Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (534)

Search Parameters:
Keywords = contractile proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 1038 KiB  
Review
Hydrogels in Cardiac Surgery: Versatile Platforms for Tissue Repair, Adhesion Prevention, and Localized Therapeutics
by Seok Beom Hong, Jin-Oh Jeong and Hoon Choi
Gels 2025, 11(7), 564; https://doi.org/10.3390/gels11070564 - 21 Jul 2025
Viewed by 520
Abstract
Hydrogels have emerged as multifunctional biomaterials in cardiac surgery, offering promising solutions for myocardial regeneration, adhesion prevention, valve engineering, and localized drug and gene delivery. Their high water content, biocompatibility, and mechanical tunability enable close emulation of the cardiac extracellular matrix, supporting cellular [...] Read more.
Hydrogels have emerged as multifunctional biomaterials in cardiac surgery, offering promising solutions for myocardial regeneration, adhesion prevention, valve engineering, and localized drug and gene delivery. Their high water content, biocompatibility, and mechanical tunability enable close emulation of the cardiac extracellular matrix, supporting cellular viability and integration under dynamic physiological conditions. In myocardial repair, injectable and patch-forming hydrogels have been shown to be effective in reducing infarct size, promoting angiogenesis, and preserving contractile function. Hydrogel coatings and films have been designed as adhesion barriers to minimize pericardial adhesions after cardiotomy and improve reoperative safety. In heart valve and patch engineering, hydrogels contribute to scaffold design by providing bio-instructive, mechanically resilient, and printable matrices that are compatible with 3D fabrication. Furthermore, hydrogels serve as localized delivery platforms for small molecules, proteins, and nucleic acids, enabling sustained or stimuli-responsive release while minimizing systemic toxicity. Despite these advances, challenges such as mechanical durability, immune compatibility, and translational scalability persist. Ongoing innovations in smart polymer chemistry, hybrid composite design, and patient-specific manufacturing are addressing these limitations. This review aims to provide an integrated perspective on the application of hydrogels in cardiac surgery. The relevant literature was identified through a narrative search of PubMed, Scopus, Web of Science, Embase, and Google Scholar. Taken together, hydrogels offer a uniquely versatile and clinically translatable platform for addressing the multifaceted challenges of cardiac surgery. Hydrogels are poised to redefine clinical strategies in cardiac surgery by enabling tailored, bioresponsive, and functionally integrated therapies. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Tissue Engineering Applications)
Show Figures

Figure 1

25 pages, 6067 KiB  
Article
Early-Stage Alcoholic Cardiomyopathy Highlighted by Metabolic Remodeling, Oxidative Stress, and Cardiac Myosin Dysfunction in Male Rats
by David V. Rasicci, Jinghua Ge, Adrien P. Chen, Neil B. Wood, Skylar M. L. Bodt, Allyson L. Toro, Alexandra Evans, Omid Golestanian, Md Shahrier Amin, Anne Pruznak, Nelli Mnatsakanyan, Yuval Silberman, Michael D. Dennis, Michael J. Previs, Charles H. Lang and Christopher M. Yengo
Int. J. Mol. Sci. 2025, 26(14), 6766; https://doi.org/10.3390/ijms26146766 - 15 Jul 2025
Viewed by 268
Abstract
Chronic ethanol use can lead to alcoholic cardiomyopathy (ACM), while the impact on the molecular and cellular aspects of the myocardium is unclear. Accordingly, male Sprague-Dawley rats were exposed to an ethanol-containing diet for 16 weeks and compared with a control group that [...] Read more.
Chronic ethanol use can lead to alcoholic cardiomyopathy (ACM), while the impact on the molecular and cellular aspects of the myocardium is unclear. Accordingly, male Sprague-Dawley rats were exposed to an ethanol-containing diet for 16 weeks and compared with a control group that was fed an isocaloric diet. Histological measurements from H&E slides revealed no significant differences in cell size. A proteomic approach revealed that alcohol exposure leads to enhanced mitochondrial lipid metabolism, and electron microscopy revealed impairments in mitochondrial morphology/density. Cardiac myosin purified from the hearts of ethanol-exposed animals demonstrated a 15% reduction in high-salt ATPase activity, with no significant changes in the in vitro motility and low-salt ATPase or formation of the super-relaxed (SRX) state. A protein carbonyl assay indicated a 20% increase in carbonyl incorporation, suggesting that alcohol may impact cardiac myosin through oxidative stress mechanisms. In vitro oxidation of healthy cardiac myosin revealed a dramatic decline in ATPase activity and in vitro motility, demonstrating a link between myosin protein oxidation and myosin mechanochemistry. Collectively, this study suggests alcohol-induced metabolic remodeling may be the initial insult that eventually leads to defects in the contractile machinery in the myocardium of ACM hearts. Full article
(This article belongs to the Special Issue Sarcomeric Proteins in Health and Disease: 3rd Edition)
Show Figures

