Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (158)

Search Parameters:
Keywords = conditional generative adversarial networks (CGANs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 8266 KB  
Article
Research and Application of Conditional Generative Adversarial Network for Predicting Gas Content in Deep Coal Seams
by Lixin Tian, Shuai Sun, Yu Qi and Jingxue Shi
Processes 2025, 13(10), 3215; https://doi.org/10.3390/pr13103215 - 9 Oct 2025
Viewed by 194
Abstract
Accurate assessment of coalbed methane (CBM) content is essential for characterizing subsurface reservoir distribution, guiding well placement, and estimating reserves. Current methods for determining coal seam gas content mainly rely on direct laboratory measurements of core samples or indirect interpretations derived from well [...] Read more.
Accurate assessment of coalbed methane (CBM) content is essential for characterizing subsurface reservoir distribution, guiding well placement, and estimating reserves. Current methods for determining coal seam gas content mainly rely on direct laboratory measurements of core samples or indirect interpretations derived from well log data. However, conventional coring is costly, while log-based approaches often depend on linear empirical formulas and are restricted to near-wellbore regions. In practice, the relationships between elastic properties and gas content are highly complex and nonlinear, leading conventional linear models to produce substantial prediction errors and inadequate performance. This study introduces a novel method for predicting gas content in deep coal seams using a Conditional Generative Adversarial Network (CGAN). First, elastic parameters are obtained through pre-stack inversion. Next, sensitivity analysis and attribute optimization are applied to identify elastic attributes that are most sensitive to gas content. A CGAN is then employed to learn the nonlinear mapping between multiple fluid-sensitive seismic attributes and gas content distribution. By integrating multiple constraints to refine the discriminator and guide generator training, the model achieves accurate gas content prediction directly from seismic data. Applied to a real dataset from a CBM block in the Ordos Basin, China, the proposed CGAN-based method produces predictions that align closely with measured gas content trends at well locations. Validation at blind wells shows an average prediction error of 1.6 m3/t, with 83% of samples exhibiting errors less than 3 m3/t. This research presents an effective and innovative deep learning approach for predicting coalbed methane content. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
Show Figures

Figure 1

27 pages, 5542 KB  
Article
ILF-BDSNet: A Compressed Network for SAR-to-Optical Image Translation Based on Intermediate-Layer Features and Bio-Inspired Dynamic Search
by Yingying Kong and Cheng Xu
Remote Sens. 2025, 17(19), 3351; https://doi.org/10.3390/rs17193351 - 1 Oct 2025
Viewed by 319
Abstract
Synthetic aperture radar (SAR) exhibits all-day and all-weather capabilities, granting it significant application in remote sensing. However, interpreting SAR images requires extensive expertise, making SAR-to-optical remote sensing image translation a crucial research direction. While conditional generative adversarial networks (CGANs) have demonstrated exceptional performance [...] Read more.
Synthetic aperture radar (SAR) exhibits all-day and all-weather capabilities, granting it significant application in remote sensing. However, interpreting SAR images requires extensive expertise, making SAR-to-optical remote sensing image translation a crucial research direction. While conditional generative adversarial networks (CGANs) have demonstrated exceptional performance in image translation tasks, their massive number of parameters pose substantial challenges. Therefore, this paper proposes ILF-BDSNet, a compressed network for SAR-to-optical image translation. Specifically, first, standard convolutions in the feature-transformation module of the teacher network are replaced with depthwise separable convolutions to construct the student network, and a dual-resolution collaborative discriminator based on PatchGAN is proposed. Next, knowledge distillation based on intermediate-layer features and channel pruning via weight sharing are designed to train the student network. Then, the bio-inspired dynamic search of channel configuration (BDSCC) algorithm is proposed to efficiently select the optimal subnet. Meanwhile, the pixel-semantic dual-domain alignment loss function is designed. The feature-matching loss within this function establishes an alignment mechanism based on intermediate-layer features from the discriminator. Extensive experiments demonstrate the superiority of ILF-BDSNet, which significantly reduces number of parameters and computational complexity while still generating high-quality optical images, providing an efficient solution for SAR image translation in resource-constrained environments. Full article
Show Figures

