Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (82)

Search Parameters:
Keywords = contractility-related factors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2825 KB  
Article
Expression Profiles of Growth-Related Genes in CRISPR/Cas9-Mediated MRF4-Crispant Nile Tilapia
by Zahid Parvez Sukhan, Yusin Cho, Doohyun Cho, Cheol Young Choi and Kang Hee Kho
Fishes 2026, 11(1), 52; https://doi.org/10.3390/fishes11010052 - 14 Jan 2026
Viewed by 157
Abstract
Genome editing of late myogenic regulators provides a way to dissect the mechanisms through which transcriptional programs and growth-related signaling pathways shape muscle gene expression programs in farmed fish. This study disrupted myogenic regulatory factor 4 (MRF4) in Nile tilapia using [...] Read more.
Genome editing of late myogenic regulators provides a way to dissect the mechanisms through which transcriptional programs and growth-related signaling pathways shape muscle gene expression programs in farmed fish. This study disrupted myogenic regulatory factor 4 (MRF4) in Nile tilapia using CRISPR/Cas9 to examine downstream transcriptional changes in fast skeletal muscle across the trunk, belly, and head regions. Adult F0 crispants carried a frameshift mutation that truncated the basic helix–loop–helix domain and showed an approximate 80–85% reduction in MRF4 mRNA across the trunk, belly, and head muscles. The expression of 23 genes representing myogenic regulatory factors, MEF2 paralogs, structural and contractile components, non-myotomal regulators, cell adhesion and fusion-related transcripts, and growth-related genes within the GH–IGF–MSTN axis was quantified and compared between wild-type and MRF4-crispants. Expressions of major structural genes remained unchanged despite MRF4 depletion, whereas MyoG and MyoD were upregulated together with MEF2B and MEF2D, indicating strong transcriptional compensation. Twist1, ID1, PLAU, CDH15, CHRNG, NCAM1, MYMK, GHR, and FGF6 were also significantly elevated, while IGF1 was reduced, and MSTN remained stable. Together, these results show that MRF4 loss is associated with coordinated transcriptional changes in regulatory and growth-related pathways, while major fast-muscle structural and contractile transcript levels remain stable, thereby highlighting candidate transcriptional targets for future studies that will evaluate links to muscle phenotype and growth performance in Nile tilapia. Full article
(This article belongs to the Special Issue Genetics and Breeding of Fishes)
Show Figures

Figure 1

18 pages, 2422 KB  
Article
Sex-Specific Expression Patterns of MYH6 and MYH7 Gene Transcripts in Large Cohorts of Non-Failing and Failing Human Left Ventricular Tissues
by Zdenko Červenák, Ján Somorčík, Yashar Jalali, Žaneta Zajacová, Marian Baldovič, Andrea Gažová and Ján Kyselovič
J. Cardiovasc. Dev. Dis. 2025, 12(11), 447; https://doi.org/10.3390/jcdd12110447 - 17 Nov 2025
Viewed by 616
Abstract
The transcriptional regulation of MYH6 and MYH7 genes has been extensively investigated in healthy versus failing hearts; however, their expression dynamics in healthy human hearts across age and sex, particularly in the context of cardiovascular risk factors such as hypertension, remain poorly characterised. [...] Read more.
The transcriptional regulation of MYH6 and MYH7 genes has been extensively investigated in healthy versus failing hearts; however, their expression dynamics in healthy human hearts across age and sex, particularly in the context of cardiovascular risk factors such as hypertension, remain poorly characterised. This study aimed to carry out a reanalysis of MYH6 and MYH7 transcript levels in a large cohort of non-failing human left ventricular samples, stratified by sex, age, and hypertensive status. Furthermore, we examined how age and sex influence gene expression differences between non-failing and failing hearts, the latter affected by dilated cardiomyopathy (DCM). Normalised expression values for MYH6 and MYH7 transcripts from both healthy and failing left ventricles were extracted using the GEO2R online analysis tool from the publicly available RNA-sequencing library GSE141910. This library provides transcriptomic profiles of left ventricular (LV) tissue from both healthy individuals and patients with cardiomyopathies. The Mann–Whitney U test was employed for pairwise comparisons between different groups stratified by sex, age, and hypertensive status. Statistical analysis demonstrates sex-specific differences in MYH6 and MYH7 expression in healthy left ventricles, with postmenopausal females (aged > 50 years) with hypertension emerging as a distinct group. Conversely, in end-stage DCM hearts, the expression levels of both myosin genes seemed to be primarily influenced by disease-related pathophysiological mechanisms rather than by sex or age. Comparison between healthy and failing hearts revealed a consistent and significant downregulation of MYH6 in all comparisons, irrespective of sex or age. On the other hand, MYH7 expression exhibited greater variability, particularly among males, with age and hypertensive status influencing its expression. The results underscore the importance of considering age, sex, and comorbidities in interpreting cardiac gene expression patterns and highlight potential regulatory divergence in contractile gene expression during cardiac remodelling. Full article
(This article belongs to the Section Basic and Translational Cardiovascular Research)
Show Figures

