Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = connection outage probability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1734 KiB  
Review
Outage Rates and Failure Removal Times for Power Lines and Transformers
by Paweł Pijarski and Adrian Belowski
Appl. Sci. 2025, 15(14), 8030; https://doi.org/10.3390/app15148030 - 18 Jul 2025
Viewed by 280
Abstract
The dynamic development of distributed sources (mainly RES) contributes to the emergence of, among others, balance and overload problems. For this reason, many RES do not receive conditions for connection to the power grid in Poland. Operators sometimes extend permits based on the [...] Read more.
The dynamic development of distributed sources (mainly RES) contributes to the emergence of, among others, balance and overload problems. For this reason, many RES do not receive conditions for connection to the power grid in Poland. Operators sometimes extend permits based on the possibility of periodic power reduction in RES in the event of the problems mentioned above. Before making a decision, investors, for economic reasons, need information on the probability of annual power reduction in their potential installation. Analyses that allow one to determine such a probability require knowledge of the reliability indicators of transmission lines and transformers, as well as failure removal times. The article analyses the available literature on the annual risk of outages of these elements and methods to determine the appropriate reliability indicators. Example calculations were performed for two networks (test and real). The values of indicators and times that can be used in practice were indicated. The unique contribution of this article lies not only in the comprehensive comparison of current, relevant transmission line and transformer reliability analysis methods but also in developing the first reliability indices for the Polish power system in more than 30 years. It is based on the relationships presented in the article and their comparison with results reported in the international literature. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

21 pages, 1329 KiB  
Article
DDPG-Based UAV-RIS Framework for Optimizing Mobility in Future Wireless Communication Networks
by Yasir Ullah, Idris Olalekan Adeoye, Mardeni Roslee, Mohd Azmi Ismail, Farman Ali, Shabeer Ahmad, Anwar Faizd Osman and Fatimah Zaharah Ali
Drones 2025, 9(6), 437; https://doi.org/10.3390/drones9060437 - 15 Jun 2025
Viewed by 480
Abstract
The development of beyond 5G (B5G) future wireless communication networks (FWCN) needs novel solutions to support high-speed, reliable, and low-latency communication. Unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) are promising techniques that can enhance wireless connectivity in urban environments where tall [...] Read more.
The development of beyond 5G (B5G) future wireless communication networks (FWCN) needs novel solutions to support high-speed, reliable, and low-latency communication. Unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) are promising techniques that can enhance wireless connectivity in urban environments where tall buildings block line-of-sight (LoS) links. However, existing UAV-assisted communication strategies do not fully address key challenges like mobility management, handover failures (HOFs), and path disorders in dense urban environments. This paper introduces a deep deterministic policy gradient (DDPG)-based UAV-RIS framework to overcome these limitations. The proposed framework jointly optimizes UAV trajectories and RIS phase shifts to improve throughput, energy efficiency (EE), and LoS probability while reducing outage probability (OP) and HOF. A modified K-means clustering algorithm is used to efficiently partition the ground users (GUs) considering the newly added GUs as well. The DDPG algorithm, based on reinforcement learning (RL), adapts UAV positioning and RIS configurations in a continuous action space. Simulation results show that the proposed approach significantly reduces HOF and OP, increases EE, enhances network throughput, and improves LoS probability compared to UAV-only, RIS-only, and without UAV-RIS deployments. Additionally, by dynamically adjusting UAV locations and RIS phase shifts based on GU mobility patterns, the framework further enhances connectivity and reliability. The findings highlight its potential to transform urban wireless communication by mitigating LoS blockages and ensuring uninterrupted connectivity in dense environments. Full article
(This article belongs to the Special Issue UAV-Assisted Mobile Wireless Networks and Applications)
Show Figures