Figure 1

37 pages, 16383 KB  
Article
Generating Realistic Urban Patterns: A Controllable cGAN Approach with Hybrid Loss Optimization
by Amgad Agoub and Martin Kada
ISPRS Int. J. Geo-Inf. 2025, 14(10), 375; https://doi.org/10.3390/ijgi14100375 - 25 Sep 2025
Viewed by 522
Abstract
This study explores the use of conditional Generative Adversarial Networks (cGANs) for simulating urban morphology, a domain where such models remain underutilized but have significant potential to generate realistic and controllable city patterns. To explore this potential, this research includes several contributions: a [...] Read more.
This study explores the use of conditional Generative Adversarial Networks (cGANs) for simulating urban morphology, a domain where such models remain underutilized but have significant potential to generate realistic and controllable city patterns. To explore this potential, this research includes several contributions: a bespoke model architecture that integrates attention mechanisms with visual reasoning through a generalized conditioning layer. A novel mechanism that enables the steering of urban pattern generation through the use of statistical input distributions, the development of a novel and comprehensive training dataset, meticulously derived from open-source geospatial data of Berlin. Our model is trained using a hybrid loss function, combining adversarial, focal and L1 losses to ensure perceptual realism, address challenging fine-grained features, and enforce pixel-level accuracy. Model performance was assessed through a combination of qualitative visual analysis and quantitative evaluation using metrics such as Kullback–Leibler Divergence (KL Divergence), Structural Similarity Index (SSIM), and Dice Coefficient. The proposed approach has demonstrated effectiveness in generating realistic and spatially coherent urban patterns, with promising potential for controllability. In addition to showcasing its strengths, we also highlight the limitations and outline future directions for advancing future work. Full article
(This article belongs to the Special Issue Spatial Data Science and Knowledge Discovery)
Show Figures

Figure 1

16 pages, 5654 KB  
Article
Target Recognition for Ultra-Wideband Radio Fuzes Using 1D-CGAN-Augmented 1D-CNN
by Kaiwei Wu, Shijun Hao, Yanbin Liang, Bing Yang and Zhonghua Huang
Entropy 2025, 27(9), 980; https://doi.org/10.3390/e27090980 - 19 Sep 2025
Viewed by 396
Abstract
In ultra-wideband (UWB) radio fuzes, the signal processing unit’s capability to rapidly and accurately extract target characteristics under battlefield conditions directly determines detonation precision and reliability. Escalating electronic warfare creates complex electromagnetic environments that compromise UWB fuze reliability through false alarms and missed [...] Read more.
In ultra-wideband (UWB) radio fuzes, the signal processing unit’s capability to rapidly and accurately extract target characteristics under battlefield conditions directly determines detonation precision and reliability. Escalating electronic warfare creates complex electromagnetic environments that compromise UWB fuze reliability through false alarms and missed detections. This study pioneers a novel signal processing architecture. The framework integrates: (1) fixed-parameter Least Mean Squares (LMS) front-end filtering for interference suppression; (2) One-Dimensional Convnlutional Neural Network (1D-CNN) recognition trained on One-Dimensional Conditional Generative Adversarial Network (1D-CGAN)-augmented datasets. Validated on test samples, the system achieves 0% false alarm/miss detection rates and 97.66% segment recognition accuracy—representing a 5.32% improvement over the baseline 1D-CNN model trained solely on original data. This breakthrough resolves energy-threshold detection’s critical vulnerability to deliberate jamming while establishing a new technical framework for UWB fuze operation in contested spectra. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