Graphical abstract

11 pages, 540 KB  
Perspective
Microplastics, Nanoplastics and Heart Contamination: The Hidden Threat
by Gian Luca Iannuzzi, Michele D’Alto, Giorgio Bosso, Antonio Pio Montella, Veronica D’Oria, Luigi Pellegrino, Giuseppe Boccaforno, Alessandro Masi, Antonio Orlando, Renato Franco, Andrea Ronchi, Carmine Nicastro and Marisa De Feo
J. Clin. Med. 2025, 14(21), 7618; https://doi.org/10.3390/jcm14217618 - 27 Oct 2025
Cited by 1 | Viewed by 1812
Abstract
The global spread of micro- and nanoplastics (MNPs) has emerged as an environmental and medical concern, with growing evidence of their role in cardiovascular disease (CVD). These particles, originating from the degradation of larger plastics and consumer products, can be ingested or inhaled, [...] Read more.
The global spread of micro- and nanoplastics (MNPs) has emerged as an environmental and medical concern, with growing evidence of their role in cardiovascular disease (CVD). These particles, originating from the degradation of larger plastics and consumer products, can be ingested or inhaled, cross biological barriers, and accumulate in human tissues, including blood, myocardium, and atherosclerotic plaques. Experimental and clinical studies suggest that MNPs contribute to CVD through multiple mechanisms: activation of systemic inflammation and inflammasomes, oxidative stress, endothelial dysfunction, prothrombotic activity, and direct myocardial injury, ultimately promoting fibrosis and impaired contractility. Epidemiological data further indicate that populations exposed to higher plastic pollution or with pre-existing cardiovascular risk factors may be particularly vulnerable. Taken together, these findings identify MNPs as a potential novel environmental cardiovascular risk factor. Advancing detection methods, mechanistic research, and public health strategies will be essential to mitigate their impact and reduce plastic-related cardiovascular burden. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

18 pages, 6226 KB  
Article
Primary Uterine Inertia (PUI) in Dogs Is Associated with Impaired Placental Availability of Factors Involved in the Parturition Cascade
by Marianne Steiner, Gerhard Schuler, Bianca L. Frehner, Iris M. Reichler, Sandra Goericke-Pesch, Orsolya Balogh, Miguel Tavares Pereira and Mariusz P. Kowalewski
Animals 2025, 15(20), 3043; https://doi.org/10.3390/ani15203043 - 20 Oct 2025
Viewed by 1009
Abstract
The canine parturition cascade involves decreased placental progesterone (P4) signaling mediated through its nuclear receptor PGR in decidual cells, leading to increased trophoblast production of PGF2α that promotes luteolysis, placentolysis, and myometrial contractility. A local role for glucocorticoids in initiating parturition through increased [...] Read more.
The canine parturition cascade involves decreased placental progesterone (P4) signaling mediated through its nuclear receptor PGR in decidual cells, leading to increased trophoblast production of PGF2α that promotes luteolysis, placentolysis, and myometrial contractility. A local role for glucocorticoids in initiating parturition through increased placental availability of cortisol and glucocorticoid receptor (GR/NR3C1), possibly affecting P4-PGR signaling, has been suggested. Primary uterine inertia (PUI) is a major cause of canine dystocia, but its pathophysiology remains unclear. Here, we hypothesized that dysregulated placental signaling could contribute to PUI. The availability of parturition cascade-related factors was assessed in placentae of dogs with PUI and during physiological prepartum luteolysis (LUT). Compared with LUT, PUI had no significant changes in prostaglandin-related factors PTGS2, PTGES, and HPGD (p > 0.05), but had lower PGF2α synthase PGFS/AKR1C3 (p < 0.001), and higher PGT abundance (p < 0.001). PUI had increased PGR transcript and protein levels (p < 0.001), but the same number of decidual cells (p > 0.05). GR/NR3C1 availability was reduced in PUI (p < 0.05), along with decreased placental cortisol-to-cortisone conversion. Our findings suggest that PUI could be associated with disturbances of the parturition cascade, possibly due to inadequate P4-PGR and glucocorticoid signaling in the placenta. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

