Evaluating the Effectiveness of Spatially Reconfiguring Erosion Hot Spots to Reduce Stream Sediment Load in an Upland Agricultural Catchment of South Korea
Abstract
:1. Introduction
- determine the applicability of the DMMF model for stream discharge and suspended sediment in the Haean catchment,
- estimate the sediment redistribution pattern and assess the soil erosion risk of the Haean catchment, and
- evaluate the impact of the spatial reconfiguration of erosion hot spots into forest on soil erosion control.
2. Materials and Methods
2.1. Study Area
2.2. Model Description
2.3. Model Parameterization
2.4. Model Calibration and Validation
2.4.1. Sensitivity Analysis
2.4.2. Calibration
2.4.3. Validation
2.5. Identifying Annual Sediment Redistribution Patterns and Assessing Soil Erosion Risk
2.6. Evaluation of the Impact of Spatial Reconfiguration of Erosion Hot Spots into Forest
3. Results
3.1. Model Performance
3.2. Sediment Redistribution Pattern of the Catchment
3.3. Impacts of Conversion of Erosion Hot Spots into Forest on Total Sediment Yield Entering the Stream
4. Discussion
4.1. Model Performance
4.2. Assessment of Soil Erosion Risk and the Effectiveness of Spatial Reconfiguration of Erosion Hot Spots on Reducing Sediment Yield Entering the Stream
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Detailed Structure of the Daily Based Morgan–Morgan–Finney (DMMF) Soil Erosion Model
Appendix A.1. Hydrological Phase
Appendix A.2. Sediment Phase
References
- Hu, Q.; Gantzer, C.J.; Jung, P.K.; Lee, B.L. Rainfall erosivity in the Republic of Korea. J. Soil Water Conserv. 2000, 55, 115–120. [Google Scholar]
- Lee, J.Y. Importance of hydrogeological and hydrologic studies for Haean basin in Yanggu. J. Geol. Soc. Korea 2009, 45, 405–414. [Google Scholar]
- Maharjan, G.R.; Ruidisch, M.; Shope, C.L.; Choi, K.; Huwe, B.; Kim, S.J.; Tenhunen, J.; Arnhold, S. Assessing the effectiveness of split fertilization and cover crop cultivation in order to conserve soil and water resources and improve crop productivity. Agric. Water Manag. 2016, 163, 305–318. [Google Scholar] [CrossRef]
- Lee, K.H.; Isenhart, T.M.; Schultz, R.C. Sediment and nutrient removal in an established multi-species riparian buffer. J. Soil Water Conserv. 2003, 58, 1–8. [Google Scholar]
- Ali, H.E.; Reineking, B. Extensive management of field margins enhances their potential for off-site soil erosion mitigation. J. Environ. Manag. 2016, 169, 202–209. [Google Scholar] [CrossRef]
- Jeon, J.H.; Park, C.G.; Choi, D.; Kim, T. Characteristics of Suspended Sediment Loadings under Asian Summer Monsoon Climate Using the Hydrological Simulation Program-FORTRAN. Sustainability 2017, 9, 44. [Google Scholar] [CrossRef]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1122. [Google Scholar] [CrossRef]
- Pimentel, D.; Kounang, N. Ecology of soil erosion in ecosystems. Ecosystems 1998, 1, 416–426. [Google Scholar] [CrossRef]
- Lal, R. Soil degradation by erosion. Land Degrad. Dev. 2001, 12, 519–539. [Google Scholar] [CrossRef]
- Yoon, B.; Hyoseop, W. Sediment problems in Korea. J. Hydraul. Eng. 2000, 126, 486–491. [Google Scholar] [CrossRef]
- Arnhold, S.; Ruidisch, M.; Bartsch, S.; Shope, C.L.; Huwe, B. Simulation of runoff patterns and soil erosion on mountainous farmland with and without plastic-covered ridge-furrow cultivation in South Korea. Trans. ASABE 2013, 56, 667–679. [Google Scholar] [CrossRef]
