Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (335)

Search Parameters:
Keywords = construction projects barriers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 917 KiB  
Article
Information Sharing Barriers of Construction Projects Toward Circular Economy: Review and Framework Development
by Yuhui Sun, Raufdeen Rameezdeen, Christopher W. K. Chow and Jing Gao
Buildings 2025, 15(15), 2744; https://doi.org/10.3390/buildings15152744 - 4 Aug 2025
Abstract
The construction industry is transitioning towards the circular economy, an approach that effectively reduces the industry’s environmental impact and promotes sustainability. However, realising the circular economy goal requires adequate information sharing among stakeholders and across the building lifecycle stages. This research examines the [...] Read more.
The construction industry is transitioning towards the circular economy, an approach that effectively reduces the industry’s environmental impact and promotes sustainability. However, realising the circular economy goal requires adequate information sharing among stakeholders and across the building lifecycle stages. This research examines the barriers that impede the information-sharing process in construction projects for the circular economy. This research adopts the framework of the information-sharing process, which suggests four essential components: context, content, people, and media. This study systematically searches and analyses the literature to identify and classify the information sharing barriers in the circular economy context, as well as their interaction. This study also conducts a case study to validate the information barrier framework and the findings. The findings suggest that information barriers are interlinked and require comprehensive solutions from the aspects of technology, organisation, and people, instead of single-aspect solutions. As this study provides insights into the systemic complexities of how information flows within the circular economy implementation system, it consequently contributes to the improvement of sustainable construction practices. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

27 pages, 5387 KiB  
Article
High Strength and Strong Thixotropic Gel Suitable for Oil and Gas Drilling in Fractured Formation
by Yancheng Yan, Tao Tang, Biao Ou, Jianzhong Wu, Yuan Liu and Jingbin Yang
Gels 2025, 11(8), 578; https://doi.org/10.3390/gels11080578 - 26 Jul 2025
Viewed by 333
Abstract
In petroleum exploration and production, lost circulation not only significantly increases exploration and development costs and operational cycles but may also lead to major incidents such as wellbore instability or even project abandonment. This paper constructs a polymer gel plugging system by optimizing [...] Read more.
In petroleum exploration and production, lost circulation not only significantly increases exploration and development costs and operational cycles but may also lead to major incidents such as wellbore instability or even project abandonment. This paper constructs a polymer gel plugging system by optimizing high-molecular-weight polymers, crosslinker systems, and resin hardeners. The optimized system composition was determined as 1% polymer J-1, 0.3% catechol, 0.6% hexamethylenetetramine (HMTA), and 15% urea–formaldehyde resin. Experimental studies demonstrated that during the initial stage (0–3 days) at 120 °C, the optimized gel system maintained a storage modulus (G′) of 17.5 Pa and a loss modulus (G″) of 4.3 Pa. When the aging period was extended to 9 days, G′ and G″ decreased to 16 Pa and 4 Pa, respectively. The insignificant reduction in gel strength indicates excellent thermal stability of the gel system. The gel exhibited superior self-filling capacity during migration, enabling complete filling of fractures of varying sizes. After aging for 1 day at 120 °C, the plugging capacity of the gel system under water flooding and gas flooding conditions was 166 kPa/m and 122 kPa/m, respectively. Furthermore, a complete gel barrier layer formed within a 6 mm wide vertical fracture, demonstrating a pressure-bearing capacity of 105.6 kPa. This system shows good effectiveness for wellbore isolation and fracture plugging. The polymer gel plugging system studied in this paper can simplify lost circulation treatment procedures while enhancing plugging strength, providing theoretical support and technical solutions for addressing lost circulation challenges. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
Show Figures