Figure 1

17 pages, 2007 KiB  
Review
Modulation of Redox-Sensitive Cardiac Ion Channels
by Razan Orfali, Al Hassan Gamal El-Din, Varnika Karthick, Elisanjer Lamis, Vanna Xiao, Alena Ramanishka, Abdullah Alwatban, Osama Alkhamees, Ali Alaseem, Young-Woo Nam and Miao Zhang
Antioxidants 2025, 14(7), 836; https://doi.org/10.3390/antiox14070836 - 8 Jul 2025
Viewed by 573
Abstract
Redox regulation is crucial for the cardiac action potential, coordinating the sodium-driven depolarization, calcium-mediated plateau formation, and potassium-dependent repolarization processes required for proper heart function. Under physiological conditions, low-level reactive oxygen species (ROS), generated by mitochondria and membrane oxidases, adjust ion channel function [...] Read more.
Redox regulation is crucial for the cardiac action potential, coordinating the sodium-driven depolarization, calcium-mediated plateau formation, and potassium-dependent repolarization processes required for proper heart function. Under physiological conditions, low-level reactive oxygen species (ROS), generated by mitochondria and membrane oxidases, adjust ion channel function and support excitation–contraction coupling. However, when ROS accumulate, they modify a variety of important channel proteins in cardiomyocytes, which commonly results in reducing potassium currents, enhancing sodium and calcium influx, and enhancing intracellular calcium release. These redox-driven alterations disrupt the cardiac rhythm, promote after-depolarizations, impair contractile force, and accelerate the development of heart diseases. Experimental models demonstrate that oxidizing agents reduce repolarizing currents, whereas reducing systems restore normal channel activity. Similarly, oxidative modifications of calcium-handling proteins amplify sarcoplasmic reticulum release and diastolic calcium leak. Understanding the precise redox-dependent modifications of cardiac ion channels would guide new possibilities for targeted therapies aimed at restoring electrophysiological homeostasis under oxidative stress, potentially alleviating myocardial infarction and cardiovascular dysfunction. Full article
Show Figures

Graphical abstract

19 pages, 2479 KiB  
Article
Yoda1 Inhibits TGFβ-Induced Cardiac Fibroblast Activation via a BRD4-Dependent Pathway
by Perwez Alam, Sara M. Stiens, Hunter J. Bowles, Hieu Bui and Douglas K. Bowles
Cells 2025, 14(13), 1028; https://doi.org/10.3390/cells14131028 - 4 Jul 2025
Viewed by 640
Abstract
Fibrosis represents a pivotal pathological process in numerous diseases, characterized by excessive deposition of extracellular matrix (ECM) that disrupts normal tissue architecture and function. In the heart, cardiac fibrosis significantly impairs both structural integrity and functional capacity, contributing to the progression of heart [...] Read more.
Fibrosis represents a pivotal pathological process in numerous diseases, characterized by excessive deposition of extracellular matrix (ECM) that disrupts normal tissue architecture and function. In the heart, cardiac fibrosis significantly impairs both structural integrity and functional capacity, contributing to the progression of heart failure. Central to this process are cardiac fibroblasts (CFs), which, upon activation, differentiate into contractile myofibroblasts, driving pathological ECM accumulation. Transforming growth factor-beta (TGFβ) is a well-established regulator of fibroblast activation; however, the precise molecular mechanisms, particularly the involvement of ion channels, remain poorly understood. Emerging evidence highlights the regulatory role of ion channels, including calcium-activated potassium (KCa) channels, in fibroblast activation. This study elucidates the role of ion channels and investigates the mechanism by which Yoda1, an agonist of the mechanosensitive ion channel Piezo1, modulates TGFβ-induced fibroblast activation. Using NIH/3T3 fibroblasts, we demonstrated that TGFβ-induced activation is regulated by tetraethylammonium (TEA)-sensitive potassium channels, but not by specific K⁺ channel subtypes such as BK, SK, or IK channels. Intriguingly, Yoda1 was found to inhibit TGFβ-induced fibroblast activation through a Piezo1-independent mechanism. Transcriptomic analysis revealed that Yoda1 modulates fibroblast activation by altering gene expression pathways associated with fibrotic processes. Bromodomain-containing protein 4 (BRD4) was identified as a critical mediator of Yoda1’s effects, as pharmacological inhibition of BRD4 with JQ1 or ZL0454 suppressed TGFβ-induced expression of the fibroblast activation marker Periostin (Postn). Conversely, BRD4 overexpression attenuated the inhibitory effects of Yoda1 in both mouse and rat CFs. These results provide novel insights into the pharmacological modulation of TGFβ-induced cardiac fibroblast activation and highlight promising therapeutic targets for the treatment of fibrosis-related cardiac pathologies. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

