Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = concentric annular heat pipe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2057 KiB  
Article
Corrected Correlation for Turbulent Convective Heat Transfer in Concentric Annular Pipes
by Jinping Xu, Zhiyun Wang and Mo Yang
Energies 2025, 18(14), 3643; https://doi.org/10.3390/en18143643 - 9 Jul 2025
Viewed by 296
Abstract
This paper addresses the errors that arise when calculating the convective heat transfer in concentric annular pipes by using the equivalent diameter and turbulent heat transfer formula for circular pipes. This approach employs numerical simulations to solve the Reynolds-averaged Navier–Stokes equations and uses [...] Read more.
This paper addresses the errors that arise when calculating the convective heat transfer in concentric annular pipes by using the equivalent diameter and turbulent heat transfer formula for circular pipes. This approach employs numerical simulations to solve the Reynolds-averaged Navier–Stokes equations and uses the realizable k–ε turbulence model and a low Reynolds number model near a wall. This study conducts numerical simulations of turbulent convective heat transfer within a concentric annular pipe. The results show that the shear stress on the inner wall surface of the concentric annular pipe and the heat transfer Nusselt number are significantly higher than those on the outer wall surface. At the same Reynolds number, both the entrance length and the peak velocity increase upon increasing the inner-to-outer diameter ratio. A correction factor for the inner-to-outer diameter ratio is proposed to achieve differentiated and accurate predictions for the inner and outer wall surfaces. The results clearly demonstrate the effect of the inner-to-outer diameter ratio on heat transfer. Full article
Show Figures

Figure 1

20 pages, 6074 KiB  
Article
Investigation of Turbulence Characteristics Influenced by Flow Velocity, Roughness, and Eccentricity in Horizontal Annuli Based on Numerical Simulation
by Yanchao Sun, Jialiang Sun, Jie Zhang and Ning Huang
Symmetry 2025, 17(3), 409; https://doi.org/10.3390/sym17030409 - 9 Mar 2025
Cited by 1 | Viewed by 822
Abstract
Annular flow channels, which are distinct from circular pipes, represent a complex flow structure widely applied in fields such as food engineering and petroleum engineering. Discovering the internal flow patterns is conducive to the study of heat and mass transfer laws, thereby playing [...] Read more.
Annular flow channels, which are distinct from circular pipes, represent a complex flow structure widely applied in fields such as food engineering and petroleum engineering. Discovering the internal flow patterns is conducive to the study of heat and mass transfer laws, thereby playing a crucial role in optimizing flow processes and selecting equipment. However, the mechanism underlying the influence of annular turbulent flow on macro-pressure drop remains to be further investigated. This paper focuses on the roughness of both inner and outer pipes, as well as positive and negative eccentricities. Numerical simulation is employed to study the microscopic characteristics of the flow field, and the numerical model is validated through indoor experimental measurements of pressure drop laws. Further numerical simulations are conducted to explore the microscopic variations in the flow field, analyzed from the perspectives of wall shear force and turbulence characteristics. The results indicate that an increase in inner pipe roughness significantly enhances the wall shear force on both the inner and outer pipes, and vice versa. In the concentric case, wall shear force and turbulence characteristics exhibit central symmetry. Eccentricity leads to uneven distributions of velocity, turbulence intensity, and shear force, with such unevenness presenting axial symmetry under both positive and negative eccentricities. Additionally, eccentricity demonstrates turbulence drag reduction characteristics. This study enhances our understanding of the mechanism by which annular turbulent flow influences pressure drop. Furthermore, it offers theoretical backing for the design and optimization of annular space piping, thereby aiding in the enhancement of the performance and stability of associated industrial systems. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