30 pages, 13230 KB  
Article
Harmonization of Gaofen-1/WFV Imagery with the HLS Dataset Using Conditional Generative Adversarial Networks
by Haseeb Ur Rehman, Guanhua Zhou, Franz Pablo Antezana Lopez and Hongzhi Jiang
Remote Sens. 2025, 17(17), 2995; https://doi.org/10.3390/rs17172995 - 28 Aug 2025
Viewed by 541
Abstract
The harmonized multi-sensor satellite data assists users by providing seamless analysis-ready data with enhanced temporal resolution. The Harmonized Landsat Sentinel (HLS) product has gained popularity due to the seamless integration of Landsat OLI and Sentinel-2 MSI, achieving a temporal resolution of 2.8 to [...] Read more.
The harmonized multi-sensor satellite data assists users by providing seamless analysis-ready data with enhanced temporal resolution. The Harmonized Landsat Sentinel (HLS) product has gained popularity due to the seamless integration of Landsat OLI and Sentinel-2 MSI, achieving a temporal resolution of 2.8 to 3.5 days. However, applications that require monitoring intervals of less than three days or cloudy data can limit the usage of HLS data. Gaofen-1 (GF-1) Wide Field of View (WFV) data provides the capacity further to enhance the data availability by harmonization with HLS. In this study, GF-1/WFV data is harmonized with HLS by employing deep learning-based conditional Generative Adversarial Networks (cGANs). The harmonized WFV data with HLS provides an average temporal resolution of 1.5 days (ranging from 1.2 to 1.7 days), whereas the temporal resolution of HLS varies from 2.8 to 3.5 days. This enhanced temporal resolution will benefit applications that require frequent monitoring. Various processes are employed in HLS to achieve seamless products from the Operational Land Imager (OLI) and Multispectral Imager (MSI). This study applies 6S atmospheric correction to obtain GF-1/WFV surface reflectance data, employs MFC cloud masking, resamples the data to 30 m, and performs geographical correction using AROP relative to HLS data, to align preprocessing with HLS workflows. Harmonization is achieved without using BRDF normalization and bandpass adjustment like in the HLS workflows; instead, cGAN learns cross-sensor reflectance mapping by utilizing a U-Net generator and a patchGAN discriminator. The harmonized GF-1/WFV data were compared to the reference HLS data using various quality indices, including SSIM, MBE, and RMSD, across 126 cloud-free validation tiles covering various land covers and seasons. Band-wise scatter plots, histograms, and visual image color quality were compared. All these indices, including the Sobel filter, histograms, and visual comparisons, indicated that the proposed method has effectively reduced the spectral discrepancies between the GF-1/WFV and HLS data. Full article
Show Figures

Figure 1

16 pages, 1076 KB  
Article
A Digital Twin Strategy to Predict Thrombotic Recurrence in Antiphospholipid Syndrome Patients Treated with Direct Oral Anticoagulants vs. Vitamin K Antagonists Using Data from Real-World Populations
by Miguel Ángel Casado-Suela, Juan Torres-Macho, Aida Izquierdo-Martínez, Cristina Lucía Ancos-Aracil, Luis Ferreira-Burguillos, Elena Madroñal-Cerezo, Tamar Talaván-Zañón, Adela Castañeda-Mata, Luis Escobar-Curbelo, Ana Martínez de la Casa-Muñoz, Eva Ruiz-Navío, Ana Bustamante-Fermosel and Anabel Franco-Moreno
J. Clin. Med. 2025, 14(16), 5716; https://doi.org/10.3390/jcm14165716 - 12 Aug 2025
Viewed by 489
Abstract
Background/Objectives: The role of direct oral anticoagulants (DOACs) vs. vitamin K antagonists (VKAs) in preventing recurrent thrombosis in patients with antiphospholipid syndrome (APS) remains uncertain. Using real-world data, we aimed to evaluate the effectiveness and internal validity of a digital twin (DT) approach [...] Read more.
Background/Objectives: The role of direct oral anticoagulants (DOACs) vs. vitamin K antagonists (VKAs) in preventing recurrent thrombosis in patients with antiphospholipid syndrome (APS) remains uncertain. Using real-world data, we aimed to evaluate the effectiveness and internal validity of a digital twin (DT) approach for modeling thrombotic recurrence risk in APS patients treated with DOACs or VKAs. Methods: We conducted a multicenter observational study that included thrombotic APS patients treated with DOACs or VKAs. Clinical data were used to generate DT via conditional generative adversarial networks (CGANs), incorporating a directed acyclic graph (DAG) to preserve causal relationships. Validation metrics included absolute standardized mean differences (ASMD), mean ASMD (MASMD), and Spearman correlation matrices to assess structural fidelity. Treatment effects were estimated in a CGAN-conditioned cohort matched on key covariates. Results: Eighty-nine thrombotic APS patients were included: 70 (78.7%) received VKAs and 19 (21.3%) received DOACs. Thrombotic recurrences occurred in 5 DOAC patients (26.3%) and 17 AVK patients (24.3%). The CGAN-generated synthetic cohort closely mirrored the original data (MASMD = 0.073 ± 0.041), with 85.4% of pairwise correlations differing by <0.1 in absolute value. In the conditioned DT cohort, predicted recurrence was 24.2% for DOACs and 19.9% for VKAs. Recurrence risk increased with antibody burden, reaching 41.3% in triple-positive patients and 46.8% in those with index arterial thrombosis treated with DOACs. Conclusions: DT technology accurately replicated the clinical structure of APS patients, supporting its application for simulating counterfactual scenarios and estimating individualized treatment effects. Full article
(This article belongs to the Special Issue Managements of Venous Thromboembolism)
Show Figures