- Park, J.H.; Duan, L.; Kim, B.; Mitchell, M.J.; Shibata, H. Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia. Environ. Int. 2010, 36, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Alexander, L.V.; Allen, S.K.; Bindoff, N.L.; Bréon, F.M.; Church, J.A.; Cubasch, U.; Emori, S.; et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 33–115. [Google Scholar]
- Chang, H. Spatial analysis of water quality trends in the Han River basin, South Korea. Water Res. 2008, 42, 3285–3304. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Arnhold, S.; Huwe, B.; Reineking, B. Daily Based Morgan–Morgan–Finney (DMMF) Model: A Spatially Distributed Conceptual Soil Erosion Model to Simulate Complex Soil Surface Configurations. Water 2017, 9, 278. [Google Scholar] [CrossRef]
- Ruidisch, M.; Kettering, J.; Arnhold, S.; Huwe, B. Modeling water flow in a plastic mulched ridge cultivation system on hillslopes affected by South Korean summer monsoon. Agric. Water Manag. 2013, 116, 204–217. [Google Scholar] [CrossRef]
- Arnhold, S.; Lindner, S.; Lee, B.; Martin, E.; Kettering, J.; Nguyen, T.T.; Koellner, T.; Ok, Y.S.; Huwe, B. Conventional and organic farming: Soil erosion and conservation potential for row crop cultivation. Geoderma 2014, 219–220, 89–105. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Jang, S.S.; Ahn, S.R.; Kim, S.J. Evaluation of executable best management practices in Haean highland agricultural catchment of South Korea using SWAT. Agric. Water Manag. 2017, 180, 224–234. [Google Scholar] [CrossRef]
- Fujisaka, S. Learning from six reasons why farmers do not adopt innovations intended to improve sustainability of upland agriculture. Agric. Syst. 1994, 46, 409–425. [Google Scholar] [CrossRef]
- Pannell, D.J. Social and economic challenges in the development of complex farming systems. Agrofor. Syst. 1999, 45, 395–411. [Google Scholar] [CrossRef]
- Poppenborg, P.; Koellner, T. Do attitudes toward ecosystem services determine agricultural land use practices? An analysis of farmers’ decision-making in a South Korean watershed. Land Use Policy 2013, 31, 422–429. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; Sharp, R.P.; Mandle, L.; Sim, S.; Johnson, J.; Butnar, I.; Milà i Canals, L.; Eichelberger, B.A.; Ramler, I.; Mueller, C.; et al. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. Proc. Natl. Acad. Sci. USA 2015, 112, 7402–7407. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; Hamel, P.; Sharp, R.; Kowal, V.; Wolny, S.; Sim, S.; Mueller, C. Landscape configuration is the primary driver of impacts on water quality associated with agricultural expansion. Environ. Res. Lett. 2016, 11, 074012. [Google Scholar] [CrossRef]
- Lee, T. Analyzing the Effectiveness of a Best Management Practice on Sediment Yields Using a Spatially Distributed Model. J. Korean Geogr. Soc. 2017, 52, 15–24. [Google Scholar]
- Polasky, S.; Nelson, E.; Camm, J.; Csuti, B.; Fackler, P.; Lonsdorf, E.; Montgomery, C.; White, D.; Arthur, J.; Garber-Yonts, B.; et al. Where to put things? Spatial land management to sustain biodiversity and economic returns. Biol. Conserv. 2008, 141, 1505–1524. [Google Scholar] [CrossRef]
- Dillaha, T.A.; Reneau, R.B.; Mostaghimi, S.; Lee, D. Vegetative Filter Strips for Agricultural Nonpoint Source Pollution Control. Trans. ASAE 1989, 32, 513–519. [Google Scholar] [CrossRef]