Figure 1

31 pages, 9117 KiB  
Article
Intelligent Omni-Surface-Assisted Cooperative Hybrid Non-Orthogonal Multiple Access: Enhancing Spectral Efficiency Under Imperfect Successive Interference Cancellation and Hardware Distortions
by Helen Sheeba John Kennedy and Vinoth Babu Kumaravelu
Sensors 2025, 25(7), 2283; https://doi.org/10.3390/s25072283 - 3 Apr 2025
Cited by 1 | Viewed by 455
Abstract
Non-orthogonal multiple access (NOMA) has emerged as a key enabler of massive connectivity in next-generation wireless networks. However, conventional NOMA studies predominantly focus on two-user scenarios, limiting their scalability in practical multi-user environments. A critical challenge in these systems is error propagation in [...] Read more.
Non-orthogonal multiple access (NOMA) has emerged as a key enabler of massive connectivity in next-generation wireless networks. However, conventional NOMA studies predominantly focus on two-user scenarios, limiting their scalability in practical multi-user environments. A critical challenge in these systems is error propagation in successive interference cancellation (SIC), which is further exacerbated by hardware distortions (HWDs). Hybrid NOMA (HNOMA) mitigates SIC errors and reduces system complexity, yet cell-edge users (CEUs) continue to experience degraded sum spectral efficiency (SSE) and throughput. Cooperative NOMA (C-NOMA) enhances CEU performance through retransmissions but incurs higher energy consumption. To address these limitations, this study integrates intelligent omni-surfaces (IOSs) into a cooperative hybrid NOMA (C-HNOMA) framework to enhance retransmission efficiency and extend network coverage. The closed-form expressions for average outage probability and throughput are derived, and a power allocation (PA) optimization framework is proposed to maximize SSE, with validation through Monte Carlo simulations. The introduction of a novel strong–weak strong–weak (SW-SW) user pairing strategy capitalizes on channel diversity, achieving an SSE improvement of ∼0.48% to ∼3.81% over conventional pairing schemes. Moreover, the proposed system demonstrates significant performance gains as the number of IOS elements increases, even under imperfect SIC (iSIC) and HWD conditions. By optimizing PA values, SSE is further enhanced by at least 2.24%, even with an SIC error of 0.01 and an HWD level of 8%. These results underscore the potential of an IOS-assisted C-HNOMA system with SW-SW pairing as a viable solution for improving multi-user connectivity, SSE, and system robustness in future wireless communication networks. Full article
(This article belongs to the Special Issue Performance Analysis of Wireless Communication Systems)
Show Figures

Graphical abstract

28 pages, 474 KiB  
Article
Security Performance Analysis of Downlink Double Intelligent Reflecting Surface Non-Orthogonal Multiple Access Network for Edge Users
by Nguyen Thai Anh, Nguyen Hoang Viet, Dinh-Thuan Do and Adão Silva
Sensors 2025, 25(4), 1274; https://doi.org/10.3390/s25041274 - 19 Feb 2025
Viewed by 515
Abstract
In this work, we study the security performance of a double intelligent reflecting surface non-orthogonal multiple access (DIRS-NOMA) wireless communication system supporting communication for a group of two NOMA users (UEs) at the edge, with the existence of an eavesdropping device (ED). We [...] Read more.
In this work, we study the security performance of a double intelligent reflecting surface non-orthogonal multiple access (DIRS-NOMA) wireless communication system supporting communication for a group of two NOMA users (UEs) at the edge, with the existence of an eavesdropping device (ED). We also assume that there is no direct connection between the BS and the UEs. From the proposed model, we compute closed-form expressions for the secrecy outage probability (SOP) and the average security rate (ASR) for each UE. After that, we discuss and analyze the system security performance according to the NOMA power allocation for each user and the number of IRS counter-emission elements. In addition, we analyze the SOP of both the considered DIRS-NOMA and conventional NOMA systems to demonstrate that DIRS-NOMA systems have much better security than conventional NOMA systems. Based on the analytical results, we develop an ASR optimization algorithm using the alternating optimization method, combining NOMA power allocation factor optimization and IRS passive beam optimization through the Lagrange double transform. The derived analytical expressions are validated through Monte Carlo simulations. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