Figure 1

18 pages, 4648 KiB  
Article
Wood- and Steel-Based Offsite Construction Solutions for Sustainable Building Renovation: Assessing the European and Italian Contexts
by Graziano Salvalai, Francesca Gadusso and Miriam Benedetti
Sustainability 2025, 17(15), 6799; https://doi.org/10.3390/su17156799 - 26 Jul 2025
Viewed by 459
Abstract
Offsite construction (OSC) offers a promising alternative for accelerating refurbishment projects across Italy and Europe. However, its adoption remains limited due to technical, regulatory, and cultural barriers. This study, conducted as part of the OFFICIO project, maps the current European OSC landscape, with [...] Read more.
Offsite construction (OSC) offers a promising alternative for accelerating refurbishment projects across Italy and Europe. However, its adoption remains limited due to technical, regulatory, and cultural barriers. This study, conducted as part of the OFFICIO project, maps the current European OSC landscape, with a focus on wood and light-steel technologies for sustainable building refurbishment. Combining a literature review, analysis of funded projects, and market data for 541 OSC products, the study develops tailored KPIs to assess these products’ technical maturity, prefabrication level, and environmental integration. The results reveal that wood-based OSC, although less widespread, is more mature and centered on the use of multi-layer panels, while steel-based systems, though more prevalent, remain largely tied to semi-offsite construction, indicating untapped development potential. Research efforts, especially concentrated in Mediterranean regions, focus on technological integration of renewable energy systems. A significant literature gap was identified in information concerning panel-to-wall connection, critical for renovation, limiting OSC’s adaptability to regeneration of existing buildings. The findings highlight the need for cross-sector collaboration, legislative clarity, and better alignment of public procurement standards with OSC characteristics. Addressing these issues is essential to bridge the gap between research prototypes and industrial adoption and accelerate the sustainable transformation of Europe’s construction sector to help meet climate neutrality targets. Full article
Show Figures

Figure 1

42 pages, 2167 KiB  
Systematic Review
Towards Sustainable Construction: Systematic Review of Lean and Circular Economy Integration
by Abderrazzak El Hafiane, Abdelali En-nadi and Mohamed Ramadany
Sustainability 2025, 17(15), 6735; https://doi.org/10.3390/su17156735 - 24 Jul 2025
Viewed by 458
Abstract
The construction sector significantly contributes to global environmental degradation through intensive resource extraction, high energy consumption, and substantial waste generation. Addressing this unsustainable trajectory requires integrated approaches that simultaneously improve operational efficiency and material circularity. Lean Construction (LC) and Circular Economy (CE) offer [...] Read more.
The construction sector significantly contributes to global environmental degradation through intensive resource extraction, high energy consumption, and substantial waste generation. Addressing this unsustainable trajectory requires integrated approaches that simultaneously improve operational efficiency and material circularity. Lean Construction (LC) and Circular Economy (CE) offer complementary frameworks for enhancing process performance and reducing environmental impacts. However, their combined implementation remains underdeveloped and fragmented. This study conducts a systematic literature review (SLR) of 18 peer-reviewed articles published between 2010 and 2025, selected using PRISMA 2020 guidelines and sourced from Scopus and Web of Science databases. A mixed-method approach combines bibliometric mapping and qualitative content analysis to investigate how LC and CE are jointly operationalized in construction contexts. The findings reveal that LC improves cost, time, and workflow reliability, while CE enables reuse, modularity, and lifecycle extension. Integration is further supported by digital tools—such as Building Information Modelling (BIM), Design for Manufacture and Assembly (DfMA), and digital twins—which enhance traceability and flow optimization. Nonetheless, persistent barriers—including supply chain fragmentation, lack of standards, and regulatory gaps—continue to constrain widespread adoption. This review identifies six strategic enablers for LC-CE integration: crossdisciplinary competencies, collaborative governance, interoperable digital systems, standardized indicators, incentive-based regulation, and pilot demonstrator projects. By consolidating fragmented evidence, the study provides a structured research agenda and practical insights to guide the transition toward more circular, efficient, and sustainable construction practices. Full article
Show Figures