15 pages, 2366 KiB  
Article
Computational Fluid Dynamics Heat Transfer Analysis of Double Pipe Heat Exchanger and Flow Characteristics Using Nanofluid TiO2 with Water
by Abdulaziz S. Alhulaifi
Designs 2024, 8(3), 39; https://doi.org/10.3390/designs8030039 - 30 Apr 2024
Cited by 3 | Viewed by 2785
Abstract
A device called a heat exchanger is used to exchange heat transfer between two fluids with different temperatures. Because of its durability and ability to handle high-pressure application, the concentric double pipe heat exchangers are widely utilized for numerous industrial applications. To conserve [...] Read more.
A device called a heat exchanger is used to exchange heat transfer between two fluids with different temperatures. Because of its durability and ability to handle high-pressure application, the concentric double pipe heat exchangers are widely utilized for numerous industrial applications. To conserve pumping power energy, many researchers were involved in study of the nanoparticles to be embedded in the fluid, which will enrich the fluid thermal conductivity and surface area. This article demonstrates the flow characteristics and convective heat transfer of nanofluids containing 0.2, 0.4 and 0.6 of vol% TiO2 nanoparticles dispersed in water under turbulent conditions, which mainly can be used for cooling nuclear reactors applications. Reynolds numbers varying from 4000 to 18,000 are examined numerically. The convective heat transfer coefficient results of the nanofluid agree well against experimental data, which are slightly more than that of base water at 1.94%. The results of the numerical model showed that the convective heat transfer coefficient of nanofluids will increase when the Reynolds and volume fraction increases. By increasing the temperature of the annular hot water, the heat transfer rate will increase, showing no major impact to the convective heat transfer coefficient of nanofluids. A generalised solution predicting the convective heat transfer coefficient for extensive nanoparticle materials is proposed. The conclusion of the empirical equation is tested among published data and the results are highly congruent, confirming the strength of the gamma equation. Full article
(This article belongs to the Topic Thermal Energy Transfer and Storage)
Show Figures

Figure 1

17 pages, 4361 KiB  
Article
The Forced Convection Analysis of Water Alumina Nanofluid Flow through a 3D Annulus with Rotating Cylinders via κε Turbulence Model
by Marei Saeed Alqarni, Abid Ali Memon, Haris Anwaar, Usman and Taseer Muhammad
Energies 2022, 15(18), 6730; https://doi.org/10.3390/en15186730 - 14 Sep 2022
Cited by 22 | Viewed by 2369
Abstract
We investigated the dynamics of nanofluid and heat transfer in a three-dimensional circular annular using the κε turbulence model and energy equations. The pipe contained two concentric and rotating cylinders with a constant speed in the tangential direction. A heat flux [...] Read more.
We investigated the dynamics of nanofluid and heat transfer in a three-dimensional circular annular using the κε turbulence model and energy equations. The pipe contained two concentric and rotating cylinders with a constant speed in the tangential direction. A heat flux boundary condition was executed at the inner cylinder of the annular. The pipe was settled vertically, and water alumina nanofluid was allowed to enter, with the initial velocity depending on the Reynolds number, ranging from 30,000 to 60,000. The volume fraction of the solid particles was tested from 0.001 to 0.1. The speed of the rotation of the cylinders was tested in the range from 0.5 to 3.5. The simulations were developed using COMSOL Multiphysics 5.6, adopting the finite element procedure for governing equations. The results were validated using the mesh independent study and the average Nusselt number correlations. We found that the average Nusselt number in the middle of the channel decreases linearly with the increase in the volume fraction of the water alumina nanofluid. The novelty of the present work is that various correlations between the average Nusselt number and volume fraction were determined by fixing the Reynolds number and the rotation of the inner cylinder. We also found that fixing the Reynolds number and the volume fraction improves the average Nusselt number at the outlet linearly. In addition, it was stated that the increase in the total mass of the nanofluid would decrease the average temperature at the outer cylinder of the annular. Moreover, the maximum average improvement percentage in the average Nusselt number, which is about 21%, was observed when the inner cylinder rotation was changed from 1.5 to 2.5 m/s. Full article
Show Figures