19 pages, 2018 KiB  
Article
Secrecy Analysis of LEO Satellite-to-Ground Station Communication System Influenced by Gamma-Shadowed Ricean Fading
by Ivan Radojkovic, Jelena Anastasov, Dejan N. Milic, Predrag Ivaniš and Goran T. Djordjevic
Electronics 2025, 14(2), 293; https://doi.org/10.3390/electronics14020293 - 13 Jan 2025
Viewed by 1322
Abstract
The Low Earth Orbit (LEO) small satellites are extensively used for global connectivity to enable services in underpopulated, remote or underdeveloped areas. Their inherent broadcast nature exposes LEO–terrestrial communication links to severe security threats, which always reveal new challenges. The secrecy performance of [...] Read more.
The Low Earth Orbit (LEO) small satellites are extensively used for global connectivity to enable services in underpopulated, remote or underdeveloped areas. Their inherent broadcast nature exposes LEO–terrestrial communication links to severe security threats, which always reveal new challenges. The secrecy performance of the satellite-to-ground user link in the presence of a ground eavesdropper is studied in this paper. We observe both scenarios of the eavesdropper’s channel state information (CSI) being known or unknown to the satellite. Throughout the analysis, we consider that locations of the intended and unauthorized user are both arbitrary in the satellite’s footprint. On the other hand, we analyze the case when the user is in the center of the satellite’s central beam. In order to achieve realistic physical layer security features of the system, the satellite channels are assumed to undergo Gamma-shadowed Ricean fading, where both line-of-site and scattering components are influenced by shadowing effect. In addition, some practical effects, such as satellite multi-beam pattern and free space loss, are considered in the analysis. Capitalizing on the aforementioned scenarios, we derive the novel analytical expressions for the average secrecy capacity, secrecy outage probability, probability of non-zero secrecy capacity, and probability of intercept events in the form of Meijer’s G functions. In addition, novel asymptotic expressions are derived from previously mentioned metrics. Numerical results are presented to illustrate the effects of beam radius, satellite altitude, receivers’ position, as well as the interplay of the fading or/and shadowing impacts over main and wiretap channels on the system security. Analytical results are confirmed by Monte Carlo simulations. Full article
(This article belongs to the Special Issue New Advances of Microwave and Optical Communication)
Show Figures

Figure 1

25 pages, 677 KiB  
Article
Performance Analysis of Buffer-Aided FSO Relaying with an Energy Harvesting Relay
by Chadi Abou-Rjeily
Photonics 2025, 12(1), 55; https://doi.org/10.3390/photonics12010055 - 9 Jan 2025
Viewed by 670
Abstract
In this paper, we consider a three-node free space optical (FSO) decode-and-forward (DF) cooperative network. The relay is not connected to a permanent power supply and relies solely on the optical energy harvested (EH) from the source node. This energy is accumulated in [...] Read more.
In this paper, we consider a three-node free space optical (FSO) decode-and-forward (DF) cooperative network. The relay is not connected to a permanent power supply and relies solely on the optical energy harvested (EH) from the source node. This energy is accumulated in an energy buffer in order to enable the relay–destination communications. Moreover, buffer-aided (BA) relaying is considered where the relay is equipped with a data buffer for storing the incoming packets. For such networks, we propose a relaying protocol that delineates the roles of the source and the EH BA relay in each time slot. We develop a Markov chain framework for capturing the dynamics of the data and energy buffers. We derive the transition probabilities between the states of the Markov chain after discretizing the continuous-value energy buffer allowing for the evaluation of the analytical performance of the considered system. A numerical analysis is also presented over a turbulence-induced gamma–gamma fading channel highlighting the impacts of the data rate threshold levels, relay position, relay transmit power and propagation conditions on the achievable performance levels. Results validate the accuracy of the theoretical analysis and demonstrate significant reductions in the network outage, especially when the relay’s transmit level is appropriately selected. Full article
Show Figures