18 pages, 5557 KB  
Article
Transcriptome Analysis of Muscle Tissue from Three Anatomical Locations in Male and Female Kazakh Horses
by Ayixie Wubuli, Yi Su, Xinkui Yao, Jun Meng, Jianwen Wang, Yaqi Zeng, Linling Li and Wanlu Ren
Biology 2025, 14(9), 1216; https://doi.org/10.3390/biology14091216 - 8 Sep 2025
Cited by 1 | Viewed by 776
Abstract
The Kazakh horse, a versatile breed, is renowned for stable genetic performance and strong tolerance to coarse feed. Sex is a key factor influencing skeletal muscle development. However, the mechanisms underlying sex-specific regulation of equine muscle growth remain obscure. This study employed transcriptomic [...] Read more.
The Kazakh horse, a versatile breed, is renowned for stable genetic performance and strong tolerance to coarse feed. Sex is a key factor influencing skeletal muscle development. However, the mechanisms underlying sex-specific regulation of equine muscle growth remain obscure. This study employed transcriptomic analysis to investigate sex-associated molecular differences in skeletal muscle of Kazakh horses. The experimental cohort comprised four three-year-old Kazakh stallions and four three-year-old Kazakh mares. After slaughter, six groups of muscle samples were collected immediately, including the longissimus dorsi, rectus abdominis, and diaphragm muscles of both sexes, with four biological replicates per group. RNA-seq analysis revealed 361, 230, and 236 differentially expressed genes (DEGs) in the longissimus dorsi of stallion Kazakh horses (Mb) vs. the longissimus dorsi of mare Kazakh horses (Gb), the rectus abdominis of stallion Kazakh horses (Mf) vs. the rectus abdominis of mare Kazakh horses (Gf), and the diaphragm of stallion Kazakh horses (Mg) vs. the diaphragm of mare Kazakh horses (Gg), respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that DEGs such as TPM1, MYL1, MYH3, and PYGM were primarily enriched in muscle system processes (BP), contractile fibers (CC), and adenosine ribonucleotide binding (MF). Furthermore, these genes were significantly associated with pathways such as the Cytoskeleton in muscle cells and the Thyroid hormone signaling pathway. The data demonstrate pronounced sex-related differences in gene expression and muscle structure in Kazakh horses, likely mediated by cytoskeleton-associated genes. Notably, TPM1, MYL1, MYH3, and PYGM may act as key regulators of sex-specific muscle development. These findings provide molecular insights into the mechanisms underlying sexual dimorphism in equine muscle growth. Full article
Show Figures