10 pages, 2165 KiB  
Brief Report
Skeletal Muscle Alterations in Different Phenotypes of Heart Failure with Preserved Ejection Fraction
by Beatrice Vahle, Romy Klädtke, Antje Schauer, T. Scott Bowen, Ulrik Wisløff, Axel Linke and Volker Adams
Int. J. Mol. Sci. 2025, 26(13), 6196; https://doi.org/10.3390/ijms26136196 - 27 Jun 2025
Viewed by 461
Abstract
Heart failure with preserved ejection fraction (HFpEF) shows diverse disease patterns, with various combinations of comorbidities and symptoms. A common hallmark is exercise intolerance, caused by alterations in the peripheral skeletal muscle (SKM) including a recently indicated titin hyperphosphorylation. Our aim is to [...] Read more.
Heart failure with preserved ejection fraction (HFpEF) shows diverse disease patterns, with various combinations of comorbidities and symptoms. A common hallmark is exercise intolerance, caused by alterations in the peripheral skeletal muscle (SKM) including a recently indicated titin hyperphosphorylation. Our aim is to compare a metabolic syndrome- (ZSF-1 rats) and a hypertension-driven (Dahl salt-sensitive (DSS) rats) HFpEF rat-model in relation to SKM function and titin phosphorylation. Obese ZSF-1 and high-salt fed DSS rats (HFpEF) were compared to lean ZSF-1 and low-salt fed rats (con). HFpEF was confirmed by echocardiography and invasive haemodynamic measurements. SKM atrophy, in vitro force measurements, titin- and contractile protein expression were evaluated. Obese ZSF-1 HFpEF rats showed muscle atrophy, reduced muscle force and increased titin phosphorylation compared to controls, which was not detected in hypertensive DSS rats. Fiber type specific troponins, myostatin and four and a half LIM domain 1 were differently regulated between the two models. Altogether, our results show that both animal models of HFpEF exhibit different SKM phenotypes, probably based on the divergent disease etiologies, which may help to define the most suitable animal model for HFpEF to test potential treatment regimens. Full article
Show Figures

Figure 1

16 pages, 5453 KiB  
Article
Quasipaa spinosa-Derived Parvalbumin Attenuates Exercise-Induced Fatigue via Calcium Homeostasis and Oxidative Stress Modulation in Exhaustively Trained Mice
by Kai Sang, Congfei Lu, Yangfan Zhang and Qi Chen
Nutrients 2025, 17(12), 2043; https://doi.org/10.3390/nu17122043 - 19 Jun 2025
Viewed by 497
Abstract
Background: Quasipaa spinosa crude extract (QSce), a natural source rich in proteins such as parvalbumin (PV), has been traditionally used to promote physical recovery. However, its mechanisms in mitigating exercise-induced fatigue remain unclear. Methods: Using a murine treadmill exhaustion model, we evaluated [...] Read more.
Background: Quasipaa spinosa crude extract (QSce), a natural source rich in proteins such as parvalbumin (PV), has been traditionally used to promote physical recovery. However, its mechanisms in mitigating exercise-induced fatigue remain unclear. Methods: Using a murine treadmill exhaustion model, we evaluated the effects of QS-derived Parvalbumin (QsPV) (30 and 150 mg/kg/day) on endurance capacity, oxidative stress, tissue injury, and muscle function. Indicators measured included time to exhaustion, intracellular calcium levels, antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px)], lipid peroxidation (malondialdehyde, MDA), injury markers [creatine kinase (CK), lactate dehydrogenase (LDH), cardiac troponin I (cTnI)], renal function (blood urea), and muscle force. Results: QsPV-150 significantly increased time to exhaustion by 34.6% compared to the exercise-only group (p < 0.01). It reduced MDA by 41.2% in skeletal muscle and increased SOD and GSH-Px levels by 35.4% and 28.1%, respectively. Serum CK, LDH, and cTnI were reduced by 39.5%, 31.7%, and 26.8%, respectively, indicating protection against muscle and cardiac injury. QsPV also decreased blood urea by 22.3% and improved renal histology, with reduced glomerular damage and tubular lesions. At the molecular level, QsPV restored calcium balance and downregulated calpain-1/2 and atrophy-related genes (MuRF-1, MAFbx-32). Muscle contractile force (GAS and SOL) improved by 12.2–20.3%. Conclusions: QsPV attenuates exercise-induced fatigue through multi-organ protection involving calcium buffering, oxidative stress reduction, and anti-atrophy effects. These findings support its potential as a natural recovery-enhancing supplement, pending further clinical and pharmacokinetic studies. Full article
Show Figures