Figure 1

19 pages, 1646 KiB  
Article
Performance Optimization of 5G–Satellite Integrated Networks for IoT Applications in Smart Cities: A Two-Ray Propagation Model Approach
by Mfonobong Uko, Sunday C. Ekpo, Sunday Enahoro and Fanuel Elias
Smart Cities 2024, 7(6), 3895-3913; https://doi.org/10.3390/smartcities7060150 - 11 Dec 2024
Cited by 4 | Viewed by 2130
Abstract
The convergence of 5G terrestrial networks with satellite systems offers a revolutionary approach to achieving global, seamless connectivity, particularly for Internet of Things (IoT) applications in urban and rural settings. This paper investigates the implications of this 5G–satellite integrated network architecture, specifically through [...] Read more.
The convergence of 5G terrestrial networks with satellite systems offers a revolutionary approach to achieving global, seamless connectivity, particularly for Internet of Things (IoT) applications in urban and rural settings. This paper investigates the implications of this 5G–satellite integrated network architecture, specifically through the application of the two-ray propagation model and the free-space path loss (FSPL) model. By simulating signal characteristics over varying distances, altitudes, and environmental parameters, we explore how factors such as transmitter height, satellite altitude, and frequency impact received power, path loss, channel capacity, and outage probability. The key findings indicate that received power decreases significantly with increasing distance, with notable oscillations in the two-ray model due to interference from ground reflections, particularly evident within the first 100 km. For example, at 50 km, a 300 km satellite altitude yields approximately −115 dBm in received power, while at 1000 km altitude, this power drops to around −136 dBm. Higher frequencies (e.g., 32 GHz) exhibit greater path loss than lower frequencies (e.g., 24 GHz), with a 5 dB difference observed at 1000 km, reinforcing the need for frequency considerations in long-range communication design. In terms of channel capacity, increasing bandwidth enhances achievable data rates but declines with distance due to diminishing received power. At 100 km, a 50 MHz bandwidth supports up to 4500 Mbps, while at 3000 km, capacity drops to around 300 Mbps. The outage probability analysis shows that higher signal-to-noise ratio (SNR) thresholds substantially increase the likelihood of communication failures, especially at distances exceeding 2000 km. For instance, at 3000 km, the outage probability for a 15 dB SNR threshold reaches approximately 25%, compared to less than 5% for a 5 dB threshold. These results underscore the critical trade-offs in designing 5G–satellite IoT networks, balancing bandwidth, frequency, SNR thresholds, and satellite altitudes for optimal performance across diverse IoT applications. The analysis provides valuable insights for enhancing connectivity and reliability in 5G–satellite integrated networks, especially in remote and underserved regions. Full article
Show Figures

Figure 1

21 pages, 1868 KiB  
Article
Performance Analysis of Multiple UAV-Based Hybrid Free-Space Optical/Radio Frequency Aeronautical Communication System in Mobile Scenarios
by Xiwen Zhang, Shanghong Zhao, Yuan Wang, Hang Hu, Guangmingzi Yang, Xinkang Song, Xin Li and Jianjia Li
Drones 2024, 8(12), 729; https://doi.org/10.3390/drones8120729 - 2 Dec 2024
Viewed by 1174
Abstract
Free-space optical (FSO) communication with unmanned aerial vehicles (UAVs) as relays is a promising technology for future aeronautical communication systems. In this paper, a multiple UAV-based aeronautical communication system is proposed, wherein a hybrid FSO/radio frequency (RF) link is established to connect the [...] Read more.
Free-space optical (FSO) communication with unmanned aerial vehicles (UAVs) as relays is a promising technology for future aeronautical communication systems. In this paper, a multiple UAV-based aeronautical communication system is proposed, wherein a hybrid FSO/radio frequency (RF) link is established to connect the Airborne Warning and Control System (AWACS) with the mobile ground station (GS). Initially, we consider the velocity variance of both AWACS and the mobile GS, along with the influence of the Doppler effect. Furthermore, four relay selection modes are proposed, and exact closed expressions are derived for the end-to-end outage probability and bit error rate (BER) of the considered system. Numerical simulations demonstrate the impact of velocity variance variation on system performance. Additionally, we analyze the applicability of these four relay modes under different platform mobility characteristics through simulation results, while discussing the optimal numbers and the deployment altitude of UAVs. Finally, effective design guidelines that can be useful for aeronautical communication system designers are presented. Full article
Show Figures