- Delgado, A.N.; Periago, E.L.; Viqueira, F.D.F. Vegetated filter strips for wastewater purification: A review. Bioresour. Technol. 1995, 51, 13–22. [Google Scholar] [CrossRef]
- Muñoz-Carpena, R.; Parsons, J.E.; Gilliam, J.W. Modeling hydrology and sediment transport in vegetative filter strips. J. Hydrol. 1999, 214, 111–129. [Google Scholar] [CrossRef]
- Shope, C.L.; Maharjan, G.R.; Tenhunen, J.; Seo, B.; Kim, K.; Riley, J.; Arnhold, S.; Koellner, T.; Ok, Y.S.; Peiffer, S.; et al. Using the SWAT model to improve process descriptions and define hydrologic partitioning in South Korea. Hydrol. Earth Syst. Sci. 2014, 18, 539–557. [Google Scholar] [CrossRef]
- Park, S.; Oh, C.; Jeon, S.; Jung, H.; Choi, C. Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss equation. J. Hydrol. 2011, 399, 263–273. [Google Scholar] [CrossRef]
- Bartsch, S.; Peiffer, S.; Shope, C.L.; Arnhold, S.; Jeong, J.J.; Park, J.H.; Eum, J.; Kim, B.; Fleckenstein, J.H. Monsoonal-type climate or land-use management: Understanding their role in the mobilization of nitrate and DOC in a mountainous catchment. J. Hydrol. 2013, 507, 149–162. [Google Scholar] [CrossRef]
- Ha, K.J.; Park, S.K.; Kim, K.Y. On interannual characteristics of Climate Prediction Center merged analysis precipitation over the Korean peninsula during the summer monsoon season. Int. J. Climatol. 2005, 25, 99–116. [Google Scholar] [CrossRef]
- Jung, I.W.; Bae, D.H.; Kim, G. Recent trends of mean and extreme precipitation in Korea. Int. J. Climatol. 2011, 31, 359–370. [Google Scholar] [CrossRef]
- Seo, B.; Bogner, C.; Poppenborg, P.; Martin, E.; Hoffmeister, M.; Jun, M.; Koellner, T.; Reineking, B.; Shope, C.L.; Tenhunen, J. Deriving a per-field land use and land cover map in an agricultural mosaic catchment. Earth Syst. Sci. Data 2014, 6, 339–352. [Google Scholar] [CrossRef]
- Jeon, M.S.; Kang, J.W. Muddy Water Management and Agricultural Development Measures in the Watershed of Soyang Dam: Focused on Haean-myeon, Yanggu-gun; Technical Report; Research Institute of Gangwon: Chuncheon, Korea, 2010. [Google Scholar]
- Morgan, R.P.C.; Morgan, D.D.V.; Finney, H.J. A predictive model for the assessment of soil erosion risk. J. Agric. Eng. Res. 1984, 30, 245–253. [Google Scholar] [CrossRef]
- Morgan, R.P.C. A simple approach to soil loss prediction: A revised Morgan–Morgan–Finney model. CATENA 2001, 44, 305–322. [Google Scholar] [CrossRef]
- Vigiak, O.; Okoba, B.O.; Sterk, G.; Groenenberg, S. Modelling catchment-scale erosion patterns in the East African Highlands. Earth Surf. Process. Landf. 2005, 30, 183–196. [Google Scholar] [CrossRef]
- Morgan, R.P.C.; Duzant, J.H. Modified MMF (Morgan–Morgan–Finney) model for evaluating effects of crops and vegetation cover on soil erosion. Earth Surf. Process. Landf. 2008, 32, 90–106. [Google Scholar] [CrossRef]
- Lilhare, R.; Garg, V.; Nikam, B. Application of GIS-Coupled Modified MMF Model to Estimate Sediment Yield on a Watershed Scale. J. Hydrol. Eng. 2014, 20, C5014002. [Google Scholar] [CrossRef]
- Choi, K.; Huwe, B.; Reineking, B. Commentary on “Modified MMF (Morgan–Morgan–Finney) Model for Evaluating Effects of Crops and Vegetation Cover on Soil Erosion” by Morgan and Duzant (2008). arXiv 2016, arXiv:1612.08899. [Google Scholar]
- ORNL DAAC. MODIS Collection 5 Land Products Global Subsetting and Visualization Tool; ORNL DAAC: Oak Ridge, TN, USA; Available online: https://doi.org/10.3334/ORNLDAAC/1379 (accessed on 9 June 2017).