Graphical abstract

23 pages, 3645 KB  
Article
Color-Guided Mixture-of-Experts Conditional GAN for Realistic Biomedical Image Synthesis in Data-Scarce Diagnostics
by Patrycja Kwiek, Filip Ciepiela and Małgorzata Jakubowska
Electronics 2025, 14(14), 2773; https://doi.org/10.3390/electronics14142773 - 10 Jul 2025
Viewed by 585
Abstract
Background: Limited availability of high-quality labeled biomedical image datasets presents a significant challenge for training deep learning models in medical diagnostics. This study proposes a novel image generation framework combining conditional generative adversarial networks (cGANs) with a Mixture-of-Experts (MoE) architecture and color histogram-aware [...] Read more.
Background: Limited availability of high-quality labeled biomedical image datasets presents a significant challenge for training deep learning models in medical diagnostics. This study proposes a novel image generation framework combining conditional generative adversarial networks (cGANs) with a Mixture-of-Experts (MoE) architecture and color histogram-aware loss functions to enhance synthetic blood cell image quality. Methods: RGB microscopic images from the BloodMNIST dataset (eight blood cell types, resolution 3 × 128 × 128) underwent preprocessing with k-means clustering to extract the dominant colors and UMAP for visualizing class similarity. Spearman correlation-based distance matrices were used to evaluate the discriminative power of each RGB channel. A MoE–cGAN architecture was developed with residual blocks and LeakyReLU activations. Expert generators were conditioned on cell type, and the generator’s loss was augmented with a Wasserstein distance-based term comparing red and green channel histograms, which were found most relevant for class separation. Results: The red and green channels contributed most to class discrimination; the blue channel had minimal impact. The proposed model achieved 0.97 classification accuracy on generated images (ResNet50), with 0.96 precision, 0.97 recall, and a 0.96 F1-score. The best Fréchet Inception Distance (FID) was 52.1. Misclassifications occurred mainly among visually similar cell types. Conclusions: Integrating histogram alignment into the MoE–cGAN training significantly improves the realism and class-specific variability of synthetic images, supporting robust model development under data scarcity in hematological imaging. Full article
Show Figures