Figure 1

18 pages, 959 KiB  
Article
Intelligent-Reflecting-Surface-Assisted Single-Input Single-Output Secure Transmission: A Joint Multiplicative Perturbation and Constructive Reflection Perspective
by Chaowen Liu, Anling Zeng, Fei Yu, Zhengmin Shi, Mingyang Liu and Boyang Liu
Entropy 2024, 26(10), 849; https://doi.org/10.3390/e26100849 - 8 Oct 2024
Viewed by 971
Abstract
Due to the inherent broadcasting nature and openness of wireless transmission channels, wireless communication systems are vulnerable to the eavesdropping of malicious attackers and usually encounter undesirable situations of information leakage. The problem may be more serious when a passive eavesdropping device is [...] Read more.
Due to the inherent broadcasting nature and openness of wireless transmission channels, wireless communication systems are vulnerable to the eavesdropping of malicious attackers and usually encounter undesirable situations of information leakage. The problem may be more serious when a passive eavesdropping device is directly connected to the transmitter of a single-input single-output (SISO) system. To deal with this urgent situation, a novel IRS-assisted physical-layer secure transmission scheme based on joint transmitter perturbation and IRS reflection (JPR) is proposed, such that the secrecy of wireless SISO systems can be comprehensively guaranteed regardless of whether the reflection-based jamming from the IRS to the eavesdropper is blocked or not. Moreover, to develop a trade-off between the achievable performance and implementation complexity, we propose both element-wise and group-wise reflected perturbation alignment (ERPA/GRPA)-based IRS reflection strategies, respectively. In order to evaluate the achievable performance, we analyze the ergodic secrecy rate (ESR) and secrecy outage probability (SOP) of the SISO secure systems with the ERPA/GRPA-based JPRs, respectively. Finally, by characterizing the simulated and numerical ESR and SOP performance results, our proposed scheme is compared with the benchmark scheme of random phase-based reflection, which strongly demonstrates the effectiveness of our proposed scheme. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

22 pages, 11909 KiB  
Article
Performance Analysis of UAV-IRS Relay Multi-Hop FSO/THz Link
by Yawei Wang, Rongpeng Liu, Jia Yuan, Jingwei Lu, Ziyang Wang, Ruihuan Wu, Zhongchao Wei and Hongzhan Liu
Electronics 2024, 13(16), 3247; https://doi.org/10.3390/electronics13163247 - 15 Aug 2024
Viewed by 1650
Abstract
As the era of sixth-generation (6G) communications approaches, there will be an unprecedented increase in the number of wireless internet-connected devices and a sharp rise in mobile data traffic. Faced with the scarcity of spectrum resources in traditional communication networks and challenges such [...] Read more.
As the era of sixth-generation (6G) communications approaches, there will be an unprecedented increase in the number of wireless internet-connected devices and a sharp rise in mobile data traffic. Faced with the scarcity of spectrum resources in traditional communication networks and challenges such as rapidly establishing communications after disasters, this study leverages unmanned aerial vehicles (UAVs) to promote an integrated multi-hop communication system combining free-space optical (FSO) communication, terahertz (THz) technology, and intelligent reflecting surface (IRS). This innovative amalgamation capitalizes on the flexibility of UAVs, the deployability of IRS, and the complementary strengths of FSO and THz communications. We have developed a comprehensive channel model that includes the effects of atmospheric turbulence, attenuation, pointing errors, and angle-of-arrival (AOA) fluctuations. Furthermore, we have derived probability density functions (PDFs) and cumulative distribution functions (CDFs) for various switching techniques. Employing advanced methods such as Gaussian–Laguerre quadrature and the central limit theorem (CLT), we have calculated key performance indicators including the average outage probability, bit error rate (BER), and channel capacity. The numerical results demonstrate that IRS significantly enhances the performance of the UAV-based hybrid FSO/THz system. The research indicates that optimizing the number of IRS elements can substantially increase throughput and reliability while minimizing switching costs. Additionally, the multi-hop approach specifically addresses the line-of-sight (LoS) dependency limitations inherent in FSO and THz systems by utilizing UAVs as dynamic relay points. This strategy effectively bridges longer distances, overcoming physical and atmospheric obstacles, and ensures stable communication links even under adverse conditions. This study underscores that the enhanced multi-hop FSO/THz link is highly effective for emergency communications after disasters, addressing the challenge of scarce spectrum resources. By strategically deploying UAVs as relay points in a multi-hop configuration, the system achieves greater flexibility and resilience, making it highly suitable for critical communication scenarios where traditional networks might fail. Full article
(This article belongs to the Special Issue Advanced Optical Wireless Communication Systems)
Show Figures