- Schaap, M.G.; Leij, F.J.; van Genuchten, M.T. ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- ORNL DAAC. MODIS Collection 6 Land Products Global Subsetting and Visualization Tool; ORNL DAAC: Oak Ridge, TN, USA; Available online: https://doi.org/10.3334/ORNLDAAC/1557 (accessed on 14 November 2017).
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006; NASA EOSDIS Land Processes DAAC: Oak Ridge, TN, USA, 2015. [Google Scholar]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Rural Development Administration of South Korea. Agric. Technol. Portal (Nongsaro). 2018. Available online: http://nongsaro.go.kr/portal/farmTechMain.ps?menuId=PS00002 (accessed on 31 July 2018).
- Morgan, R.P.C. Soil Erosion and Conservation; Blackwell Publishing: Malden, MA, USA, 2005; pp. 45–66. [Google Scholar]
- Sobol’, I.M. Sensitivity Analysis for Nonlinear Mathematical Models. Math. Model. Comput. Exp. 1993, 1, 407–414. [Google Scholar]
- Saltelli, A. Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 2002, 145, 280–297. [Google Scholar] [CrossRef]
- Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 2010, 181, 259–270. [Google Scholar] [CrossRef]
- Nossent, J.; Elsen, P.; Bauwens, W. Sobol’ sensitivity analysis of a complex environmental model. Environ. Model. Softw. 2011, 26, 1515–1525. [Google Scholar] [CrossRef]
- Qi, W.; Zhang, C.; Chu, J.; Zhou, H. Sobol’s sensitivity analysis for TOPMODEL hydrological model: A case study for the Biliu River Basin, China. J. Hydrol. Environ. Res. 2013, 1, 1–10. [Google Scholar]
- Saltelli, A.; Annoni, P. How to avoid a perfunctory sensitivity analysis. Environ. Model. Softw. 2010, 25, 1508–1517. [Google Scholar] [CrossRef]
- Brooks, E.S.; Boll, J.; McDaniel, P.A. A hillslope-scale experiment to measure lateral saturated hydraulic conductivity. Water Resour. Res. 2004, 40, W04208. [Google Scholar] [CrossRef]
- Iooss, B.; Janon, A.; Pujol, G.; Boumhaout, K.; Veiga, S.D.; Delage, T.; Fruth, J.; Gilquin, L.; Guillaume, J.; Le Gratiet, L.; et al. Sensitivity: Global Sensitivity Analysis of Model Outputs; R package version 1.15.1. 2018. Available online: https://CRAN.R-project.org/package=sensitivity (accessed on 8 August 2018).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Price, K.V.; Storn, R.M.; Lampinen, J.A. Differential Evolution—A Practical Approach to Global Optimization; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Ardia, D.; Mullen, K.M.; Peterson, B.G.; Ulrich, J. ‘DEoptim’: Differential Evolution in ‘R’, version 2.2-4. 2016. Available online: https://cran.r-project.org/web/packages/DEoptim (accessed on 5 May 2019).
- Joseph, J.F.; Guillaume, J.H.A. Using a parallelized MCMC algorithm in R to identify appropriate likelihood functions for SWAT. Environ. Model. Softw. 2013, 46, 292–298. [Google Scholar] [CrossRef]
- Zheng, F.; Zecchin, A.C.; Simpson, A.R. Investigating the run-time searching behavior of the differential evolution algorithm applied to water distribution system optimization. Environ. Model. Softw. 2015, 69, 292–307. [Google Scholar] [CrossRef]
- Mullen, K.; Ardia, D.; Gil, D.; Windover, D.; Cline, J. DEoptim: An R Package for Global Optimization by Differential Evolution. J. Stat. Softw. 2011, 40, 1–26. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Mauricio Zambrano-Bigiarini. hydroGOF: Goodness-of-Fit Functions for Comparison of Simulated and Observed Hydrological Time Series; R Package Version 0.3-10. 2017. Available online: https://cran.r-project.org/web/packages/hydroGOF (accessed on 5 May 2019).
