were mainly attributed to high soil exchangeable Mg content, whereas the high 1000-seed weight, lauric acid and myristic acid were due to the high soil exchangeable K content in field A. Overall, the fatty acid composition quality on the long-duration continuously monocropped fields could show high economic value at the expense of yield under this management practice in continuous monocropping. Full article
Show Figures

Figure 1

27 pages, 3953 KiB  
Article
Evaluating the Effectiveness of Spatially Reconfiguring Erosion Hot Spots to Reduce Stream Sediment Load in an Upland Agricultural Catchment of South Korea
by Kwanghun Choi, Ganga Ram Maharjan and Björn Reineking
Water 2019, 11(5), 957; https://doi.org/10.3390/w11050957 - 7 May 2019
Cited by 4 | Viewed by 4744
Abstract
Upland agricultural expansion and intensification cause soil erosion, which has a negative impact on the environment and socioeconomic factors by degrading the quality of both nutrient-rich surface soil and water. The Haean catchment is a well-known upland agricultural area in South Korea, which [...] Read more.
Upland agricultural expansion and intensification cause soil erosion, which has a negative impact on the environment and socioeconomic factors by degrading the quality of both nutrient-rich surface soil and water. The Haean catchment is a well-known upland agricultural area in South Korea, which generates a large amount of sediment from its cropland. The transportation of nutrient-rich sediment to the stream adversely affects the water quality of the Han River watershed, which supports over twenty million people. In this paper, we suggest a spatially explicit mitigation method to reduce the amount of sediment yield to the stream of the catchment by converting soil erosion hot spots into forest. To evaluate the effectiveness of this reconfiguration, we estimated the sediment redistribution rate and assessed the soil erosion risk in the Haean catchment using the daily based Morgan–Morgan–Finney (DMMF) model. We found that dry crop fields located in the steep hill-slope suffer from severe soil erosion, and the rice paddy, orchard, and urban area, which are located in a comparatively lower and flatter area, suffer less from erosion. Although located in the steep hill-slope, the forest exhibits high sediment trapping capabilities in this model. When the erosion-prone crop lands were managed by sequentially reconfiguring their land use and land cover (LULC) to the forest from the area with the most severe erosion to the area with the least severe erosion, the result showed a strong reduction in sediment yield flowing to the stream. A change of 3% of the catchment’s crop lands of the catchment into forest reduced the sediment yield entering into the stream by approximately 10% and a change of 10% of crop lands potentially resulted in a sediment yield reduction by approximately 50%. According to these results, identifying erosion hot spots and managing them by reconfiguring their LULC is effective in reducing terrestrial sediment yield entering into the stream. Full article
(This article belongs to the Special Issue Impacts of Landscape Change on Water Resources)
Show Figures