Figure 1

33 pages, 19944 KB  
Article
Machine Learning in the Design Decision-Making of Traditional Garden Space Renewal: A Case Study of the Classical Gardens of Jiangnan
by Lina Yan, Liang Zheng, Xingkang Jia, Yi Zhang and Yile Chen
Buildings 2025, 15(14), 2401; https://doi.org/10.3390/buildings15142401 - 9 Jul 2025
Viewed by 813
Abstract
This research takes the Suzhou Gardens, a World Cultural Heritage Site, as the object of study and investigates a rapid scheme generation approach for garden restoration and expansion projects, assisting designers in making scientific decisions. Considering the limitations of current garden design, which [...] Read more.
This research takes the Suzhou Gardens, a World Cultural Heritage Site, as the object of study and investigates a rapid scheme generation approach for garden restoration and expansion projects, assisting designers in making scientific decisions. Considering the limitations of current garden design, which is inefficient and relies on human experience, this study proposes an intelligent generation framework based on a conditional generative adversarial network (CGAN). In constructing the CGAN model, we determine the spatial characteristics of the Suzhou Gardens and, combined with historical floor plan data, train the network. We then design an optimization strategy for the model training process and finally test and verify the generative space scheme. The research results indicate the following: (1) The CGAN model can effectively capture the key elements of the garden space and generate a planar scheme that conforms to the traditional space with an accuracy rate reaching 91.08%. (2) This model can be applied to projects ranging from 200 to 1000 square meters. The generated results can provide multiple scheme comparisons for update decisions, helping managers to efficiently select the optimal solution. (3) Decision-makers can conduct space utilization analyses and evaluations based on the generated results. In conclusion, this study can help decision-makers to efficiently generate and evaluate the feasibility of different design schemes, providing intelligent support for decision-making in urban renewal plans. Full article
Show Figures

Figure 1

20 pages, 4254 KB  
Article
Positional Component-Guided Hangul Font Image Generation via Deep Semantic Segmentation and Adversarial Style Transfer
by Avinash Kumar, Irfanullah Memon, Abdul Sami, Youngwon Jo and Jaeyoung Choi
Electronics 2025, 14(13), 2699; https://doi.org/10.3390/electronics14132699 - 4 Jul 2025
Viewed by 827
Abstract
Automated font generation for complex, compositional scripts like Korean Hangul presents a significant challenge due to the 11,172 characters and their complicated component-based structure. While existing component-based methods for font image generation acknowledge the compositional nature of Hangul, they often fail to explicitly [...] Read more.
Automated font generation for complex, compositional scripts like Korean Hangul presents a significant challenge due to the 11,172 characters and their complicated component-based structure. While existing component-based methods for font image generation acknowledge the compositional nature of Hangul, they often fail to explicitly leverage the crucial positional semantics of its basic elements as initial, middle, and final components, known as Jamo. This oversight can lead to structural inconsistencies and artifacts in the generated glyphs. This paper introduces a novel two-stage framework that directly addresses this gap by imposing a strong, linguistically informed structural principle on the font image generation process. In the first stage, we employ a You Only Look Once version 8 for Segmentation (YOLOv8-Seg) model, a state-of-the-art instance segmentation network, to decompose Hangul characters into their basic components. Notably, this process generates a dataset of position-aware semantic components, categorizing each jamo according to its structural role within the syllabic block. In the second stage, a conditional Generative Adversarial Network (cGAN) is explicitly conditioned on these extracted positional components to perform style transfer with high structural information. The generator learns to synthesize a character’s appearance by referencing the style of the target components while preserving the content structure of a source character. Our model achieves state-of-the-art performance, reducing L1 loss to 0.2991 and improving the Structural Similarity Index (SSIM) to 0.9798, quantitatively outperforming existing methods like MX-Font and CKFont. This position-guided approach demonstrates significant quantitative and qualitative improvements over existing methods in structured script generation, offering enhanced control over glyph structure and a promising approach for generating font images for other complex, structured scripts. Full article
(This article belongs to the Special Issue Applications of Computer Vision, 3rd Edition)
Show Figures