- OECD. Environmental Indicators for Agriculture: Methods and Results; OECD Publishing: Paris, France, 2001; Volume 3. [Google Scholar]
- OECD. Environmental Performance of Agriculture in OECD Countries Since 1990; OECD Publishing: Paris, France, 2008. [Google Scholar]
- Tucker, G.E.; Whipple, K.X. Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison. J. Geophys. Res. Solid Earth 2002, 107, 1–16. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Technical Report; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Lee, J.Y. A Hydrological Analysis of Current Status of Turbid Water in Soyang River and Its Mitigation. J. Soil Groundw. Environ. 2008, 13, 85–92. [Google Scholar]
- Kim, J.H.; Choi, H.T.; Lim, H.G. Analysis of Suspended Solid Generation with Rainfall-Runoff Events in a Small Forest Watershed. J. Environ. Sci. Int. 2015, 24, 1617–1627. [Google Scholar] [CrossRef]
- Gellis, A.C. Factors influencing storm-generated suspended-sediment concentrations and loads in four basins of contrasting land use, humid-tropical Puerto Rico. CATENA 2013, 104, 39–57. [Google Scholar] [CrossRef]
- Vercruysse, K.; Grabowski, R.C.; Rickson, R.J. Suspended sediment transport dynamics in rivers: Multi-scale drivers of temporal variation. Earth Sci. Rev. 2017, 166, 38–52. [Google Scholar] [CrossRef]
- Lee, J.M.; Park, Y.S.; Kum, D.; Jung, Y.; Kim, B.; Hwang, S.J.; Kim, H.B.; Kim, C.; Lim, K.J. Assessing the effect of watershed slopes on recharge/baseflow and soil erosion. Paddy Water Environ. 2014, 12, 169–183. [Google Scholar] [CrossRef]
- Lim, K.J.; Sagong, M.; Engel, B.A.; Tang, Z.; Choi, J.; Kim, K.S. GIS-based sediment assessment tool. CATENA 2005, 64, 61–80. [Google Scholar] [CrossRef]
- Cooper, J.R.; Gilliam, J.W.; Daniels, R.B.; Robarge, W.P. Riparian Areas as Filters for Agricultural Sediment. Soil Sci. Soc. Am. J. 1987, 51, 416–420. [Google Scholar] [CrossRef]
- Osborne, L.L.; Kovacic, D.A. Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwater Biol. 1993, 29, 243–258. [Google Scholar] [CrossRef]
- Tollner, E.W.; Barfield, B.J.; Haan, C.T.; Kao, T.Y. Suspended Sediment Filtration Capacity of Simulated Vegetation. Trans. ASAE 1976, 19, 678–682. [Google Scholar] [CrossRef]
- Meyer, L.D.; Wischmeier, W.H. Mathematical simulation of the process of soil erosion by water. Trans. ASAE 1969, 12, 754–758. [Google Scholar] [CrossRef]
Type | Parameter | Description | Unit |
---|---|---|---|
Topography | S | Slope angle | () |
Grid size of a raster map | () | ||
Climate | R | Daily rainfall | (mm/day) |
Mean rainfall intensity of a day | () | ||
Daily evapotranspiration | (mm/day) | ||
Soil | Proportion of clay in the surface soil | (proportion) | |
Proportion of silt in the surface soil | (proportion) | ||
Proportion of sand in the surface soil | (proportion) | ||
Soil depth | () | ||