Figure 1

20 pages, 1557 KiB  
Article
Imbalanced Soil Chemical Properties and Mineral Nutrition in Relation to Growth and Yield Decline of Sesame on Different Continuously Cropped Upland Fields Converted Paddy
by Cosmas Wacal, Naoki Ogata, Daniel Basalirwa, Daisuke Sasagawa, Tadashi Ishigaki, Takuo Handa, Masako Kato, Moses Makooma Tenywa, Tsugiyuki Masunaga, Sadahiro Yamamoto and Eiji Nishihara
Agronomy 2019, 9(4), 184; https://doi.org/10.3390/agronomy9040184 - 11 Apr 2019
Cited by 16 | Viewed by 5414
Abstract
Sesame (Sesamum indicum L.) is an important oilseed crop, but is negatively affected by continuous cropping. There is still a lack of information on the effect of continuous cropping on soil chemical properties and mineral nutrition related to sesame growth and yield [...] Read more.
Sesame (Sesamum indicum L.) is an important oilseed crop, but is negatively affected by continuous cropping. There is still a lack of information on the effect of continuous cropping on soil chemical properties and mineral nutrition related to sesame growth and yield decline. Therefore, we investigated sesame growth and yield, nutrient concentration and soil chemical properties on five fields with continuous cropping history: non-continuous cropping (Year 0) and durations of two, four, five and six years on an upland field converted paddy in Tottori, Japan. Results show that plant height significantly decreased by 18.76%, 15.22%, and 13.64% in the Year 4, Year 5 and Year 6 fields, respectively, compared to Year 0. The effect of continuous cropping was more pronounced on the 1000-seed weight decline than seed yield. Compared to Year 0, seed yield decreased by 52.86% in Year 2 with no significant differences among the Year 2, Year 4, Year 5 and Year 6 fields, whereas the 1000-seed weight decreased by 6.68% and 12.20% in the Year 2 and Year 5 fields, respectively, compared to Year 0. Plant leaf tissue N concentration significantly decreased in the Year 2, Year 4 and Year 6 fields compared to Year 0, whereas leaf tissue K concentration decreased in the Year 6 field. The increase in duration of continuous cropping years gradually altered soil chemical properties. Soil pH, exchangeable Ca and Mg and cation exchange capacity (CEC) gradually increased in the long duration of continuous cropping, whereas total N and C, exchangeable NH4+-N, urease, dehydrogenase and catalase activities decreased. Our study suggested that the decrease in soil available N and enzyme activities, and decrease in K nutrition due to competitive ion effect as a result of increase in soil Ca and Mg could possibly contribute to the growth and yield decline of continuous sesame on upland field converted paddy. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 2721 KiB  
Article
The Responses of Soil N2O Emissions to Residue Returning Systems: A Meta-Analysis
by Naijuan Hu, Qian Chen and Liqun Zhu
Sustainability 2019, 11(3), 748; https://doi.org/10.3390/su11030748 - 31 Jan 2019
Cited by 53 | Viewed by 5133
Abstract
Background: Much attention has been focused on the influences of residue returning on N2O emissions. However, comprehensive quantification of the effect size on N2O emission following crop residue returning in subtropical, tropical and warm temperate conditions remains untested. Methods: [...] Read more.
Background: Much attention has been focused on the influences of residue returning on N2O emissions. However, comprehensive quantification of the effect size on N2O emission following crop residue returning in subtropical, tropical and warm temperate conditions remains untested. Methods: To identify site-specific factors that influence N2O emission (kg N2O-N ha−1) in residue returning systems, we performed a meta-analysis involving 260 comparisons from 72 studies. Results: The data indicated that significant promoting effects were observed under residue returning by rotary tillage, no-tillage and mulch, whereas N2O release was significantly inhibited by 8% under residue returning by plough. For other contributors, the stimulatory and significant effects occurred in upland fields, under short- and medium-term residue returning durations, acidic/neutral soils, medium organic C and clay content. Nitrogen fertilizer application significantly stimulated N2O emission, even though application rate at 100–150 kg N ha−1 was inhibitory. Although a negative correlation between residue C/N ratio and N2O emission has been shown, residue returning could not reduce N2O emission with a higher C/N ratio and amount. Conclusions: Some options, such as converting residue returning methods, decreasing N fertilizer application rate, and regulating soil C/N ratio could be adopted to mitigate soil N2O emission following residue returning. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

20 pages, 810 KiB  
Article
Growth, Seed Yield, Mineral Nutrients and Soil Properties of Sesame (Sesamum indicum L.) as Influenced by Biochar Addition on Upland Field Converted from Paddy
by Cosmas Wacal, Naoki Ogata, Daniel Basalirwa, Takuo Handa, Daisuke Sasagawa, Robert Acidri, Tadashi Ishigaki, Masako Kato, Tsugiyuki Masunaga, Sadahiro Yamamoto and Eiji Nishihara
Agronomy 2019, 9(2), 55; https://doi.org/10.3390/agronomy9020055 - 27 Jan 2019
Cited by 32 | Viewed by 8704
Abstract
Sesame is an important oilseed crop cultivated worldwide. However, research has focused on biochar effects on grain crops and vegetable and there is still a scarcity of information of biochar addition on sesame. This study was to assess the effect of biochar addition [...] Read more.
Sesame is an important oilseed crop cultivated worldwide. However, research has focused on biochar effects on grain crops and vegetable and there is still a scarcity of information of biochar addition on sesame. This study was to assess the effect of biochar addition on sesame performance, with a specific emphasis on growth, yield, leaf nutrient concentration, seed mineral nutrients, and soil physicochemical properties. A field experiment was conducted on an upland field converted from paddy at Tottori Prefecture, Japan. Rice husk biochar was added to sesame cropping at rates of 0 (F), 20 (F+20B), 50 (F+50B) and 100 (F+100B) t ha−1 and combined with NPK fertilization in a first cropping and a second cropping field in 2017. Biochar addition increased plant height, yield and the total number of seeds per plant more in the first cropping than in the second cropping. The F+50B significantly increased seed yield by 35.0% in the first cropping whereas the F+20B non-significantly increased seed yield by 25.1% in the second cropping. At increasing biochar rates, plant K significantly increased while decreasing Mg whereas N and crude protein, P and Ca were non-significantly higher compared to the control. Soil porosity and bulk density improved with biochar addition while pH, exchangeable K, total N, C/N ratio and CEC significantly increased with biochar, but the effect faded in the second cropping. Conversely exchangeable Mg and its plant tissue concentration decreased due to competitive ion effect of high K from the biochar. Biochar addition is effective for increasing nutrient availability especially K for sesame while improving soil physicochemical properties to increase seed yield, growth and seed mineral quality. Full article
Show Figures

Figure 1

Back to TopTop