Figure 1

11 pages, 245 KB  
Review
The Impact of Insulin Resistance on Lung Volume Through Right Ventricular Dysfunction in Diabetic Patients—Literature Review
by Daniel Radu, Oana-Andreea Parlițeanu, Andra-Elena Nica, Cristiana Voineag, Octavian-Sabin Alexe, Alexandra Maria Cristea, Livia Georgescu, Roxana Maria Nemeș, Andreea Taisia Tiron and Alexandra Floriana Nemeș
J. Pers. Med. 2025, 15(8), 336; https://doi.org/10.3390/jpm15080336 - 1 Aug 2025
Viewed by 1326
Abstract
Insulin resistance (IR), a core component in the development of type 2 diabetes mellitus (T2DM), is increasingly recognized for its role in cardiovascular and pulmonary complications. This review explores the relationship between IR, right ventricular dysfunction (RVD), and decreased lung volume in patients [...] Read more.
Insulin resistance (IR), a core component in the development of type 2 diabetes mellitus (T2DM), is increasingly recognized for its role in cardiovascular and pulmonary complications. This review explores the relationship between IR, right ventricular dysfunction (RVD), and decreased lung volume in patients with T2DM. Emerging evidence suggests that IR contributes to early structural and functional alterations in the right ventricle, independent of overt cardiovascular disease. The mechanisms involved include oxidative stress, inflammation, dyslipidemia, and obesity—factors commonly found in metabolic syndrome and T2DM. These pathophysiological changes compromise right ventricular contractility, leading to reduced pulmonary perfusion and respiratory capacity. RVD has been associated with chronic lung disease, pulmonary hypertension, and obstructive sleep apnea, all of which are prevalent in the diabetic population. As RVD progresses, it can result in impaired gas exchange, interstitial pulmonary edema, and exercise intolerance—highlighting the importance of early recognition and management. Therapeutic strategies should aim to improve insulin sensitivity and cardiac function through lifestyle interventions, pharmacological agents such as SGLT2 inhibitors and GLP-1/GIP analogs, and routine cardiac monitoring. These approaches may help slow the progression of RVD and its respiratory consequences. Considering the global burden of diabetes and obesity, and the growing incidence of related complications, further research is warranted to clarify the mechanisms linking IR, RVD, and respiratory dysfunction. Understanding this triad will be crucial for developing targeted interventions that improve outcomes and quality of life in affected patients. Full article
(This article belongs to the Section Mechanisms of Diseases)
19 pages, 2479 KB  
Article
Yoda1 Inhibits TGFβ-Induced Cardiac Fibroblast Activation via a BRD4-Dependent Pathway
by Perwez Alam, Sara M. Stiens, Hunter J. Bowles, Hieu Bui and Douglas K. Bowles
Cells 2025, 14(13), 1028; https://doi.org/10.3390/cells14131028 - 4 Jul 2025
Cited by 1 | Viewed by 1900
Abstract
Fibrosis represents a pivotal pathological process in numerous diseases, characterized by excessive deposition of extracellular matrix (ECM) that disrupts normal tissue architecture and function. In the heart, cardiac fibrosis significantly impairs both structural integrity and functional capacity, contributing to the progression of heart [...] Read more.
Fibrosis represents a pivotal pathological process in numerous diseases, characterized by excessive deposition of extracellular matrix (ECM) that disrupts normal tissue architecture and function. In the heart, cardiac fibrosis significantly impairs both structural integrity and functional capacity, contributing to the progression of heart failure. Central to this process are cardiac fibroblasts (CFs), which, upon activation, differentiate into contractile myofibroblasts, driving pathological ECM accumulation. Transforming growth factor-beta (TGFβ) is a well-established regulator of fibroblast activation; however, the precise molecular mechanisms, particularly the involvement of ion channels, remain poorly understood. Emerging evidence highlights the regulatory role of ion channels, including calcium-activated potassium (KCa) channels, in fibroblast activation. This study elucidates the role of ion channels and investigates the mechanism by which Yoda1, an agonist of the mechanosensitive ion channel Piezo1, modulates TGFβ-induced fibroblast activation. Using NIH/3T3 fibroblasts, we demonstrated that TGFβ-induced activation is regulated by tetraethylammonium (TEA)-sensitive potassium channels, but not by specific K⁺ channel subtypes such as BK, SK, or IK channels. Intriguingly, Yoda1 was found to inhibit TGFβ-induced fibroblast activation through a Piezo1-independent mechanism. Transcriptomic analysis revealed that Yoda1 modulates fibroblast activation by altering gene expression pathways associated with fibrotic processes. Bromodomain-containing protein 4 (BRD4) was identified as a critical mediator of Yoda1’s effects, as pharmacological inhibition of BRD4 with JQ1 or ZL0454 suppressed TGFβ-induced expression of the fibroblast activation marker Periostin (Postn). Conversely, BRD4 overexpression attenuated the inhibitory effects of Yoda1 in both mouse and rat CFs. These results provide novel insights into the pharmacological modulation of TGFβ-induced cardiac fibroblast activation and highlight promising therapeutic targets for the treatment of fibrosis-related cardiac pathologies. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

52 pages, 1239 KB  
Review
Molecular and Biochemical Mechanisms of Cardiomyopathy Development Following Prenatal Hypoxia—Focus on the NO System
by Olena Popazova, Igor Belenichev, Nina Bukhtiyarova, Victor Ryzhenko, Nadia Gorchakova, Valentyn Oksenych and Oleksandr Kamyshnyi
Antioxidants 2025, 14(6), 743; https://doi.org/10.3390/antiox14060743 - 16 Jun 2025
Cited by 2 | Viewed by 2682
Abstract
Prenatal hypoxia (PH) adversely affects the development of the fetal heart, contributing to persistent cardiovascular impairments in postnatal life. A key component in regulating cardiac physiology is the nitric oxide (NO) system, which influences vascular tone, myocardial contractility, and endothelial integrity during development. [...] Read more.
Prenatal hypoxia (PH) adversely affects the development of the fetal heart, contributing to persistent cardiovascular impairments in postnatal life. A key component in regulating cardiac physiology is the nitric oxide (NO) system, which influences vascular tone, myocardial contractility, and endothelial integrity during development. Exposure to PH disrupts NO-related signaling pathways, leading to endothelial dysfunction, mitochondrial damage, and an escalation of oxidative stress—all of which exacerbate cardiac injury and trigger cardiomyocyte apoptosis. The excessive generation of reactive nitrogen species drives nitrosative stress, thereby intensifying inflammatory processes and cellular injury. In addition, the interplay between NO and hypoxia-inducible factor (HIF) shapes adaptive responses to PH. NO also modulates the synthesis of heat shock protein 70 (HSP70), a critical factor in cellular defense against stress. This review emphasizes the involvement of NO in cardiovascular injury caused by PH and examines the cardioprotective potential of NO modulators—Angiolin, Thiotriazoline, Mildronate, and L-arginine—as prospective therapeutic agents. These agents reduce oxidative stress, enhance endothelial performance, and alleviate the detrimental effects of PH on the heart, offering potential new strategies to prevent cardiovascular disorders in offspring subjected to prenatal hypoxia. Full article
(This article belongs to the Special Issue Nitric Oxide and Redox Mechanisms)
Show Figures