Initial soil water content of the entire soil profile | () | ||
Saturated water content of the entire soil profile | () | ||
Soil water content at field capacity of the entire soil profile | () | ||
K | Saturated soil lateral hydraulic conductivity of the entire soil profile | (mm/day) | |
Detachability of clay particles by rainfall | () | ||
Detachability of silt particles by rainfall | () | ||
Detachability of sand particles by rainfall | () | ||
Detachability of clay particles by surface runoff | () | ||
Detachability of silt particles by surface runoff | () | ||
Detachability of sand particles by surface runoff | () | ||
LULC | Area proportion of the permanent interception of rainfall | (proportion) | |
Area proportion of the impervious ground cover | (proportion) | ||
Area proportion of the pervious ground cover of the soil surface | (proportion) | ||
Area proportion of the canopy cover of the soil surface | (proportion) | ||
Average height of vegetation or crop cover | () | ||
D | Average diameter of individual plant elements at the surface | () | |
Number of individual plant elements per unit area | () | ||
Typical flow depth of surface runoff | () | ||
n | Manning’s roughness coefficient of the soil surface | () |
Classification | * | * | K * | ||||
---|---|---|---|---|---|---|---|
Very steep forest | 2.55 | 0.17 | 0.33 | 0.50 | 0.47 (0.41–0.53) | 0.21 (0.06–0.31) | 1.97 (0.63–4.55) |
Forest | 4.38 | 0.22 | 0.35 | 0.43 | 0.45 (0.41–0.54) | 0.17 (0.06–0.33) | 2.18 (0.63–4.55) |
Moderate to steep dry field | 2.18 | 0.08 | 0.29 | 0.64 | 0.36 (0.34–0.39) | 0.18 (0.17–0.20) | 0.33 (0.18–0.66) |
Flat dry field | 4.85 | 0.03 | 0.15 | 0.82 | 0.36 (0.34–0.41) | 0.18 (0.08–0.25) | 0.49 (0.09–2.25) |
Rice paddy | 1.60 | 0.07 | 0.32 | 0.62 | 0.37 (0.36–0.39) | 0.16 (0.14–0.18) | 0.50 (0.41–0.72) |
Sealed ground | 2.00 | 1.00 | 0.00 | 0.00 | - | - | - |
LULC | Leaf-out (Planting) | Leaf-fall (Harvest) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Forest | 112 | 307 | 0.20 | 0.00 | 1.00 | 0.95 | 30.0 | 2.00 | 0.60 | 0.100 | 0.20 |
Semi-natural | 112 | 307 | 0.30 | 0.00 | 1.00 | 0.95 | 0.50 | 0.01 | 500 | 0.100 | 0.20 |
Shrub | 112 | 307 | 0.20 | 0.00 | 0.30 | 0.95 | 0.50 | 0.12 | 20 | 0.100 | 0.20 |
Rice paddy | 136 | 283 | 0.30 | 0.00 | 1.00 (0.00) | 0.80 | 1.00 | 0.04 | 200 | 0.050 | 0.10 |
Potato | 120 | 243 | 0.12 | 0.50 (0.00) | 0.00 (0.26) | 0.71 | 0.45 | 0.10 | 6.00 | 0.150 | 0.10 |
Bean | 147 | 304 | 0.20 | 0.50 (0.50) | 0.00 (0.58) | 0.89 | 0.70 | 0.02 | 6.00 | 0.150 | 0.10 |
Radish | 153 | 235 | 0.15 | 0.50 (0.25) | 0.00 (0.14) | 0.64 | 0.48 | 0.06 | 6.00 | 0.150 | 0.10 |
Cabbage | 140 | 201 | 0.25 | 0.50 (0.50) | 0.00 (0.31) | 0.85 | 0.55 | 0.20 | 3.64 | 0.150 | 0.10 |
Other dry crops | 120 | 304 | 0.18 | 0.50 (0.31) | 0.00 (0.32) | 0.77 | 0.57 | 0.10 | 5.32 | 0.150 | 0.10 |
