Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = constant resistant and large deformation anchor cable

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8981 KB  
Article
Numerical Simulation Study on Through-Anchor Cable Reinforcement Control of Inter-Roadway Coal Pillars in Double-Roadway Layouts
by Linjun Peng, Shunyu Xu and Manchao He
Sustainability 2025, 17(6), 2416; https://doi.org/10.3390/su17062416 - 10 Mar 2025
Cited by 1 | Viewed by 679
Abstract
This study investigates the traditional coal pillar support methods employed in double-roadway excavation of high-mining-height longwall faces, specifically those with widths ranging from 20 m to 30 m. It highlights that these methods not only result in substantial coal pillar loss and low [...] Read more.
This study investigates the traditional coal pillar support methods employed in double-roadway excavation of high-mining-height longwall faces, specifically those with widths ranging from 20 m to 30 m. It highlights that these methods not only result in substantial coal pillar loss and low recovery rates but also create conditions for stress concentration due to inadequate dimensions, thereby increasing the risk of accidents. Based on the engineering context of the Jinjitan Coal Mine’s 113 and 111 working faces, this paper optimizes coal pillar dimensions through theoretical calculations and Flac3D numerical simulations, with the results indicating that the optimal coal pillar width is 12 m. Analysis of a 12 m inter-roadway coal pillar focuses on the bearing characteristics of auxiliary transport roadways and coal transportation roadways. Five different reinforcement schemes are examined, including (no support, conventional anchor reinforcement, presser anchor cable through reinforcement, constant-resistance large-deformation anchor cable through reinforcement, and a combination of presser with negative Poisson’s ratio (NPR) constant-resistance large-deformation anchor cable support). The findings reveal that in the investigation of the reinforcement mechanism for the 12 m wide coal pillar, employing NPR constant-resistance large-deformation anchor cables alongside presser anchor cables effectively mitigates the compression deformation caused by dynamic loading disturbances from the overlying rock layers. This approach not only dissipates energy but also transforms the coal pillar from a biaxial stress state to a triaxial stress state. The reinforcement scheme successfully reduces the peak stress of the coal pillar from 68.5 MPa to 35.3 MPa, significantly enhancing both the peak strength and residual strength of the coal pillar, thereby ensuring the stability of the inter-roadway coal pillar and the safe recovery of the working face. Full article
Show Figures

Figure 1

19 pages, 16368 KB  
Article
Study on Roof-Cutting and Support of a Retreating Roadway under the Double Influence of Large Mining Heights
by Linjun Peng, Weidong Liu and Chengyuan Peng
Appl. Sci. 2024, 14(17), 7946; https://doi.org/10.3390/app14177946 - 6 Sep 2024
Cited by 6 | Viewed by 1182
Abstract
When the coal mining face enters the final stage of mining, the roadway faces the superimposed influence of surrounding rock stress redistribution and roof rotary moment. As affected by the strong disturbance in the coal mining process, the roof plate of the roadway [...] Read more.
When the coal mining face enters the final stage of mining, the roadway faces the superimposed influence of surrounding rock stress redistribution and roof rotary moment. As affected by the strong disturbance in the coal mining process, the roof plate of the roadway has undergone serious deformation, which seriously affects the stability of the roadway. Taking the 108 working face of the Jinjitan coal mine as the engineering background, a comprehensive study was conducted on the control of the perimeter rock in the retracement of a tunnel in a heavy coal seam with a large mining height. By analyzing the physical properties of the enclosing rock of the retreated roadway, and using theoretical analysis, numerical simulation, on-site monitoring, and other methods, the characteristics of the peripheral rock’s movement relationship and mineral pressure manifestation in the final mining stage of the large-height working face have been studied. The structural mechanics model was established, and in the case where the support cannot be solved just by strengthening the support, the design scheme of “blasting roof break + constant resistance anchor cable support” was innovatively tried. FLAC3D simulation results show that the stress release of the surrounding rock is more adequate when the height of roof cutting is 20 m. The stress of the surrounding rock near the roadway is reduced by 30~40%, and the stress state is reasonable. The constant resistance and large deformation anchors can absorb the deformation energy of the rock body, maintain constant working resistance and stable deformation, and have good rock stability control, which is conducive to the stability of the roadway. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