Figure 1

19 pages, 2232 KB  
Article
Redox Mechanisms Driving Skin Fibroblast-to-Myofibroblast Differentiation
by Marzieh Aminzadehanboohi, Manousos Makridakis, Delphine Rasti, Yves Cambet, Karl-Heinz Krause, Antonia Vlahou and Vincent Jaquet
Antioxidants 2025, 14(4), 486; https://doi.org/10.3390/antiox14040486 - 18 Apr 2025
Cited by 1 | Viewed by 2220
Abstract
Transforming Growth Factor-Beta 1 (TGF-β1) plays a pivotal role in the differentiation of fibroblasts into myofibroblasts, which is a critical process in tissue repair, fibrosis, and wound healing. Upon exposure to TGF-β1, fibroblasts acquire a contractile phenotype and secrete collagen and extracellular matrix [...] Read more.
Transforming Growth Factor-Beta 1 (TGF-β1) plays a pivotal role in the differentiation of fibroblasts into myofibroblasts, which is a critical process in tissue repair, fibrosis, and wound healing. Upon exposure to TGF-β1, fibroblasts acquire a contractile phenotype and secrete collagen and extracellular matrix components. Numerous studies have identified hydrogen peroxide (H2O2) as a key downstream effector of TGF-β1 in this pathway. H2O2 functions as a signalling molecule, regulating various cellular processes mostly through post-translational redox modifications of cysteine thiol groups of specific proteins. In this study, we used primary human skin fibroblast cultures to investigate the oxidative mechanisms triggered by TGF-β1. We analyzed the expression of redox-related genes, evaluated the effects of the genetic and pharmacological inhibition of H2O2-producing enzymes, and employed an unbiased redox proteomics approach (OxICAT) to identify proteins undergoing reversible cysteine oxidation. Our findings revealed that TGF-β1 treatment upregulated the expression of oxidant-generating genes while downregulating antioxidant genes. Low concentrations of diphenyleneiodonium mitigated myofibroblast differentiation and mitochondrial oxygen consumption, suggesting the involvement of a flavoenzyme in this process. Furthermore, we identified the increased oxidation of highly conserved cysteine residues in key proteins such as the epidermal growth factor receptor, filamin A, fibulin-2, and endosialin during the differentiation process. Collectively, this study provides insights into the sources of H2O2 in fibroblasts and highlights the novel redox mechanisms underpinning fibroblast-to-myofibroblast differentiation. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