Figure 1

31 pages, 3573 KiB  
Article
A Slow Hydrogen Sulfide Donor GYY-4137 Partially Improves Vascular Function in Spontaneously Hypertensive Rats Fed a High-Fat Diet
by Basak G. Aydemir, Andrea Berenyiova, Martina Cebova, John D. Henderson, Andrej Barta and Sona Cacanyiova
Pathophysiology 2025, 32(2), 27; https://doi.org/10.3390/pathophysiology32020027 - 18 Jun 2025
Viewed by 397
Abstract
Background/Objectives: Metabolic syndrome is one of the leading causes of mortality worldwide, with high-fat diet (HFD) intake being a significant driving force. Despite long-term research, new interventions are still being sought to improve cardiovascular disorders associated with metabolic syndrome. Methods: To explore the [...] Read more.
Background/Objectives: Metabolic syndrome is one of the leading causes of mortality worldwide, with high-fat diet (HFD) intake being a significant driving force. Despite long-term research, new interventions are still being sought to improve cardiovascular disorders associated with metabolic syndrome. Methods: To explore the therapeutic potential of a slow-releasing H2S donor, we evaluated the effects of 3 weeks of treatment with GYY-4137 on systolic blood pressure (sBP), cardiac parameters, adiposity, selected plasma markers, and the vascular function of the thoracic aortas (TAs) and mesenteric arteries (MAs) isolated from male spontaneously hypertensive rats (SHRs) fed an HFD for 8 weeks. Results: HFD administration induced cardiac remodeling, increased adiposity, and decreased adrenergic contractility in both TAs and MAs. Moreover, although high-fat intake improved TAs relaxation, it decreased aortic protein expression of endothelial NO synthase and the involvement of NO in vasoactive responses of both TAs and MAs. In addition, protein expression of inducible NOS and tumor necrosis factor alpha (TNFα) in aortas was increased, as were plasma levels of chemerin, which has been proposed as a possible link among metabolic and vascular disorders and inflammation. Treatment with GYY-4137 reduced sBP, improved relaxation of the MAs, partially restored the contractility of the TAs, generally restored NO signaling, and decreased the protein expression of the inducible NOS and TNFα, as well as plasma chemerin levels. Conclusions: A slow H2S-releasing donor could partially ameliorate the metabolic changes induced by increased fat intake during essential hypertension and trigger beneficial vasoactive effects associated with the NO signaling restoration and suppression of inflammation. Full article
(This article belongs to the Section Cardiovascular Pathophysiology)
Show Figures

Figure 1

52 pages, 1239 KiB  
Review
Molecular and Biochemical Mechanisms of Cardiomyopathy Development Following Prenatal Hypoxia—Focus on the NO System
by Olena Popazova, Igor Belenichev, Nina Bukhtiyarova, Victor Ryzhenko, Nadia Gorchakova, Valentyn Oksenych and Oleksandr Kamyshnyi
Antioxidants 2025, 14(6), 743; https://doi.org/10.3390/antiox14060743 - 16 Jun 2025
Viewed by 785
Abstract
Prenatal hypoxia (PH) adversely affects the development of the fetal heart, contributing to persistent cardiovascular impairments in postnatal life. A key component in regulating cardiac physiology is the nitric oxide (NO) system, which influences vascular tone, myocardial contractility, and endothelial integrity during development. [...] Read more.
Prenatal hypoxia (PH) adversely affects the development of the fetal heart, contributing to persistent cardiovascular impairments in postnatal life. A key component in regulating cardiac physiology is the nitric oxide (NO) system, which influences vascular tone, myocardial contractility, and endothelial integrity during development. Exposure to PH disrupts NO-related signaling pathways, leading to endothelial dysfunction, mitochondrial damage, and an escalation of oxidative stress—all of which exacerbate cardiac injury and trigger cardiomyocyte apoptosis. The excessive generation of reactive nitrogen species drives nitrosative stress, thereby intensifying inflammatory processes and cellular injury. In addition, the interplay between NO and hypoxia-inducible factor (HIF) shapes adaptive responses to PH. NO also modulates the synthesis of heat shock protein 70 (HSP70), a critical factor in cellular defense against stress. This review emphasizes the involvement of NO in cardiovascular injury caused by PH and examines the cardioprotective potential of NO modulators—Angiolin, Thiotriazoline, Mildronate, and L-arginine—as prospective therapeutic agents. These agents reduce oxidative stress, enhance endothelial performance, and alleviate the detrimental effects of PH on the heart, offering potential new strategies to prevent cardiovascular disorders in offspring subjected to prenatal hypoxia. Full article
(This article belongs to the Special Issue Nitric Oxide and Redox Mechanisms)
Show Figures