23 pages, 19304 KB  
Article
Numerical Simulation Study on Deformation Mechanism of Tunnel–Landslide Orthogonal Systems and Early Warnings of Imminent Sliding
by Meng Mi, Zhigang Tao, Shihui Pang, Keyuan Liu and Ke Qin
Appl. Sci. 2024, 14(7), 2790; https://doi.org/10.3390/app14072790 - 27 Mar 2024
Cited by 1 | Viewed by 1196
Abstract
This paper takes a tunnel through a landslide in Northwest China as an example, constructs a mechanical model of a tunnel–landslide orthogonal system, and explores the deformation mechanism of a tunnel–landslide system and the technology of early warnings of near-slips. Given the problem [...] Read more.
This paper takes a tunnel through a landslide in Northwest China as an example, constructs a mechanical model of a tunnel–landslide orthogonal system, and explores the deformation mechanism of a tunnel–landslide system and the technology of early warnings of near-slips. Given the problem that it is difficult to accurately monitor the deformation and damage characteristics of the tunnel–landslide system using conventional methods, FLAC3D was used to analyze the deformation mechanism of the tunnel–landslide orthogonal system and numerical simulation of the NPR constant resistance large deformation anchors for the early warning of near-slips. Based on the strength reduction method, by reducing the mechanical parameters of the shear strength of the slip zone and simulating different degrees of landslides, we obtained the change rules of the displacement and the axial force of the NPR constant-resistance large deformation anchor cable in the tunnel–landslide orthogonal system, established the warning mode of the Newtonian force tunnel–landslide orthogonal system, and successfully issued a near-slip warning in actual engineering applications. The above research is of great significance to the stability monitoring and risk assessment of tunnel–landslide systems. Full article
(This article belongs to the Special Issue Recent Research on Tunneling and Underground Engineering)
Show Figures

Figure 1

24 pages, 8705 KB  
Article
Research on the Transmission of Stresses by Roof Cutting near Gob Rocks
by Zhibiao Guo, Haohao Wang, Zimin Ma, Pengfei Wang, Xiaohui Kuai and Xianzhe Zhang
Energies 2021, 14(5), 1237; https://doi.org/10.3390/en14051237 - 24 Feb 2021
Cited by 12 | Viewed by 1868
Abstract
Pressure relief for roadways retained by roof cutting is essentially caused by stress transfer. In this paper, the stress transfer mechanism of 16011 tail entry with roof cutting in Zhaogu No.1 coal mine is studied from the following two aspects: the change of [...] Read more.
Pressure relief for roadways retained by roof cutting is essentially caused by stress transfer. In this paper, the stress transfer mechanism of 16011 tail entry with roof cutting in Zhaogu No.1 coal mine is studied from the following two aspects: the change of the tail entry surrounding the rock structure and the interaction between the roadway surrounding rock and supporting structures. It is found by numerical simulation that roof cutting can significantly reduce the magnitude of roadway roof stress, transferring the concentrated stress induced by excavation and mining away from the roadway, and forming an obvious triangle pressure relief area in front of the working face. In the early stage after mining, most of the overburden load is transferred downward through the immediate roof of the roadway. With the movement of overlying strata, the stress, initially transferred to the immediate roof strata, is gradually transferred to the gob, and the calculation formula and influence factors of the transferred stress are derived. In addition, through the establishment of the mechanical model and theoretical calculation of the key rock block of the main roof, the roadside support resistance required to ensure the stability of the main roof block is determined. The field monitoring shows that the lateral pressure coefficient of the roadside caved rocks is 0.36 and the constant resistance and large deformation anchor cable (CRLDAC) and the roadway temporary support play roles of conduction and control in the process of stress transfer, and effectively ensure the stability of surrounding rock during the service life of the retained gob-side entry by roof cutting (RGERC). Full article
(This article belongs to the Section L: Energy Sources)
Show Figures