Figure 1

31 pages, 2292 KB  
Article
Symmetric Dual-Phase Framework for APT Attack Detection Based on Multi-Feature-Conditioned GAN and Graph Convolutional Network
by Qi Liu, Yao Dong, Chao Zheng, Hualin Dai, Jiaxing Wang, Liyuan Ning and Qiqi Liang
Symmetry 2025, 17(7), 1026; https://doi.org/10.3390/sym17071026 - 30 Jun 2025
Viewed by 601
Abstract
Advanced persistent threat (APT) attacks present significant challenges to cybersecurity due to their covert nature, high complexity, and ability to operate across multiple temporal and spatial scales. Existing detection techniques often struggle with issues like class imbalance, insufficient feature extraction, and the inability [...] Read more.
Advanced persistent threat (APT) attacks present significant challenges to cybersecurity due to their covert nature, high complexity, and ability to operate across multiple temporal and spatial scales. Existing detection techniques often struggle with issues like class imbalance, insufficient feature extraction, and the inability to capture complex attack dependencies. To address these limitations, we propose a dual-phase framework for APT detection, combining multi-feature-conditioned generative adversarial networks (MF-CGANs) for data reconstruction and a multi-scale convolution and channel attention-enhanced graph convolutional network (MC-GCN) for improved attack detection. The MF-CGAN model generates minority-class samples to resolve the class imbalance problem, while MC-GCN leverages advanced feature extraction and graph convolution to better model the intricate relationships within network traffic data. Experimental results show that the proposed framework achieves significant improvements over baseline models. Specifically, MC-GCN outperforms traditional CNN-based IDS models, with accuracy, precision, recall, and F1-score improvements ranging from 0.47% to 13.41%. The MC-GCN model achieves an accuracy of 99.87%, surpassing CNN (86.46%) and GCN (99.24%), while also exhibiting high precision (99.87%) and recall (99.88%). These results highlight the proposed model’s superior ability to handle class imbalance and capture complex attack behaviors, establishing it as a leading approach for APT detection. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

21 pages, 1107 KB  
Article
Coordinated Scheduling Strategy for Campus Power Grid and Aggregated Electric Vehicles Within the Framework of a Virtual Power Plant
by Xiao Zhou, Cunkai Li, Zhongqi Pan, Tao Liang, Jun Yan, Zhengwei Xu, Xin Wang and Hongbo Zou
Processes 2025, 13(7), 1973; https://doi.org/10.3390/pr13071973 - 23 Jun 2025
Viewed by 720
Abstract
The inherent intermittency and uncertainty of renewable energy generation pose significant challenges to the safe and stable operation of power grids, particularly when power demand does not match renewable energy supply, leading to issues such as wind and solar power curtailment. To effectively [...] Read more.
The inherent intermittency and uncertainty of renewable energy generation pose significant challenges to the safe and stable operation of power grids, particularly when power demand does not match renewable energy supply, leading to issues such as wind and solar power curtailment. To effectively promote the consumption of renewable energy while leveraging electric vehicles (EVs) in virtual power plants (VPPs) as distributed energy storage resources, this paper proposes an ordered scheduling strategy for EVs in campus areas oriented towards renewable energy consumption. Firstly, to address the uncertainty of renewable energy output, this paper uses Conditional Generative Adversarial Network (CGAN) technology to generate a series of typical scenarios. Subsequently, a mathematical model for EV aggregation is established, treating the numerous dispersed EVs within the campus as a collectively controllable resource, laying the foundation for their ordered scheduling. Then, to maximize renewable energy consumption and optimize EV charging scheduling, an improved Particle Swarm Optimization (PSO) algorithm is adopted to solve the problem. Finally, case studies using a real-world testing system demonstrate the feasibility and effectiveness of the proposed method. By introducing a dynamic inertia weight adjustment mechanism and a multi-population cooperative search strategy, the algorithm’s convergence speed and global search capability in solving high-dimensional non-convex optimization problems are significantly improved. Compared with conventional algorithms, the computational efficiency can be increased by up to 54.7%, and economic benefits can be enhanced by 8.6%. Full article
(This article belongs to the Special Issue Applications of Smart Microgrids in Renewable Energy Development)
Show Figures