Figure 1

14 pages, 1020 KiB  
Review
Molecular Mechanisms of L-Type Calcium Channel Dysregulation in Heart Failure
by Arbab Khalid, Abu-Bakr Ahmed, Randeep Gill, Taha Shaikh, Joshua Khorsandi and Ali Kia
Int. J. Mol. Sci. 2025, 26(12), 5738; https://doi.org/10.3390/ijms26125738 - 15 Jun 2025
Viewed by 767
Abstract
The L-type calcium channels (LTCCs) function as the main entry points that convert myocyte membrane depolarization into calcium transients, which drive every heartbeat. There is increasing evidence to show that maladaptive remodeling of these channels is the cause of heart failure with reduced [...] Read more.
The L-type calcium channels (LTCCs) function as the main entry points that convert myocyte membrane depolarization into calcium transients, which drive every heartbeat. There is increasing evidence to show that maladaptive remodeling of these channels is the cause of heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF). Recent experimental, translational, and clinical studies have improved our understanding of the roles LTCC expression, micro-domain trafficking, and post-translational control have in disrupting excitation–contraction coupling, provoking arrhythmias, and shaping phenotype specific hemodynamic compromise. We performed a systematic search of the PubMed and Google Scholar databases (2015–2025, English) and critically evaluated 17 eligible publications in an effort to organize the expanding body of work. This review combines existing data about LTCC density and T-tubule architecture with β-adrenergic and Ca2⁺/calmodulin-dependent protein kinase II (CaMKII) signaling and downstream sarcoplasmic reticulum crosstalk to explain how HFrEF presents with contractile insufficiency and how HFpEF shows diastolic calcium overload and stiffening. Additionally, we highlight the emerging therapeutic strategies aimed at restoring calcium homeostasis such as CaMKII inhibitors, ryanodine receptor type 2 (RyR2) stabilizers, and selective LTCC modulators without compromising systolic reserve. The review establishes LTCC dysregulation as a single mechanism that causes myocardial dysfunction while remaining specific to each phenotype, thus offering clinicians and researchers a complete reference for current concepts and future precision therapy approaches in heart failure. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms in Cardiomyopathy)
Show Figures

Figure 1

19 pages, 3569 KiB  
Article
Bladder p75NTR-Mediated Anti-Inflammatory Response via the TLR4/TRAF6/NF-κB Axis
by Claudia Covarrubias, Abubakr H. Mossa, Laura R. Yan, Benjamin Desormeau, Philippe G. Cammisotto, H. Uri Saragovi and Lysanne Campeau
Life 2025, 15(6), 957; https://doi.org/10.3390/life15060957 - 14 Jun 2025
Viewed by 2717
Abstract
Recurrent bacterial cystitis in women can lead to interstitial cystitis or bladder pain syndrome (IC/BPS). Activation of Toll-like receptor 4 (TLR4) by LPS can upregulate signaling of the pro-inflammatory receptor p75NTR. The aim of the presented study was to assess whether [...] Read more.
Recurrent bacterial cystitis in women can lead to interstitial cystitis or bladder pain syndrome (IC/BPS). Activation of Toll-like receptor 4 (TLR4) by LPS can upregulate signaling of the pro-inflammatory receptor p75NTR. The aim of the presented study was to assess whether p75NTR antagonist THX-B can modulate LPS-mediated inflammation in bladder cells. In vitro expression and LPS-activation of p75NTR were confirmed in urothelial (URO) and smooth muscle (SMC) cells. In UROs, p75NTR antagonism abolished the LPS-elicited rise in membrane-bound and soluble TNF-α. However, it could not prevent LPS-induced rise in phosphorylated ERK nor decrease in phosphorylated p38MAPK, nor the increase in iNOS and nitric oxide (NO) content. On the other hand, in SMCs, LPS increased phosphorylation of JNK, nuclear translocation of NF-κB, and association of TRAF6 to p75NTR, outcomes prevented by p75NTR antagonism. In UROs, LPS decreased the expression of tight junction proteins, ZO-1 and occludin, with the latter rescued by p75NTR antagonism. Intraurethral instillation of LPS increased inflammation in the lamina propria, activation of JNK, and contractile activity of bladder tissue. Alternatively, intraperitoneal THX-B injections prevented LPS-induced inflammation but not enhanced muscle contraction. Our results suggest that inhibition of p75NTR could help in reducing bladder symptoms during cystitis. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