Orchard | 120 | 303 | 0.25 | 0.00 | 0.40 | 0.95 | 4.00 | 1.50 | 0.16 | 0.050 | 0.10 |
Ginseng * | 123 | 298 | 0.20 | 0.00 | 0.50 | 1.00 | 1.30 | 0.01 | 37.5 | 0.400 | 0.20 |
Bare soil | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.050 | 0.01 |
Urban | - | - | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.005 | 0.01 |
Erosion Class | Tolerable | Low | Moderate | High | Severe |
---|---|---|---|---|---|
Soil erosion rate () | <6 | 6–10.9 | 11–21.9 | 22–32.9 | >33 |
Parameters | Soil Class/LULC | Optimized Values | ||
---|---|---|---|---|
Forest soil | 0.035 | 0.118 | 2.24 × 10−1 | |
K | Forest soil | 0.202 | 0.082 | 6.17 × 101 |
Forest soil | 0 | 0.213 | 2.25 × 10−1 | |
Forest | 0.781 | 0.180 | 6.66 × 10−5 | |
Forest | 0 | 0.775 | 9.92 × 10−1 | |
Forest | 0 | 0.144 | 7.77 × 10−3 |
Parameters | Soil Class/LULC | Optimized Values | ||
---|---|---|---|---|
Moderate to steep dry field soil | 0.115 | 0.112 | 3.18 × 10−1 | |
K | Moderate to steep dry field soil | 0.223 | 0.020 | 6.06 × 10−1 |
K | Flat dry field soil | 0.062 | 0.001 | 1.59 × 10−1 |
Moderate to steep dry field soil | 0 | 0.217 | 1.39 | |
Moderate to steep dry field soil | 0 | 0.119 | 9.59 × 10−1 | |
Semi-natural | 0.252 | 0.048 | 4.16 × 10−4 | |
Rice paddy | 0.101 | 0.000 | 2.91 × 10−1 | |
Other dry crops | 0.178 | 0.011 | 1.28 × 10−4 | |
Semi-natural | 0 | 0.080 | 3.60 × 10−2 | |
Semi-natural | 0 | 0.158 | 1.74 × 10−1 | |
Bean | 0 | 0.105 | 2.93 × 10−1 | |
- | - | - | 1.75 × 10−2 | |
- | - | - | 4.57 × 10−2 |
LULC | Mean Annual Net Soil Erosion Rate (t/ha/year) | Mean Slope (°) |
---|---|---|
Bare soil | 997.80 | 9.8 |
Bean | 763.82 | 7.6 |
Ginseng | 388.83 | 8.5 |
Potato | 357.60 | 7.9 |
Radish | 310.06 | 8.4 |
Other dry crops | 294.23 | 8.4 |
Semi-natural | 126.34 | 9.0 |
Shrub | 105.54 | 11.1 |
Cabbage | 79.30 | 7.6 |
Catchment average | 52.68 | 16.0 |
Forest | −75.25 | 22.0 |
Rice paddy | −171.83 | 3.0 |
Orchard | −227.14 | 8.1 |
Urban | −284.71 | 6.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, K.; Maharjan, G.R.; Reineking, B. Evaluating the Effectiveness of Spatially Reconfiguring Erosion Hot Spots to Reduce Stream Sediment Load in an Upland Agricultural Catchment of South Korea. Water 2019, 11, 957. https://doi.org/10.3390/w11050957
Choi K, Maharjan GR, Reineking B. Evaluating the Effectiveness of Spatially Reconfiguring Erosion Hot Spots to Reduce Stream Sediment Load in an Upland Agricultural Catchment of South Korea. Water. 2019; 11(5):957. https://doi.org/10.3390/w11050957
Chicago/Turabian StyleChoi, Kwanghun, Ganga Ram Maharjan, and Björn Reineking. 2019. "Evaluating the Effectiveness of Spatially Reconfiguring Erosion Hot Spots to Reduce Stream Sediment Load in an Upland Agricultural Catchment of South Korea" Water 11, no. 5: 957. https://doi.org/10.3390/w11050957