Figure 1

18 pages, 599 KiB  
Article
Multiple Nodes Co-Carrier Cooperative Transmission in LEO Communication Networks: Developing the Diversity Gain of Satellites
by Tian Li, Guoyan Li, Xinwei Yue and Bin Dai
Sensors 2024, 24(14), 4533; https://doi.org/10.3390/s24144533 - 13 Jul 2024
Viewed by 1192
Abstract
Low Earth orbit (LEO) satellite communication (SATCOM) networks have gradually been recognized as an efficient solution to enhance ground-based wireless networks. As one of the main characteristics of LEO SATCOM, the beam-edge area could be covered by multiple satellite nodes. In this case, [...] Read more.
Low Earth orbit (LEO) satellite communication (SATCOM) networks have gradually been recognized as an efficient solution to enhance ground-based wireless networks. As one of the main characteristics of LEO SATCOM, the beam-edge area could be covered by multiple satellite nodes. In this case, user terminals (UTs) located at the beam-edge have the chance to connect one or more LEO satellites. To develop the diversity gain of multiple nodes in the overlapping area, we propose two high spectral efficiency cooperative transmission strategies, i.e., directly combining (DC) and selection combining (SC). In the DC scheme, signals arrived at the UT simultaneously could be combined into one enhanced signal. For downlink time division multiplexing, the SC scheme enables the UT to select the strongest signal path. Further, as there exists a significant channel gain difference of the beam-center and beam-edge areas, UTs in these two areas can be allocated in one resource block. In this case, we derive co-carriers based on DC and SC, respectively. To deeply analyze the novel methods, we study the ergodic sum-rate and outage probability while the outage diversity gain is further provided. Simulation results show that the co-carrier-based DC method has the ability to provide a higher ergodic sum-rate while the SC method performs better in terms of the outage probability. Full article
(This article belongs to the Special Issue 6G Space-Air-Ground Communication Networks and Key Technologies)
Show Figures

Figure 1

16 pages, 1978 KiB  
Article
Security Performance Analysis of Full-Duplex UAV Assisted Relay System Based on SWIPT Technology
by Shenmenglu Yang and Hongyu Ma
Appl. Sci. 2024, 14(12), 4987; https://doi.org/10.3390/app14124987 - 7 Jun 2024
Cited by 1 | Viewed by 1095
Abstract
In this paper, a new methodology is developed for modeling and analyzing a full-duplex UAV-assisted relay system to facilitate solving the problems of UAV energy constraints and the vulnerability of UAVs to eavesdropping in the air. Combining simultaneous wireless information and power transfer [...] Read more.
In this paper, a new methodology is developed for modeling and analyzing a full-duplex UAV-assisted relay system to facilitate solving the problems of UAV energy constraints and the vulnerability of UAVs to eavesdropping in the air. Combining simultaneous wireless information and power transfer (SWIPT) technology, we model the downlink UAV eavesdropping channel and propose a secure transmission protocol for a full-duplex UAV-assisted relay system. Using this transmission protocol, we analyze and derive the connectivity and security of the entire communication link, including connection probability and lower bounds on secrecy outage probability. A key intermediate step in our analysis is to derive the signal-to-digital noise ratio of the destination and eavesdropping nodes of the full-duplex UAV relay link. The analyses show that the power allocation factor λ is a trade-off between system connectivity and security, while greater eavesdropping interference needs to be sacrificed for an equal magnitude of security performance improvement under high security demand conditions. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

29 pages, 571 KiB  
Article
Secrecy Analysis of a Mu-MIMO LIS-Aided Communication Systems under Nakagami-m Fading Channels
by Ricardo Coelho Ferreira, Gustavo Fraidenraich, Felipe A. P. de Figueiredo and Eduardo Rodrigues de Lima
Sensors 2024, 24(11), 3332; https://doi.org/10.3390/s24113332 - 23 May 2024
Cited by 1 | Viewed by 1199
Abstract
This study evaluates the performance of large intelligent surface (LIS) technology in the context of a multi-user MIMO mobile communication system (Mu-MIMO) proposed for the sixth generation (6G). LIS employs digitally controlled reflectors to enhance Signal-to-Interference plus Noise Ratio (SINR) and establish line [...] Read more.
This study evaluates the performance of large intelligent surface (LIS) technology in the context of a multi-user MIMO mobile communication system (Mu-MIMO) proposed for the sixth generation (6G). LIS employs digitally controlled reflectors to enhance Signal-to-Interference plus Noise Ratio (SINR) and establish line of sight (LoS) connectivity in non-LoS environments, improving transmission security. Analytical expressions are derived to assess LIS performance metrics, including distribution parameters, bit error probability, and secrecy outage probability, considering the presence of eavesdroppers and environmental fading. The study highlights the potential of LIS technology to enhance the confidentiality and reliability of digital communication systems in next-generation networks. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