28 pages, 6764 KiB  
Article
Multi-Modal Analysis of Satellite Cells Reveals Early Impairments at Pre-Contractile Stages of Myogenesis in Duchenne Muscular Dystrophy
by Sophie Franzmeier, Shounak Chakraborty, Armina Mortazavi, Jan B. Stöckl, Jianfei Jiang, Nicole Pfarr, Benedikt Sabass, Thomas Fröhlich, Clara Kaufhold, Michael Stirm, Eckhard Wolf, Jürgen Schlegel and Kaspar Matiasek
Cells 2025, 14(12), 892; https://doi.org/10.3390/cells14120892 - 13 Jun 2025
Viewed by 1054
Abstract
Recent studies on myogenic satellite cells (SCs) in Duchenne muscular dystrophy (DMD) documented altered division capacities and impaired regeneration potential of SCs in DMD patients and animal models. It remains unknown, however, if SC-intrinsic effects trigger these deficiencies at pre-contractile stages of myogenesis [...] Read more.
Recent studies on myogenic satellite cells (SCs) in Duchenne muscular dystrophy (DMD) documented altered division capacities and impaired regeneration potential of SCs in DMD patients and animal models. It remains unknown, however, if SC-intrinsic effects trigger these deficiencies at pre-contractile stages of myogenesis rather than resulting from the pathologic environment. In this study, we isolated SCs from a porcine DMD model and age-matched wild-type (WT) piglets for comprehensive analysis. Using immunofluorescence, differentiation assays, traction force microscopy (TFM), RNA-seq, and label-free proteomic measurements, SCs behavior was characterized, and molecular changes were investigated. TFM revealed significantly higher average traction forces in DMD than WT SCs (90.4 ± 10.5 Pa vs. 66.9 ± 8.9 Pa; p = 0.0018). We identified 1390 differentially expressed genes and 1261 proteins with altered abundance in DMD vs. WT SCs. Dysregulated pathways uncovered by gene ontology (GO) enrichment analysis included sarcomere organization, focal adhesion, and response to hypoxia. Multi-omics factor analysis (MOFA) integrating transcriptomic and proteomic data, identified five factors accounting for the observed variance with an overall higher contribution of the transcriptomic data. Our findings suggest that SC impairments result from their inherent genetic abnormality rather than from environmental influences. The observed biological changes are intrinsic and not reactive to the pathological surrounding of DMD muscle. Full article
(This article belongs to the Special Issue Skeletal Muscle: Structure, Physiology and Diseases)
Show Figures