25 pages, 14355 KB  
Article
The Interaction Between the asb5a and asb5b Subtypes Jointly Regulates the L-R Asymmetrical Development of the Heart in Zebrafish
by Wanbang Zhou, Wanwan Cai, Yongqing Li, Luoqing Gao, Xin Liu, Siyuan Liu, Junrong Lei, Jisheng Zhang, Yuequn Wang, Zhigang Jiang, Xiushan Wu, Xiongwei Fan, Fang Li, Lan Zheng and Wuzhou Yuan
Int. J. Mol. Sci. 2025, 26(6), 2765; https://doi.org/10.3390/ijms26062765 - 19 Mar 2025
Viewed by 1136
Abstract
The asb5 gene, a member of the Asb protein subfamily characterized by six ankyrin repeat domains, is highly conserved and comprises two subtypes, asb5a and asb5b, in zebrafish. Our previous research has demonstrated that a deficiency of the asb5 gene significantly [...] Read more.
The asb5 gene, a member of the Asb protein subfamily characterized by six ankyrin repeat domains, is highly conserved and comprises two subtypes, asb5a and asb5b, in zebrafish. Our previous research has demonstrated that a deficiency of the asb5 gene significantly impairs early cardiac contractile function, highlighting its close relationship with heart development. Zebrafish asb5 expression was disrupted by both morpholino (MO) antisense oligomer-mediated knockdown and a CRISPR-Cas9 system. A high-throughput RNA-Seq analysis was used to analyze the possible molecular regulatory mechanism of asb5 gene deletion leading to left–right (L-R) asymmetry defects in the heart. Whole-mount in situ hybridization (WISH) was conducted to evaluate gene expression patterns of Nodal signaling components and the positions of heart organs. Heart looping was defective in zebrafish asb5 morphants. Rescue experiments in the asb5-deficiency group (inactivating both asb5a and asb5b) demonstrated that the injection of either asb5a-mRNA or asb5b-mRNA alone was insufficient to rectify the abnormal L-R asymmetry of the heart. In contrast, the simultaneous injection of both asb5a-mRNA and asb5b-mRNA successfully rescued the morphological phenotype. A high-throughput RNA-Seq analysis of embryos at 48 h post fertilization (hpf) revealed that numerous genes associated with L-R asymmetry exhibited expression imbalances in the asb5-deficiency group. WISH further confirmed that the expression of genes such as fli1a, acta1b, hand2, has2, prrx1a, notch1b, and foxa3 were upregulated, while the expression of mei2a and tal1 was downregulated. These results indicated that loss of the asb5 gene in zebrafish led to the disordered development of L-R asymmetry in the heart, resulting in an imbalance in the expression of genes associated with the regulation of L-R asymmetry. Subsequently, we examined the expression patterns of classical Nodal signaling pathway-related genes using WISH. The results showed that the midline barrier factor gene lefty1 was downregulated at early stages in the asb5-deficiency group, and the expression of spaw and lefty2, which are specific to the left lateral plate mesoderm (LPM), was disrupted. This study reveals that the two subtypes of the asb5 gene in zebrafish, asb5a and asb5b, interact and jointly regulate the establishment of early cardiac L-R asymmetry through the Nodal-spaw-lefty signaling pathway. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 3475 KB  
Article
Alternative Splicing Analysis Reveals Adrenergic Signaling as a Novel Target for Protein Arginine Methyltransferase 5 (PRMT5) in the Heart
by Shouye Jiao, Yimeng Zhang, Xiao Yang, Jian Wang and Zhenhua Li
Int. J. Mol. Sci. 2025, 26(5), 2301; https://doi.org/10.3390/ijms26052301 - 5 Mar 2025
Cited by 1 | Viewed by 1353
Abstract
Adrenergic signaling is critical for maintaining cardiac function and works by regulating heart rate, contractility, and stress responses. Protein arginine methyltransferase 5 (PRMT5), a key enzyme involved in gene expression, signal transduction, and RNA processing, has been revealed to be an important factor [...] Read more.
Adrenergic signaling is critical for maintaining cardiac function and works by regulating heart rate, contractility, and stress responses. Protein arginine methyltransferase 5 (PRMT5), a key enzyme involved in gene expression, signal transduction, and RNA processing, has been revealed to be an important factor in heart disease. However, its specific effects on adrenergic signaling have not been fully elucidated. In this study, we examined the role of PRMT5 in the heart by analyzing alternative splicing events in cardiac tissues from Prmt5-deficient mice. High-throughput RNA sequencing and bioinformatics analyses identified significant alterations in alternative splicing, particularly in genes related to adrenergic signaling, which were further validated using reverse transcription PCR. These results underscore the role of PRMT5 as an important regulator of alternative splicing in the heart and identify adrenergic signaling as a novel target. Collectively, our findings offer new insights into the molecular mechanisms underlying cardiac function and suggest that PRMT5 is a potential therapeutic target for heart diseases. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Graphical abstract