14 pages, 1300 KiB  
Article
Hybrid FSO/RF Communications in Space–Air–Ground Integrated Networks: A Reduced Overhead Link Selection Policy
by Petros S. Bithas, Hector E. Nistazakis, Athanassios Katsis and Liang Yang
Electronics 2024, 13(4), 806; https://doi.org/10.3390/electronics13040806 - 19 Feb 2024
Cited by 8 | Viewed by 2500
Abstract
Space–air–ground integrated network (SAGIN) is considered an enabler for sixth-generation (6G) networks. By integrating terrestrial and non-terrestrial (satellite, aerial) networks, SAGIN seems to be a quite promising solution to provide reliable connectivity everywhere and all the time. Its availability can be further enhanced [...] Read more.
Space–air–ground integrated network (SAGIN) is considered an enabler for sixth-generation (6G) networks. By integrating terrestrial and non-terrestrial (satellite, aerial) networks, SAGIN seems to be a quite promising solution to provide reliable connectivity everywhere and all the time. Its availability can be further enhanced if hybrid free space optical (FSO)/radio frequency (RF) links are adopted. In this paper, the performance of a hybrid FSO/RF communication system operating in SAGIN has been analytically evaluated. In the considered system, a high-altitude platform station (HAPS) is used to forward the satellite signal to the ground station. Moreover, the FSO channel model assumed takes into account the turbulence, pointing errors, and path losses, while for the RF links, a relatively new composite fading model has been considered. In this context, a new link selection scheme has been proposed that is designed to reduced the signaling overhead required for the switching operations between the RF and FSO links. The analytical framework that has been developed is based on the Markov chain theory. Capitalizing on this framework, the performance of the system has been investigated using the criteria of outage probability and the average number of link estimations. The numerical results presented reveal that the new selection scheme offers a good compromise between performance and complexity. Full article
Show Figures

Figure 1

13 pages, 498 KiB  
Article
An Efficient Block Successive Upper-Bound Minimization Algorithm for Caching a Reconfigurable Intelligent Surface-Assisted Downlink Non-Orthogonal Multiple Access System
by Xuan Zhou
Electronics 2024, 13(4), 791; https://doi.org/10.3390/electronics13040791 - 18 Feb 2024
Cited by 1 | Viewed by 1391
Abstract
With the booming rollout of 5G communication, abundant new technologies have been proposed for quality of service requirements. In terms of the betterment in transmission coverage, mobile edge caching (MEC) has shown potential in reducing the transmission outage. The performance of MEC, meanwhile, [...] Read more.
With the booming rollout of 5G communication, abundant new technologies have been proposed for quality of service requirements. In terms of the betterment in transmission coverage, mobile edge caching (MEC) has shown potential in reducing the transmission outage. The performance of MEC, meanwhile, can be promisingly enhanced by reconfigurable intelligent surfaces (RIS). Under this context, we explore a system comprising a small base-station (SBS) with limited cache capacity, two users, and one RIS. The SBS transmits the contents from the cache or fetches them from the remote backhaul hub to communicate with users through directional and possibly reflective channels. In this point-to-multipoint connection, non-orthogonal multiple access (NOMA) is applied, improving the capacity of the system. To minimize the outage probability, we first propose a caching policy from entropy perspective, based on which we investigate the beamforming and power allocation problem. The issue, however, is non-convex and involves multi-dimensional optimization. To address this, we introduce an efficient block successive upper-bound minimization algorithm, grounded in Gershgorin’s circle theorem. This algorithm aims to find the globally optimal solution for power allocation and RIS beamformer, considering both the channel condition and content popularity. Numerical studies are performed to verify the effectiveness of the proposed algorithm. Full article
(This article belongs to the Special Issue 5G and 6G Wireless Systems: Challenges, Insights, and Opportunities)
Show Figures

Figure 1

Back to TopTop