Figure 1

20 pages, 5381 KiB  
Article
Role of Central Inflammatory and Oxidative Pathways in the Morphine Exacerbation of Cardiovascular Effects of Sepsis in Rats
by Mohamed Abdelnaby, Marwa Y. Sallam, Mai M. Helmy, Hanan M. El-Gowelli and Mahmoud M. El-Mas
Pharmaceuticals 2025, 18(6), 882; https://doi.org/10.3390/ph18060882 - 12 Jun 2025
Viewed by 599
Abstract
Background/Objectives: Sepsis remains one of the most serious and possibly fatal complications encountered in intensive care units. Considering the frequent use of narcotic analgesics in this setting, we investigated whether the cardiovascular and peripheral and central inflammatory features of sepsis could be modified [...] Read more.
Background/Objectives: Sepsis remains one of the most serious and possibly fatal complications encountered in intensive care units. Considering the frequent use of narcotic analgesics in this setting, we investigated whether the cardiovascular and peripheral and central inflammatory features of sepsis could be modified by morphine. Methods: Rats were instrumented with femoral and intracisternal (i.c.) indwelling catheters and sepsis was induced by cecal ligation and puncture (CLP). Results: The i.v. administration of morphine (3 and 10 mg/kg) significantly and dose-dependently aggravated septic manifestations of hypotension and impaired cardiac autonomic activity, as reflected by the reductions in indices of heart rate variability (HRV). Cardiac contractility (dP/dtmax) was also reduced by morphine in septic rats. The morphine effects were mostly eliminated following (i) blockade of μ-opioid receptors by i.v. naloxone and (ii) inhibition of central PI3K, MAPK-ERK, MAPK-JNK, NADPH oxidase (NADPHox), or Rho-kinase (ROCK) by i.c. wortmannin, PD98059, SP600125, diphenyleneiodonium, and fasudil, respectively. Further, these pharmacologic interventions significantly reduced the heightened protein expression of toll-like receptor 4 (TLR4) and monocyte chemoattractant protein-1 (MCP1) in brainstem rostral ventrolateral medullary (RVLM), but not cardiac, tissues of CLP/morphine-treated rats. Conclusions: Morphine worsens cardiovascular and autonomic disturbances caused by sepsis through a mechanism mediated via μ-opioid receptors and upregulated central inflammatory, chemotactic, and oxidative signals. Clinical studies are warranted to re-affirm the adverse cardiovascular interaction between opioids and the septic challenge. Full article
(This article belongs to the Special Issue Pharmacology and Toxicology of Opioids)
Show Figures

Graphical abstract

34 pages, 7701 KiB  
Article
Docking Simulations of G-Protein Coupled Receptors Uncover Crossover Binding Patterns of Diverse Ligands to Angiotensin, Alpha-Adrenergic and Opioid Receptors: Implications for Cardiovascular Disease and Addiction
by Harry Ridgway, Graham J. Moore, Laura Kate Gadanec and John M. Matsoukas
Biomolecules 2025, 15(6), 855; https://doi.org/10.3390/biom15060855 - 11 Jun 2025
Viewed by 1664
Abstract
Recent bioassay studies have unexpectedly supported the high (computationally predicted) binding affinities of angiotensin receptor blockers (ARBs) at α-adrenergic receptors (αARs) in isolated smooth muscle. Computational predictions from ligand docking studies are consistent with very low concentrations of ARBs (e.g., sartans or bisartans) [...] Read more.
Recent bioassay studies have unexpectedly supported the high (computationally predicted) binding affinities of angiotensin receptor blockers (ARBs) at α-adrenergic receptors (αARs) in isolated smooth muscle. Computational predictions from ligand docking studies are consistent with very low concentrations of ARBs (e.g., sartans or bisartans) that partially reduce (20–50%) the contractile response to phenylephrine, suggesting that some ARBs may function as partial inverse agonists at αARs. Virtual ligand screening (docking) and molecular dynamics (MD) simulations were carried out to explore the binding affinities and stabilities of selected non-peptide ligands (e.g., ARBs and small-molecule opioids) for several G-protein coupled receptor (GPCR) types, including angiotensin II (AngII) type 1 receptor (AT1R), α1AR, α2AR, and μ-(µOR) and ժ-opioid receptors (ժOR). Results: All ligands docked preferentially to the binding pocket on the cell surface domain of the GPCR types investigated. Drug binding was characterized by weak interactions (hydrophobic, hydrogen bonding, pi-pi) and stronger ionic and salt-bridge interactions (cation-pi and cation-anion interactions). Ligands specific to each GPCR category showed considerable cross-binding with alternative GPCRs, with small-molecule medications appearing less selective than their peptide or ARB functional equivalents. ARBs that exhibit higher affinities for AT1R also demonstrate higher affinities for µORs and ժORs than opiate ligands, such as fentanyl and naltrexone. Moreover, ARBs had a higher affinity for αARs than either alpha agonists (epinephrine and phenylephrine) or inhibitors (prazosin and doxazosin). MD simulations of membrane-embedded ARB-GPCR complexes proved stable over nanosecond time scales and suggested that some ARBs may behave as agonists or antagonists depending on the GPCR type. Based on the results presented in this and related investigations, we propose that agonists bind to the resting A-site of GPCRs, while inverse agonists occupy the desensitizing D-site, which partial agonists like morphine and fentanyl share, contributing to addiction. ARBs block both AngII and alpha receptors, suggesting that they are more potent antihypertensive drugs than ACE inhibitors. ARBs have the potential to inhibit morphine tolerance and appear to disrupt receptor desensitization processes, potentially by competing at the D-site. Our results suggest the possible therapeutic potential of ARBs in treating methamphetamine and opiate addictions. Full article
Show Figures