Figure 1

13 pages, 3687 KiB  
Article
Effects of Heating Temperature on the Isothermal Performance of a Potassium Concentric Annular Heat Pipe
by Hongzhe Zhang, Fang Ye, Hang Guo and Xiaoke Yan
Energies 2022, 15(7), 2367; https://doi.org/10.3390/en15072367 - 24 Mar 2022
Cited by 3 | Viewed by 1967
Abstract
For high-precision thermocouple calibration, the uniformity of the temperature field provided by the metal temperature equalizing block is low, and the structure of the gas-controlled heat pipe is complex. In order to improve the thermocouple calibration equipment, heat pipe technology can be used [...] Read more.
For high-precision thermocouple calibration, the uniformity of the temperature field provided by the metal temperature equalizing block is low, and the structure of the gas-controlled heat pipe is complex. In order to improve the thermocouple calibration equipment, heat pipe technology can be used to provide the stability and uniformity of the temperature field of the equipment. The concentric annular heat pipe (CAHP) is completely placed in the heating furnace to provide a uniform temperature field, and limited studies consider this heating mode for alkali metal CAHPs. Specifically, no information is available on the effect of heating temperatures on the temperature distribution of the internal pipe of potassium CAHP. In this study, a temperature comparison based on potassium CAHP for high-precision thermocouple calibration was manufactured. The temperature stability and temperature uniformity of CAHP were measured, and the effects of heating temperature and heating mode on the isothermal performance in the metering wells of CAHP were studied. The CAHP can provide a very stable and uniform temperature field. Under uniform heating at 400 °C, the maximum temperature difference within 16 cm was 0.174 °C. After adjusting the heating mode, the maximum temperature difference was within 16 cm 0.095 °C. The CAHP can effectively reduce the influence of heating temperature fluctuation on the temperature in the metering well; the maximum temperature change rate of the metering wells affected by the heating furnace temperature was 0.0942 °C/°C. Full article
Show Figures

Figure 1

25 pages, 9592 KiB  
Article
1-D Modeling of Two Phase Flow Process in Concentric Annular Heat Pipe and Experimental Investigation
by Ji-Su Lee, Jae-Hyun Ahn, Heui-Il Chae, Hi-Chan Lee and Seok-Ho Rhi
Processes 2022, 10(3), 493; https://doi.org/10.3390/pr10030493 - 1 Mar 2022
Cited by 3 | Viewed by 5582
Abstract
As the heat dissipation of smart devices increases, cutting-edge cooling solutions are becoming increasingly important. The heat pipe is an efficient device that boosts heat transfer and is recommended to reduce thermal management power. In this study, a concentric annular heat pipe (CAHP) [...] Read more.
As the heat dissipation of smart devices increases, cutting-edge cooling solutions are becoming increasingly important. The heat pipe is an efficient device that boosts heat transfer and is recommended to reduce thermal management power. In this study, a concentric annular heat pipe (CAHP) with distilled water as a working fluid is proposed to enhance heat transfer, and experiments and one-dimensional analysis were carried out to predict thermal characteristics and evaluate performance. The CAHP was 90 mm in length, 62 mm in inner diameter, 70 mm in outer diameter, and 0.4 mm in thickness. At the outer surface of the internal CAHP, a two-layer screen mesh wick (500 mesh, Stainless Steel 304) that is 0.34 mm in layer thickness was installed. A ceramic heater (20 mm × 20 mm) was attached to the middle of the outer surface, and the hollow region with 48 fins was cooled by an electric fan. The experiment was carried out with variations in the heat load, the filling ratio of the working fluid, the pitch angle, the roll angle, and the airflow speed, and the one-dimensional analysis was modeled by AMESIM. The experimental results showed that the best thermal resistance of the CAHP was 3.74 °C/W with a supplied heat of 20 W, a pitch angle of −15°, and a Vair of 3 m/s. In addition, the CAHP’s 1-D simulation model using AMESIM was verified through the experimental results. However, although the modeling results according to the inclination angle could not be reflected due to the difficulty of implementing multiple orientation structures in the one-dimensional simulation model, the simulation results were found to be almost consistent with the experimental results. Case studies were conducted to understand the various characteristics of the CAHP using the model, and the optimal volume fraction, the porosity, and the number of layers of the wicks were determined to be 10, 0.345, and 2, respectively. Full article
(This article belongs to the Special Issue Enhancement of Heat Transfer and Fluid Flow)
Show Figures