Figure 1

13 pages, 830 KB  
Article
RegCGAN: Resampling with Regularized CGAN for Imbalanced Big Data Problem
by Liwen Xu and Ximeng Wang
Axioms 2025, 14(7), 485; https://doi.org/10.3390/axioms14070485 - 21 Jun 2025
Viewed by 435
Abstract
We consider the imbalanced data problem involving a new class of resampling-based models for classification. These models are variants of the conditional generative adversarial networks. An entropy regularization approach (RegCGAN) is employed to implement the corresponding imbalanced data learning. Its basic framework is [...] Read more.
We consider the imbalanced data problem involving a new class of resampling-based models for classification. These models are variants of the conditional generative adversarial networks. An entropy regularization approach (RegCGAN) is employed to implement the corresponding imbalanced data learning. Its basic framework is introduced. Theoretical and simulation-based analyses are performed to demonstrate the existence and uniqueness of RegCGAN’s equilibrium point, and RegCGAN has excellent minority class prediction ability. We apply the results to two synthetically constructed and a real imbalanced dataset. Full article
Show Figures

Figure 1

22 pages, 4943 KB  
Article
Towards MR-Only Radiotherapy in Head and Neck: Generation of Synthetic CT from Zero-TE MRI Using Deep Learning
by Souha Aouadi, Mojtaba Barzegar, Alla Al-Sabahi, Tarraf Torfeh, Satheesh Paloor, Mohamed Riyas, Palmira Caparrotti, Rabih Hammoud and Noora Al-Hammadi
Information 2025, 16(6), 477; https://doi.org/10.3390/info16060477 - 6 Jun 2025
Viewed by 2089
Abstract
This study investigates the generation of synthetic CT (sCT) images from zero echo time (ZTE) MRI to support MR-only radiotherapy, which can reduce image registration errors and lower treatment planning costs. Since MRI lacks the electron density data required for accurate dose calculations, [...] Read more.
This study investigates the generation of synthetic CT (sCT) images from zero echo time (ZTE) MRI to support MR-only radiotherapy, which can reduce image registration errors and lower treatment planning costs. Since MRI lacks the electron density data required for accurate dose calculations, generating reliable sCTs is essential. ZTE MRI, offering high bone contrast, was used with two deep learning models: attention deep residual U-Net (ADR-Unet) and derived conditional generative adversarial network (cGAN). Data from 17 head and neck cancer patients were used to train and evaluate the models. ADR-Unet was enhanced with deep residual blocks and attention mechanisms to improve learning and reconstruction quality. Both models were implemented in-house and compared to standard U-Net and Unet++ architectures using image quality metrics, visual inspection, and dosimetric analysis. Volumetric modulated arc therapy (VMAT) planning was performed on both planning CT and generated sCTs. ADR-Unet achieved a mean absolute error of 55.49 HU and a Dice score of 0.86 for bone structures. All the models demonstrated Gamma pass rates above 99.4% and dose deviations within 2–3%, confirming clinical acceptability. These results highlight ADR-Unet and cGAN as promising solutions for accurate sCT generation, enabling effective MR-only radiotherapy. Full article
Show Figures