Figure 1

12 pages, 3355 KiB  
Article
Molecular Cardiac Changes in Feline Hyperthyroidism and Hypertrophic Cardiomyopathy: Focus on Desmin, Calreticulin, and Interleukin-10 Expression
by Izabela Janus-Ziółkowska, Joanna Bubak, Massimiliano Tursi, Cristina Vercelli, Rafał Ciaputa, Małgorzata Kandefer-Gola and Agnieszka Noszczyk-Nowak
Animals 2025, 15(12), 1719; https://doi.org/10.3390/ani15121719 - 10 Jun 2025
Viewed by 2638
Abstract
Feline hyperthyroidism is the most frequent endocrinopathy in adult and senior cats, frequently leading to cardiac changes characterised by a hypertrophic cardiomyopathy (HCM) phenotype, which may partially reverse with appropriate treatment. However, the structural and molecular alterations in the myocardium can persist and [...] Read more.
Feline hyperthyroidism is the most frequent endocrinopathy in adult and senior cats, frequently leading to cardiac changes characterised by a hypertrophic cardiomyopathy (HCM) phenotype, which may partially reverse with appropriate treatment. However, the structural and molecular alterations in the myocardium can persist and closely resemble those observed in hypertrophic cardiomyopathy. Despite this clinical overlap, protein expression patterns in the hearts of hyperthyroid cats remain poorly understood. This study aimed to evaluate the myocardial expression of desmin, a key contractile protein, as well as calreticulin and interleukin-10 proteins involved in cardiac remodelling and response to injury. Left ventricular samples were obtained from 16 hyperthyroid cats, 12 cats with HCM, and 10 healthy controls. Immunohistochemical staining was performed to assess the expression patterns of the selected proteins. Our findings revealed that, despite median left ventricular dimensions not being significantly different from ones observed in healthy animals, cats with hyperthyroidism exhibited similar alterations in desmin and interleukin-10 expression to those seen in HCM-affected cats. These changes were associated with cardiomyocyte degeneration and coronary artery narrowing, suggesting a shared pathway of myocardial injury independent of the primary disease. Full article
(This article belongs to the Special Issue Canine and Feline Endocrinology: Research Progress and Challenges)
Show Figures

Figure 1

18 pages, 3027 KiB  
Article
CSE-Induced ER-Mitochondria Crosstalk Promotes Oxidative Stress and Impairs Bronchial Contractile Response
by Jorge Rodríguez-Pérez, Rosa Andreu-Martínez, Leila Pérez-Sánchez, Ana Hernández-García, Cecilia Muñoz-Calleja, Ángel Cogolludo and María J. Calzada
Antioxidants 2025, 14(6), 703; https://doi.org/10.3390/antiox14060703 - 10 Jun 2025
Viewed by 491
Abstract
Chronic obstructive pulmonary disease (COPD), whose main risk factor is cigarette smoking, is among the most prevalent diseases worldwide. Previous studies have shown that cigarette smoke extract (CSE) can directly affect pulmonary artery function independently of hypoxia resulting from the airway obstruction. In [...] Read more.
Chronic obstructive pulmonary disease (COPD), whose main risk factor is cigarette smoking, is among the most prevalent diseases worldwide. Previous studies have shown that cigarette smoke extract (CSE) can directly affect pulmonary artery function independently of hypoxia resulting from the airway obstruction. In addition, CSE also affects bronchial smooth muscle, leading to airway hyper-responsiveness. However, its specific impact on the contractile machinery of this compartment remains unclear. In this study, using in vitro experiments with human bronchial smooth muscle cells (hBSMCs), we found that CSE exposure disrupted calcium homeostasis, increased ROS and lipid peroxidation, and reduced cell antioxidant defenses. Furthermore, CSE exposure altered the cell contractile apparatus by decreasing key cytoskeletal proteins and impairing actin dynamics, potentially contributing to the dysregulated contractile response of cells. Notably, these effects were significantly attenuated by antioxidant drugs such as mitoTEMPO and N-acetylcysteine, as well as by the inhibition of the endoplasmic reticulum (ER) calcium channels with 2-aminoethoxydiphenyl borate (2-APB). More importantly, mitoTEMPO partially restored the contractile response of bronchus upon CSE challenge. Collectively, our findings give evidence that CSE-mediated increase in ROS and intracellular calcium contribute to cytoskeletal disruption and functional impairment in airway smooth muscle. Moreover, these results also point to potential therapeutical approaches for mitigating the harmful effects of cigarette smoke in the lung. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

Back to TopTop