Figure 1

23 pages, 2875 KiB  
Article
Analysis of Habitat Quality Changes in Mountainous Areas Using the PLUS Model and Construction of a Dynamic Restoration Framework for Ecological Security Patterns: A Case Study of Golog Tibetan Autonomous Prefecture, Qinghai Province, China
by Zihan Dong, Haodong Liu, Hua Liu, Yongfu Chen, Xinru Fu, Yang Zhang, Jiajia Xia, Zhiwei Zhang and Qiao Chen
Land 2025, 14(8), 1509; https://doi.org/10.3390/land14081509 - 22 Jul 2025
Viewed by 383
Abstract
The intensifying global climate warming caused by human activities poses severe challenges to ecosystem stability. Constructing an ecological security pattern can identify ecological land supply and an effective spatial distribution baseline and provide a scientific basis for safeguarding regional ecological security. This study [...] Read more.
The intensifying global climate warming caused by human activities poses severe challenges to ecosystem stability. Constructing an ecological security pattern can identify ecological land supply and an effective spatial distribution baseline and provide a scientific basis for safeguarding regional ecological security. This study analyzes land-use data from 2000 to 2020 for Golog Tibetan Autonomous Prefecture. The PLUS model was utilized to project land-use potential for the year 2030. The InVEST model was employed to conduct a comprehensive assessment of habitat quality in the study area for both 2020 and 2030, thereby pinpointing ecological sources. Critical ecological restoration zones were delineated by identifying ecological corridors, pinch points, and barrier points through the application of the Minimum Cumulative Resistance model and circuit theory. By comparing ecological security patterns (ESPs) in 2020 and 2030, we proposed a dynamic restoration framework and optimization recommendations based on habitat quality changes and ESPs. The results indicate significant land-use changes in the eastern part of Golog Tibetan Autonomous Prefecture from 2020 to 2030, with large-scale conversion of grasslands into bare land, farmland, and artificial surfaces. The ecological security pattern is threatened by risks like the deterioration of habitat quality, diminished ecological sources as well as pinch points, and growing barrier points. Optimizing the layout of ecological resources, strengthening barrier zone restoration and pinch point protection, and improving habitat connectivity are urgent priorities to ensure regional ecological security. This study offers a scientific foundation for the harmonization of ecological protection and economic development and the policy development and execution of relevant departments. Full article
Show Figures

Figure 1

31 pages, 1708 KiB  
Systematic Review
Circular Economy and Water Sustainability: Systematic Review of Water Management Technologies and Strategies (2018–2024)
by Gary Christiam Farfán Chilicaus, Luis Edgardo Cruz Salinas, Pedro Manuel Silva León, Danny Alonso Lizarzaburu Aguinaga, Persi Vera Zelada, Luis Alberto Vera Zelada, Elmer Ovidio Luque Luque, Rolando Licapa Redolfo and Emma Verónica Ramos Farroñán
Sustainability 2025, 17(14), 6544; https://doi.org/10.3390/su17146544 - 17 Jul 2025
Viewed by 427
Abstract
The transition toward a circular water economy addresses accelerating water scarcity and pollution. A PRISMA-2020 systematic review of 50 peer-reviewed articles (January 2018–April 2024) mapped current technologies and management strategies, seeking patterns, barriers, and critical bottlenecks. Bibliometric analysis revealed the following three dominant [...] Read more.
The transition toward a circular water economy addresses accelerating water scarcity and pollution. A PRISMA-2020 systematic review of 50 peer-reviewed articles (January 2018–April 2024) mapped current technologies and management strategies, seeking patterns, barriers, and critical bottlenecks. Bibliometric analysis revealed the following three dominant patterns: (i) rapid diffusion of membrane bioreactors, constructed wetlands, and advanced oxidation processes; (ii) research geographically concentrated in Asia and the European Union; (iii) industry’s marked preference for by-product valorization. Key barriers—high energy costs, fragmented regulatory frameworks, and low social acceptance—converge as critical constraints during scale-up. The following three practical action lines emerge: (1) adopt progressive tariffs and targeted tax credits that internalize environmental externalities; (2) harmonize water-reuse regulations with comparable circularity metrics; (3) create multi-actor platforms that co-design projects, boosting local legitimacy. These findings provide policymakers and water-sector practitioners with a clear roadmap for accelerating Sustainable Development Goals 6, 9, and 12 through circular, inclusive, low-carbon water systems. Full article
Show Figures