9 pages, 1634 KB  
Review
Genetic Overlap of Thoracic Aortic Aneurysms and Intracranial Aneurysms
by Mah I Kan Changez, Afsheen Nasir, Alexandra Sonsino, Syeda Manahil Jeoffrey, Asanish Kalyanasundaram, Mohammad A. Zafar, Bulat A. Ziganshin and John A. Elefteriades
Genes 2025, 16(2), 154; https://doi.org/10.3390/genes16020154 - 26 Jan 2025
Cited by 1 | Viewed by 3698
Abstract
Objective: Thoracic aortic aneurysms (TAAs) and intracranial aneurysms (ICAs) share overlapping genetic and pathophysiological mechanisms, yet the genetic interplay between these conditions remains insufficiently explored. This study aimed to identify common genetic factors underlying TAA and ICA. Methods: A comprehensive review of genome-wide [...] Read more.
Objective: Thoracic aortic aneurysms (TAAs) and intracranial aneurysms (ICAs) share overlapping genetic and pathophysiological mechanisms, yet the genetic interplay between these conditions remains insufficiently explored. This study aimed to identify common genetic factors underlying TAA and ICA. Methods: A comprehensive review of genome-wide association studies (GWASs) and retrospective clinical studies was conducted using PubMed, Orbis, and Web of Science. Articles addressing the genetic etiologies of TAA and ICA were analyzed. Separate lists of causative genes were compiled, and commonalities were identified. A Venn diagram was constructed to illustrate genetic overlap and shared physiological pathways. Results: We identified 24 overlapping genes associated with TAA and ICA, including LTBP2, TGFB2, TGFB3, TGFBR1, TGFBR2, SMAD2, SMAD3, COL1A2, COL3A1, COL4A1, COL5A1, COL5A2, FBN1, FBN2, ELN, LOX ACTA2, MYH11, MYLK, ABCC6, NOTCH1, MED12, PKD1, and PKD2. These genes are involved in pathways related to connective tissue biology, contractile elements, extracellular matrix components, and transforming growth factor-β signaling. While vascular endothelium and cell cycle pathways were unique to ICA, TAA pathways predominantly involved extracellular matrix remodeling. Conclusions: This study highlights the significant genetic overlap between TAA and ICA, shedding light on shared molecular mechanisms. These findings underscore the importance of interdisciplinary awareness: neurologists, neurosurgeons, and neurointerventional radiologists should monitor ICA patients for potential TAA, while cardiologists, cardiac surgeons, vascular surgeons, and vascular interventionalists should consider ICA risks in TAA patients. Further research into these genetic pathways could enhance the understanding and management of both conditions. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

14 pages, 3034 KB  
Article
NF-κB-Specific Suppression in Cardiomyocytes Unveils Aging-Associated Responses in Cardiac Tissue
by Letícia Aparecida Lopes Morgado, Larissa Maria Zacarias Rodrigues, Daiane Cristina Floriano Silva, Bruno Durante da Silva, Maria Claudia Costa Irigoyen and Ana Paula Cremasco Takano
Biomedicines 2025, 13(1), 224; https://doi.org/10.3390/biomedicines13010224 - 17 Jan 2025
Cited by 4 | Viewed by 1845
Abstract
Background/Objectives: Aging is associated with structural and functional changes in the heart, including hypertrophy, fibrosis, and impaired contractility. Cellular mechanisms such as senescence, telomere shortening, and DNA damage contribute to these processes. Nuclear factor kappa B (NF-κB) has been implicated in mediating [...] Read more.
Background/Objectives: Aging is associated with structural and functional changes in the heart, including hypertrophy, fibrosis, and impaired contractility. Cellular mechanisms such as senescence, telomere shortening, and DNA damage contribute to these processes. Nuclear factor kappa B (NF-κB) has been implicated in mediating cellular responses in aging tissues, and increased NF-κB expression has been observed in the hearts of aging rodents. Therefore, NF-κB is suspected to play an important regulatory role in the cellular and molecular processes occurring in the heart during aging. This study investigates the in vivo role of NF-κB in aging-related cardiac alterations, focusing on senescence and associated cellular events. Methods: Young and old wild-type (WT) and transgenic male mice with cardiomyocyte-specific NF-κB suppression (3M) were used to assess cardiac function, morphology, senescence markers, lipofuscin deposition, DNA damage, and apoptosis. Results: Kaplan–Meier analysis revealed reduced survival in 3M mice compared to WT. Echocardiography showed evidence of eccentric hypertrophy, and both diastolic and systolic dysfunction in 3M mice. Both aged WT and 3M mice exhibited cardiac hypertrophy, with more pronounced hypertrophic changes in cardiomyocytes from 3M mice. Additionally, cardiac fibrosis, senescence-associated β-galactosidase activity, p21 protein expression, and DNA damage (marked by phosphorylated H2A.X) were elevated in aged WT and both young and aged 3M mice. Conclusions: The suppression of NF-κB in cardiomyocytes leads to pronounced cardiac remodeling, dysfunction, and cellular damage associated with the aging process. These findings suggest that NF-κB plays a critical regulatory role in cardiac aging, influencing both cellular senescence and molecular damage pathways. This has important implications for the development of therapeutic strategies aimed at mitigating age-related cardiovascular diseases. Full article
Show Figures