Graphical abstract

18 pages, 9220 KB  
Article
Energy Evolution Pattern and Roof Control Strategy in Non-Pillar Mining Method of Goaf-Side Entry Retaining by Roof Cutting—A Case Study
by Lifeng Li, Gan Li, Weili Gong, Jiong Wang and Huilin Deng
Sustainability 2019, 11(24), 7029; https://doi.org/10.3390/su11247029 - 9 Dec 2019
Cited by 9 | Viewed by 2451
Abstract
This article focuses on the energy density alteration during non-pillar mining method of goaf-side entry retaining by roof cutting (GERRC) and adjacent working face mining. We also studied the support control strategy of goaf-side roadway. Numerical calculation model is established, and the parameters [...] Read more.
This article focuses on the energy density alteration during non-pillar mining method of goaf-side entry retaining by roof cutting (GERRC) and adjacent working face mining. We also studied the support control strategy of goaf-side roadway. Numerical calculation model is established, and the parameters of the model are verified by the measured advance abutment pressure and numerical solution. Based on the numerical model, the energy density during mining is studied. It is found that the whole energy evolution pattern of the goaf side entry during the two adjacent working face mining includes: the original rock energy, the advance energy of the current working face, the dynamic lateral abutment energy caused by strata movement, the lateral abutment energy of the adjacent working face. The support body failure and surrounding rock large deformation phenomenon often occur in goaf side roadway, which is influenced by multiple energy disturbances. Research shows that strong stress disturbance of surrounding rock generates in front of the working face 23 m and behind of working face 60 m in GERRC method. In the second goaf-side entry retaining, the range is in front of the working face 47 m. The evolution law of energy field puts forward the strategy of using the high constant resistance and large deformation (CRLD) anchor cable and procured preferable effect. Full article
Show Figures

Figure 1

22 pages, 9824 KB  
Article
An Innovative Approach for Gob-Side Entry Retaining in Thick Coal Seam Longwall Mining
by Manchao He, Yubing Gao, Jun Yang and Weili Gong
Energies 2017, 10(11), 1785; https://doi.org/10.3390/en10111785 - 6 Nov 2017
Cited by 135 | Viewed by 7581
Abstract
Gob-side entry retaining (GER) is a popular non-pillar mining technique regarding how to reserve a gateroad for the use of next panel mining. When used in thick coal seams, the conventional entry retaining method requires a huge amount of filling materials and may [...] Read more.
Gob-side entry retaining (GER) is a popular non-pillar mining technique regarding how to reserve a gateroad for the use of next panel mining. When used in thick coal seams, the conventional entry retaining method requires a huge amount of filling materials and may cause entry (gateroad) accidents. Thus, an innovative non-pillar longwall mining approach is introduced. First, structural and mechanical models were built to explore the mechanism of the new approach. The modeling results indicate that effective bulking of the gob roof and reasonable support of the entry roof were key governing factors in improving entry stabilities and reducing roof deformations. Accordingly, a directional roof fracturing technique was proposed to contribute to gob roof caving, and a constant resistance and large deformation anchor (CRLDA) cable was used to stabilize the entry roof. Subsequently, the evolutionary laws of the roof structure and stresses were explored using numerical simulation. It was found that the structure of the surrounding rocks around the retained entry changed significantly after roof fracturing. The stress-bearing center was transferred to the gob area, and the entry roof was in a low stress environment after adopting the approach. Finally, the approach was tested on a thick coal seam longwall mining panel. Field monitoring indicates that the retained entry was in a stable state and the index of the retained entry met the requirement of the next mining panel. This work provides an effective and economical approach to non-pillar longwall mining in thick coal seams. Full article
(This article belongs to the Special Issue Mathematical and Computational Modeling in Geothermal Engineering)
Show Figures

Figure 1

Back to TopTop