Figure 1

23 pages, 2709 KiB  
Review
Digital Technologies in Urban Regeneration: A Systematic Literature Review from the Perspectives of Stakeholders, Scales, and Stages
by Xiaer Xiahou, Xingyuan Ding, Peng Chen, Yuchong Qian and Hongyu Jin
Buildings 2025, 15(14), 2455; https://doi.org/10.3390/buildings15142455 - 12 Jul 2025
Viewed by 468
Abstract
Urban regeneration, as a key strategy for promoting sustainable development of urban areas, requires innovative digital technologies to address increasingly complex urban challenges in its implementation. With the fast advancement of digital technologies such as artificial intelligence (AI), Internet of Things (IoT), and [...] Read more.
Urban regeneration, as a key strategy for promoting sustainable development of urban areas, requires innovative digital technologies to address increasingly complex urban challenges in its implementation. With the fast advancement of digital technologies such as artificial intelligence (AI), Internet of Things (IoT), and big data, these technologies have extensively penetrated various dimensions of urban regeneration, from planning and design to implementation and post-operation management, providing new possibilities for improving urban regeneration efficiency and quality. However, the existing literature lacks a systematic evaluation of technology application patterns across different project scales and phases, comprehensive analysis of stakeholder–technology interactions, and quantitative assessment of technology distribution throughout the urban regeneration lifecycle. This research gap limits the in-depth understanding of how digital technologies can better support urban regeneration practices. This study aims to identify and quantify digital technology application patterns across urban regeneration stages, scales, and stakeholder configurations through systematic analysis of 56 high-quality articles from the Scopus and Web of Science databases. Using a mixed-methods approach combining a systematic literature review, bibliometric analysis, and meta-analysis, we categorized seven major digital technology types and analyzed their distribution patterns. Key findings reveal distinct temporal patterns: GIS and BIM/CIM technologies dominate in the pre-urban regeneration (Pre-UR) stage (10% and 12% application proportions, respectively). GIS applications increase significantly to 14% in post-urban regeneration (Post-UR) stage, while AI technology remains underutilized across all phases (2% in Pre-UR, decreasing to 1% in Post-UR). Meta-analysis reveals scale-dependent technology adoption patterns, with different technologies showing varying effectiveness at building-level, district-level, and city-level implementations. Research challenges include stakeholder digital divides, scale-dependent adoption barriers, and phase-specific implementation gaps. This study constructs a multi-dimensional analytical framework for digital technology support in urban regeneration, providing quantitative evidence for optimizing technology selection strategies. The framework offers practical guidance for policymakers and practitioners in developing context-appropriate digital technology deployment strategies for urban regeneration projects. Full article
Show Figures

Figure 1

21 pages, 2751 KiB  
Review
Artificial Intelligence in Construction Project Management: A Structured Literature Review of Its Evolution in Application and Future Trends
by Yetunde Adebayo, Paul Udoh, Xebiso Blessing Kamudyariwa and Oluyomi Abayomi Osobajo
Digital 2025, 5(3), 26; https://doi.org/10.3390/digital5030026 - 9 Jul 2025
Viewed by 1619
Abstract
The integration of Artificial Intelligence (AI) in construction project management is revolutionising the industry; offering innovative solutions to enhance efficiency, reduce costs, and improve decision making. This structured literature review explored the current applications, benefits, challenges, and future trends of AI in construction [...] Read more.
The integration of Artificial Intelligence (AI) in construction project management is revolutionising the industry; offering innovative solutions to enhance efficiency, reduce costs, and improve decision making. This structured literature review explored the current applications, benefits, challenges, and future trends of AI in construction project management. This study synthesised findings from 135 peer-reviewed articles published between 1985 and 2024; representing Industry 3.0 (3IR), Industry 4.0 (4IR), and Industry 4.0 Post COVID-19 (4IR PC). Analysis showed that the Planning and Monitoring and Control phases of the project have the greatest application of AI, while decision making, prediction, optimisation, and performance improvement are the most common purposes of AI use in the construction industry. The drivers of AI adoption within the construction industry include technology availability, project outcome and performance improvement, a competitive advantage, and a focus on sustainability. Despite these advancements, the review revealed several barriers to AI adoption, including data integration issues, the high cost of AI implementation, resistance to change among stakeholders, and ethical concerns surrounding data privacy, amongst others. This review also identified future ongoing applications of AI in the construction industry, such as sustainability and energy efficiency, digital twins, advanced robotics and autonomous construction, and optimisation. By providing a comprehensive analysis of the evolution of practices and the future direction of AI application, this study serves as a resource for researchers, practitioners, and policymakers seeking to understand the evolving landscape of AI in construction project management. Full article
(This article belongs to the Special Issue AI-Driven Innovations in Ubiquitous Computing and Smart Environments)
Show Figures