Figure 1

18 pages, 5890 KiB  
Article
Numerical Study of Heat Transfer Intensification in a Circular Tube Using a Thin, Radiation-Absorbing Insert. Part 1: Thermo-Hydraulic Characteristics
by Piotr Bogusław Jasiński
Energies 2021, 14(15), 4596; https://doi.org/10.3390/en14154596 - 29 Jul 2021
Cited by 2 | Viewed by 2237
Abstract
The presented paper, which is the first of two parts, shows the results of numerical investigations of a heat exchanger channel in the form of a cylindrical tube with a thin insert. The insert, placed concentrically in the pipe, uses the phenomenon of [...] Read more.
The presented paper, which is the first of two parts, shows the results of numerical investigations of a heat exchanger channel in the form of a cylindrical tube with a thin insert. The insert, placed concentrically in the pipe, uses the phenomenon of thermal radiation absorption to intensify the heat transfer between the pipe wall and the gas. Eight geometric configurations of the insert size were numerically investigated using CFD software, varying its diameter from 20% to 90% of the pipe diameter and obtaining the thermal-flow characteristics for each case. The tests were conducted for a range of numbers Re = 5000–100,000 and a constant temperature difference between the channel wall and the average gas temperature of ∆T = 100 °C. The results show that the highest increase in the Nu number was observed for the inserts with diameters of 0.3 and 0.4 of the channel diameter, while the highest flow resistance was noted for the inserts with diameters of 0.6–0.7 of the channel diameter. The f/fs(Re) and Nu/Nus(Re) ratios are shown on graphs indicating how much the flow resistance and heat transfer increased compared to the pipe without an insert. Two methods of calculating the Nu number are also presented and analysed. In the first one, the average fluid temperature of the entire pipe volume was used to calculate the Nu number, and in the second, only the average fluid temperature of the annular portion formed by the insert was used. The second one gives much larger Nu/Nus ratio values, reaching up to 8–9 for small Re numbers. Full article
(This article belongs to the Special Issue Computational Heat Transfer and Fluid Mechanics)
Show Figures

Figure 1

23 pages, 11043 KiB  
Article
Thermal and Flow Simulation of Concentric Annular Heat Pipe with Symmetric or Asymmetric Condenser
by Eui-Hyeok Song, Kye-Bock Lee and Seok-Ho Rhi
Energies 2021, 14(11), 3333; https://doi.org/10.3390/en14113333 - 6 Jun 2021
Cited by 6 | Viewed by 3883
Abstract
The current research work describes the flow and thermal analysis inside the circular flow region of an annular heat pipe with a working fluid, using computational fluid dynamics (CFD) simulation. A two-phase flow involving simultaneous evaporation and condensation phenomena in a concentric annular [...] Read more.
The current research work describes the flow and thermal analysis inside the circular flow region of an annular heat pipe with a working fluid, using computational fluid dynamics (CFD) simulation. A two-phase flow involving simultaneous evaporation and condensation phenomena in a concentric annular heat pipe (CAHP) is modeled. To simulate the interaction between these phases, the volume of fluid (VOF) technique is used. The temperature profile predicted using computational fluid dynamics (CFD) in the CAHP was compared with previously obtained experimental results. Two-dimensional and three-dimensional simulations were carried out, in order to verify the usefulness of 3D modeling. Our goal was to compute the flow characteristics, temperature distribution, and velocity field inside the CAHP. Depending on the shape of the annular heat pipe, the thermal performance can be improved through the optimal design of components, such as the inner width of the annular heat pipe, the location of the condensation part, and the amount of working fluid. To evaluate the thermal performance of a CAHP, a numerical simulation of a 50 mm long stainless steel CAHP (1.1 and 1.3 in diameter ratio and fixed inner tube diameter (78 mm)) was done, which was identical to the experimental system. In the simulated analysis results, similar results to the experiment were obtained, and it was confirmed that the heat dissipation was higher than that of the existing conventional heat pipe, where the heat transfer performance was improved when the asymmetric area was cooled. Moreover, the simulation results were validated using the experimental results. The 3-D simulation shows good agreement with the experimental results to a reasonable degree. Full article
(This article belongs to the Collection Advances in Heat Transfer Enhancement)
Show Figures