Figure 1

17 pages, 1082 KB  
Article
FedOPCS: An Optimized Poisoning Countermeasure for Non-IID Federated Learning with Privacy-Preserving Stability
by Fenhua Bai, Yinqi Zhao, Tao Shen, Kai Zeng, Xiaohui Zhang and Chi Zhang
Symmetry 2025, 17(5), 782; https://doi.org/10.3390/sym17050782 - 19 May 2025
Viewed by 753
Abstract
Federated learning (FL), as a distributed machine learning framework, enables multiple participants to jointly train models without sharing data, thereby ensuring data privacy and security. However, FL systems still struggle to escape the typical poisoning threat launched by Byzantine nodes. The current defence [...] Read more.
Federated learning (FL), as a distributed machine learning framework, enables multiple participants to jointly train models without sharing data, thereby ensuring data privacy and security. However, FL systems still struggle to escape the typical poisoning threat launched by Byzantine nodes. The current defence measures almost all rely on the anomaly detection of local gradients in a plaintext state, which not only weakens privacy protection but also allows malicious clients to upload malicious ciphertext gradients once they are encrypted, which thus easily evade existing screenings. At the same time, mainstream aggregation algorithms are generally based on the premise that “each client’s data satisfy an independent and identically distributed (IID)”, which is obviously difficult to achieve in real scenarios where large-scale terminal devices hold their own data. Symmetry in data distribution and model updates across clients is crucial for achieving robust and fair aggregation, yet non-IID data and adversarial attacks disrupt this balance. To address these challenges, we propose FedOPCS, an optimized poisoning countermeasure for non-IID FL algorithms with privacy-preserving stability by introducing three key innovations: Conditional Generative Adversarial Network (CGAN)-based data augmentation with conditional variables to simulate global distribution, a dynamic weight adjustment mechanism with homomorphic encryption, and two-stage anomaly detection combining gradient analysis and model performance evaluation. Extensive experiments on MNIST and CIFAR-10 show that, in the model poisoning and mixed poisoning environments, FedOPCS outperforms the baseline methods by 11.4% and 4.7%, respectively, while maintaining the same efficiency as FedAvg. FedOPCS therefore offers a privacy-preserving, Byzantine-robust, and communication-efficient solution for future heterogeneous FL deployments. Full article
Show Figures

Figure 1

22 pages, 10584 KB  
Article
Assimilation of Moderate-Resolution Imaging Spectroradiometer Level Two Cloud Products for Typhoon Analysis and Prediction
by Haomeng Zhang, Yubao Liu, Yu Qin, Zheng Xiang, Yueqin Shi and Zhaoyang Huo
Remote Sens. 2025, 17(9), 1635; https://doi.org/10.3390/rs17091635 - 5 May 2025
Viewed by 635
Abstract
A novel data assimilation technique is developed to assimilate MODIS (Moderate Resolution Imaging Spectroradiometer) level two (L2) cloud products, including cloud optical thickness (COT), cloud particle effective radius (Re), cloud water path (CWP), and cloud top pressure (CTP), into the Weather Research and [...] Read more.
A novel data assimilation technique is developed to assimilate MODIS (Moderate Resolution Imaging Spectroradiometer) level two (L2) cloud products, including cloud optical thickness (COT), cloud particle effective radius (Re), cloud water path (CWP), and cloud top pressure (CTP), into the Weather Research and Forecast (WRF) model. Its impact on the analysis and forecast of Typhoon Talim in 2023 at its initial developing stage is demonstrated. First, the conditional generative adversarial networks–bidirectional ensemble binned probability fusion (CGAN-BEBPF) model ) is applied to retrieve three-dimensional (3D) CloudSat CPR (cloud profiling radar) equivalent W-band (94 Ghz) radar reflectivity factor for the typhoons Talim and Chaba using the MODIS L2 data. Next, a W-band to S-band radar reflectivity factor mapping algorithm (W2S) is developed based on the collocated measurements of the retrieved W-band radar and ground-based S-band (4 Ghz) radar data for Typhoon Chaba at its landfall time. Then, W2S is utilized to project the MODIS-retrieved 3D W-band radar reflectivity factor of Typhoon Talim to equivalent ground-based S-band reflectivity factors. Finally, data assimilation and forecast experiments are conducted by using the WRF Hydrometeor and Latent Heat Nudging (HLHN) radar data assimilation technique. Verification of the simulation results shows that assimilating the MODIS L2 cloud products dramatically improves the initialization and forecast of the cloud and precipitation fields of Typhoon Talim. In comparison to the experiment without assimilation of the MODIS data, the Threat Score (TS) for general cloud areas and major precipitation areas is increased by 0.17 (from 0.46 to 0.63) and 0.28 (from 0.14 to 0.42), respectively. The fraction skill score (FSS) for the 5 mm precipitation threshold is increased by 0.43. This study provides an unprecedented data assimilation method to initialize 3D cloud and precipitation hydrometeor fields with the MODIS imagery payloads for numerical weather prediction models. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

Back to TopTop