Figure 1

28 pages, 4054 KiB  
Article
A Core Ontology for Whole Life Costing in Construction Projects
by Adam Yousfi, Érik Andrew Poirier and Daniel Forgues
Buildings 2025, 15(14), 2381; https://doi.org/10.3390/buildings15142381 - 8 Jul 2025
Viewed by 383
Abstract
Construction projects still face persistent barriers to adopting whole life costing (WLC), such as fragmented data, a lack of standardization, and inadequate tools. This study addresses these limitations by proposing a core ontology for WLC, developed using an ontology design science research methodology. [...] Read more.
Construction projects still face persistent barriers to adopting whole life costing (WLC), such as fragmented data, a lack of standardization, and inadequate tools. This study addresses these limitations by proposing a core ontology for WLC, developed using an ontology design science research methodology. The ontology formalizes WLC knowledge based on ISO 15686-5 and incorporates professional insights from surveys and expert focus groups. Implemented in web ontology language (OWL), it models cost categories, temporal aspects, and discounting logic in a machine-interpretable format. The ontology’s interoperability and extensibility are validated through its integration with the building topology ontology (BOT). Results show that the ontology effectively supports cost breakdown, time-based projections, and calculation of discounted values, offering a reusable structure for different project contexts. Practical validation was conducted using SQWRL queries and Python scripts for cost computation. The solution enables structured data integration and can support decision-making throughout the building life cycle. This work lays the foundation for future semantic web applications such as knowledge graphs, bridging the current technological gap and facilitating more informed and collaborative use of WLC in construction. Full article
(This article belongs to the Special Issue Emerging Technologies and Workflows for BIM and Digital Construction)
Show Figures

Figure 1

28 pages, 407 KiB  
Article
Understanding the Disruptiveness of Integrated Project Delivery (IPD) in the AEC Industry
by Puyan A. Zadeh, Juliette Mollard Thibault, Sheryl Staub-French and Devarsh Bhonde
Buildings 2025, 15(13), 2338; https://doi.org/10.3390/buildings15132338 - 3 Jul 2025
Viewed by 459
Abstract
The Architecture, Engineering, and Construction (AEC) industry is plagued by persistent challenges such as low productivity, cost overruns, and frequent project delays. Integrated Project Delivery (IPD) has emerged as a potential solution, offering collaborative approaches to improve project outcomes. This study proposes a [...] Read more.
The Architecture, Engineering, and Construction (AEC) industry is plagued by persistent challenges such as low productivity, cost overruns, and frequent project delays. Integrated Project Delivery (IPD) has emerged as a potential solution, offering collaborative approaches to improve project outcomes. This study proposes a two-tiered methodology for evaluating the disruptiveness of innovations in the AEC industry, with a particular focus on IPD as a disruptive innovation. In the first tier, a multidimensional framework is developed to systematically assess the disruptiveness of innovations in the AEC sector. This framework, informed by a thorough literature review and disruptive innovation theory, includes dimensions such as business models, processes, and anticipated outcomes. The second tier applies the framework by analyzing the disruptiveness of IPD. The assessment draws on data from three comprehensive studies, including ethnographic research, interviews, and focus groups, which examine IPD’s impact on different stakeholder groups such as clients, consultants, and contractors. Findings reveal that IPD has the potential to significantly disrupt traditional business models, processes, and project outcomes, particularly at the project level. Notable disruptive characteristics include shifts in collaboration dynamics, redefined project financing models, and improved efficiency. However, several barriers hinder IPD adoption, including resistance to change and misalignment with conventional contractual structures. Expert interviews support these results, indicating that IPD represents a fundamental shift in the AEC industry. This research contributes to the existing body of knowledge by offering a structured framework for assessing the disruptiveness of AEC innovations and demonstrating its practical application. In this way, AEC organizations, projects, and practitioners can better strategize for the adoption of any new disruptive innovation and thus pursue a strategic advantage in the highly competitive industry market. Full article
Show Figures