Figure 1

16 pages, 3239 KB  
Article
Short-Term Culture of Human Hyalocytes Retains Their Initial Phenotype and Displays Their Contraction Abilities
by Alessandra Micera, Bijorn Omar Balzamino, Pamela Cosimi, Graziana Esposito, Guido Ripandelli and Tommaso Rossi
Cells 2024, 13(22), 1837; https://doi.org/10.3390/cells13221837 - 6 Nov 2024
Cited by 2 | Viewed by 1566
Abstract
Background: Hyalocytes are the main vitreal cell types with critical functions in health and vitreoretinal diseases. Our aim was to develop cultures of human hyalocytes and verify the retention of their initial cellular features after 3 and 6 days of culturing (3 d [...] Read more.
Background: Hyalocytes are the main vitreal cell types with critical functions in health and vitreoretinal diseases. Our aim was to develop cultures of human hyalocytes and verify the retention of their initial cellular features after 3 and 6 days of culturing (3 d and 6 d) by analyzing and comparing a few morphological and functional parameters. Methods: Vitreous samples (n = 22) were collected and vitreous cells and bead-enriched hyalocytes were developed and compared (3 d vs. 6 d cultures). Vitreous and conditioned media were tested for collagen, vascular endothelial growth factor (VEGF), transforming growth factor β1 (TGFβ1), nerve growth factor (NGF), matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and alpha-smooth muscle actin (αSMA) expression (ELISA, array/IP/WB, RT-PCR). Cells were observed at light and fluorescent microscopy (phenotypical properties) and tested for their 3D collagen gel contraction abilities. Results: An increased expression of collagens, vimentin, fibronectin, and the MMP9/TIMP1 ratio were observed in vitreous tissues. In 3 d cultures, collagens and MMP9 were upregulated while the related tissue-enzymes were deregulated. Vitreous samples also showed high levels of TGFβ1, VEGF, and NGF, and this protein signature was retained at 3 d while decreased at 6 d. The original phenotype (low αSMA) was retained at 3 d from seeding while an increased αSMA expression was observed at 6 d; NGF/trkANGFR was expressed in cultured hyalocytes and partially drives the collagen retraction. Conclusions: The vitreous print comparison between untouched and cultured hyalocytes allowed us, on one side, to select 3 d cultures and, on the other, to highlight the neuroprotective/contractile NGF in vitro hyalocytes effects. The possibility of scoring reactive hyalocytes would represent an interesting aspect of screening the vitreoretinal interface severity. Full article
Show Figures

Figure 1

19 pages, 1700 KB  
Review
Ca2+ Signaling in Cardiovascular Fibroblasts
by Andreas Rinne and Florentina Pluteanu
Biomolecules 2024, 14(11), 1365; https://doi.org/10.3390/biom14111365 - 27 Oct 2024
Cited by 3 | Viewed by 3160
Abstract
Fibrogenesis is a physiological process required for wound healing and tissue repair. It is induced by activation of quiescent fibroblasts, which first proliferate and then change their phenotype into migratory, contractile myofibroblasts. Myofibroblasts secrete extracellular matrix proteins, such as collagen, to form a [...] Read more.
Fibrogenesis is a physiological process required for wound healing and tissue repair. It is induced by activation of quiescent fibroblasts, which first proliferate and then change their phenotype into migratory, contractile myofibroblasts. Myofibroblasts secrete extracellular matrix proteins, such as collagen, to form a scar. Once the healing process is terminated, most myofibroblasts undergo apoptosis. However, in some tissues, such as the heart, myofibroblasts remain active and sensitive to neurohumoral factors and inflammatory mediators, which lead eventually to excessive organ fibrosis. Many cellular processes involved in fibroblast activation, including cell proliferation, protein secretion and cell contraction, are highly regulated by intracellular Ca2+ signals. This review summarizes current research on Ca2+ signaling pathways underlying fibroblast activation. We present receptor- and ion channel-mediated Ca2+ signaling pathways, discuss how localized Ca2+ signals of the cell nucleus may be involved in fibroblast activation and present Ca2+-sensitive transcription pathways relevant for fibroblast biology. When investigated, we highlight how the function of Ca2+-handling proteins changes during cardiac and pulmonary fibrosis. Many aspects of Ca2+ signaling remain unexplored in different types of cardiovascular fibroblasts in relation to pathologies, and a better understanding of Ca2+ signaling in fibroblasts will help to design targeted therapies against fibrosis. Full article
(This article belongs to the Special Issue Advances in Cellular Biophysics: Transport and Mechanics)
Show Figures

Figure 1

Back to TopTop