Figure 1

53 pages, 3424 KiB  
Review
Circular Industrialized Construction: A Perspective Through Design for Manufacturing, Assembly, and Disassembly
by Héctor Hernández
Buildings 2025, 15(13), 2174; https://doi.org/10.3390/buildings15132174 - 22 Jun 2025
Viewed by 671
Abstract
Improving resource efficiency by reducing waste and process inefficiencies across the building life cycle is essential for advancing sustainability in the built environment. Circular and industrialized construction offer complementary strategies to meet this challenge. While Design for Manufacturing and Assembly (DfMA) enhances constructability, [...] Read more.
Improving resource efficiency by reducing waste and process inefficiencies across the building life cycle is essential for advancing sustainability in the built environment. Circular and industrialized construction offer complementary strategies to meet this challenge. While Design for Manufacturing and Assembly (DfMA) enhances constructability, standardization, and productivity in early project phases, Design for Disassembly (DfD) facilitates material recovery and adaptability at end-of-life. Despite their synergies, their integrated application remains underexplored. This study proposes a unified framework—Design for Manufacturing, Assembly, and Disassembly (DfMAD)—to align value creation and value retention strategies across the life cycle. A systematic literature review of 102 articles, following PRISMA guidelines, combined bibliometric and thematic analysis to identify key principles, benefits, barriers, and enablers of DfMA and DfD. Cross-mapping these findings revealed conceptual overlaps and distinctions and informed the synthesis of core DfMAD attributes. The resulting framework offers a life cycle-oriented approach that supports product-based delivery, traceability, and circular design strategies. By promoting shared logic across disciplines and project phases, DfMAD provides a foundation for operationalizing circularity in industrialized construction, contributing both theoretical and practical guidance for advancing resource-efficient, adaptable, and disassemblable building systems. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

14 pages, 6670 KiB  
Article
Numerical Simulation of Horizontal Barrier in Controlling Groundwater and Deformation During Foundation Pit Dewatering
by Ruonan Kuang, Changjie Xu, Chaofeng Zeng, Xiuli Xue, Youwu Zhao, Bin Li and Lijuan Yi
Water 2025, 17(12), 1763; https://doi.org/10.3390/w17121763 - 12 Jun 2025
Cited by 1 | Viewed by 408
Abstract
In water-rich strata, a traditional vertical barrier exhibits certain limitations when applied to deep foundation pit construction under complex geological conditions, such as it is difficult to completely cut off deep and thick aquifer, which may pose potential risks during pit dewatering. To [...] Read more.
In water-rich strata, a traditional vertical barrier exhibits certain limitations when applied to deep foundation pit construction under complex geological conditions, such as it is difficult to completely cut off deep and thick aquifer, which may pose potential risks during pit dewatering. To address the above challenge, this study introduced a mixed barrier system in which the horizontal barrier (HB) was set at the bottom of the foundation pit and was combined with the enclosure wall to collectively retard groundwater seepage into the pit. Based on an actual project in Tianjin, this study established HB models with varying numbers of its layers using ABAQUS 6.14 software. It systematically investigated the effect of HB on groundwater drawdown, ground surface settlement, and enclosure deflection during foundation pit dewatering. The research shows that HB can significantly reduce the magnitude of external water level drawdown by altering groundwater seepage paths while effectively controlling soil settlement. Furthermore, it exhibits favorable overall restraining effects on wall deformation. Varying the number of horizontal barrier layers (L) exhibits an insignificant effect on water-blocking and subsidence-control performance. However, the constraint effect on the enclosure shows a correlation with L. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

27 pages, 4651 KiB  
Article
Addressing the Value Management Approach in Public Construction Works: Barriers, Critical Success Factors, and Potential Risks
by Nusret Mum, Şenay Atabay, Hamdi Tekin and Durmuş Akkaya
Sustainability 2025, 17(12), 5247; https://doi.org/10.3390/su17125247 - 6 Jun 2025
Viewed by 618
Abstract
Value management (VM) is a management approach aimed at inspiring individuals, nurturing their talents, and fostering synergy and innovation, all with the objective of enhancing an organization’s overall performance. This methodology seeks to reduce costs while actively engaging a diverse array of stakeholders [...] Read more.
Value management (VM) is a management approach aimed at inspiring individuals, nurturing their talents, and fostering synergy and innovation, all with the objective of enhancing an organization’s overall performance. This methodology seeks to reduce costs while actively engaging a diverse array of stakeholders throughout the project lifecycle. Despite its significance in construction projects, there exists a notable gap in the literature regarding the implementation of value management in public works. This study aims to identify the barriers that hinder the effective implementation of value management, as well as the critical success factors and potential risks associated with its adoption in public projects. Additionally, it assesses Turkey’s readiness for implementation within the construction sector by examining awareness levels, legislative issues, and other pertinent topics. To conduct the study, a quantitative survey was administered to 337 participants from various roles within the Turkish construction sector. The findings revealed that the inherent complexity of construction projects, time constraints, and difficulties in alternative selection are the primary barriers to implementing the value management approach in public works. Regarding the critical success factors for effective VM implementation, the involvement of end users, a collaborative workshop environment, and the multidisciplinary composition of the VM team were identified as the most significant contributors to success. Additionally, the study highlighted potential risks associated with the adoption of VM in public works, including low operating efficiency, a low participation rate in tenders, and cost overruns. The discussion also addressed legislative and process-oriented strategies for the potential adoption of value management. Full article
Show Figures

Figure 1

28 pages, 1163 KiB  
Review
Application of Large Language Models in the AECO Industry: Core Technologies, Application Scenarios, and Research Challenges
by Guozong Zhang, Chenyuan Lu and Qianmai Luo
Buildings 2025, 15(11), 1944; https://doi.org/10.3390/buildings15111944 - 4 Jun 2025
Viewed by 806
Abstract
As projects in the architecture, engineering, construction, and operations (AECO) industry grow in complexity and scale, there is an urgent need for more effective information management and intelligent decision-making. This study investigates the potential of large language models (LLMs) to address these challenges [...] Read more.
As projects in the architecture, engineering, construction, and operations (AECO) industry grow in complexity and scale, there is an urgent need for more effective information management and intelligent decision-making. This study investigates the potential of large language models (LLMs) to address these challenges by systematically reviewing their core technologies, application scenarios, and integration approaches in AECO. Using a literature-based review methodology, this paper examines how LLMs—built on Transformer architecture and powered by deep learning and natural language processing—can process complex unstructured data and support a wide range of tasks, including contract analysis, construction scheduling, risk assessment, and operations and maintenance. This study finds that while LLMs offer substantial promise for enhancing productivity and automation in AECO workflows, several obstacles remain, such as data quality issues, computational demands, limited adaptability, integration barriers, and ethical concerns. The paper concludes that future research should focus on improving model efficiency, enabling multimodal data fusion, and enhancing compatibility with existing industry tools to realize the full potential of LLMs and support the digital transformation of the AECO sector. Full article
(This article belongs to the Special Issue Large-Scale AI Models Across the Construction Lifecycle)
Show Figures

Figure 1

34 pages, 6364 KiB  
Review
Salinity Barriers to Manage Saltwater Intrusion in Coastal Zone Aquifers During Global Climate Change: A Review and New Perspective
by Thomas M. Missimer and Robert G. Maliva
Water 2025, 17(11), 1651; https://doi.org/10.3390/w17111651 - 29 May 2025
Viewed by 1545
Abstract
Climate change will have a significant impact on saltwater intrusion in coastal aquifers between now and 2150. Global sea levels are predicted to rise somewhere between 0.5 and 1.8 m. To mitigate sea level rise, coastal aquifers will require intensive management to avoid [...] Read more.
Climate change will have a significant impact on saltwater intrusion in coastal aquifers between now and 2150. Global sea levels are predicted to rise somewhere between 0.5 and 1.8 m. To mitigate sea level rise, coastal aquifers will require intensive management to avoid inland migration of seawater that could impact water supplies. In addition to reducing pumping of freshwater, the construction and operation of salinity barriers will be required in many locations. Eleven types of salinity barriers were investigated, including physical barriers (curtain wall and grout curtains), infiltration canals filled with freshwater paralleling the coastline, injection of freshwater (treated surface water or wastewater), pumping or abstraction barriers, mixed injection and abstraction barriers, combined abstraction, desalination, and recharge (ADR), ADR hybrid barriers using various water sources including desalinated water and treated wastewater, compressed air barriers, aquifer storage and recovery dual use systems, biofilm barriers, and clay swelling or dispersion barriers. Feasibility of the use of each salinity barrier type was evaluated within the context of the most recent projections of sea level changes. Key factors used in the evaluation included local hydrogeology, land surface slope, water use, the rate of sea level rise, technical feasibility (operational track record), and economics. Full article
(This article belongs to the Special Issue Research on Hydrogeology and Hydrochemistry: Challenges and Prospects)
Show Figures

Figure 1

Back to TopTop