Graphical abstract

15 pages, 35600 KiB  
Article
Thermal and Flow Characteristics in a Concentric Annular Heat Pipe Heat Sink
by Eui-Hyeok Song, Kye-Bock Lee, Seok-Ho Rhi and Kibum Kim
Energies 2020, 13(20), 5282; https://doi.org/10.3390/en13205282 - 12 Oct 2020
Cited by 10 | Viewed by 2826
Abstract
A concentric annular heat pipe heat sink (AHPHS) was proposed and fabricated to investigate its thermal behavior. The present AHPHS consists of two concentric pipes of different diameters, which create vacuumed annular vapor space. The main advantage of the AHPHS as a heat [...] Read more.
A concentric annular heat pipe heat sink (AHPHS) was proposed and fabricated to investigate its thermal behavior. The present AHPHS consists of two concentric pipes of different diameters, which create vacuumed annular vapor space. The main advantage of the AHPHS as a heat sink is that it can largely increase the heat transfer area for cooling compared to conventional heat pipes. In the current AHPHS, condensation takes place along the whole annular space from the certain heating area as the evaporator section. Therefore, the whole inner space of the AHPHS except the heating area can be considered the condenser. In the present study, AHPHSs of different diameters were fabricated and studied experimentally. Basic studies were carried out with a 50 mm-long stainless steel AHPHS with diameter ratios of 1.1 and 1.3 and the same inner tube diameter of 76 mm. Several experimental parameters such as volume fractions of 10–70%, different air flow velocity, flow configurations, and 10–50 W heat inputs were investigated to find their effects on the thermal performance of an AHPHS. Experimental results show that a 10% filling ratio was found to be the optimum charged amount in terms of temperature profile with a low heater surface temperature and water as the working fluid. For the methanol, a 40% filling ratio shows better temperature behavior. Internal working behavior shows not only circular motion but also 3-D flow characteristics moving in axial and circular directions simultaneously. Full article
(This article belongs to the Special Issue Heat Transfer Characteristics of Heat Pipes)
Show Figures

Graphical abstract

15 pages, 3573 KiB  
Article
Magnetohydrodynamic and Nanoparticle Effects in Vertical Annular Subcooled Flow Boiling
by Mohammad Yaghoub Abdollahzadeh Jamalabadi
Symmetry 2019, 11(6), 810; https://doi.org/10.3390/sym11060810 - 19 Jun 2019
Cited by 3 | Viewed by 3237
Abstract
The control of heated fluid is of interest in many fields of engineering, such as boiler and heat exchanger design. The broken symmetry of a thermo-physical system within a multi-sized media could be used to control its physical characteristics. In the current study, [...] Read more.
The control of heated fluid is of interest in many fields of engineering, such as boiler and heat exchanger design. The broken symmetry of a thermo-physical system within a multi-sized media could be used to control its physical characteristics. In the current study, the effects of magnetohydrodynamic (MHD) forces and nanoparticles on boiling in a subcooled region inside an upright annular pipe have been investigated. The effect of magneto hydrodynamics on the base fluid (liquid water) was measured, and different nanoparticle concentrations were employed as the working fluids. The magnetic field perpendicular to fluid flow is used to control the liquid water and vapor water phase motion. The governing equation of motion and conservation of energy in both phases is solved with the aid of correlation for vaporization and condensation of nucleate boiling on the wall. The results of the mathematical simulation are in suitable agreement with the results of previous experiments. As associated with pure water, the results with dilute Nanofluids presented that the application of nanoparticles homogenized the temperature difference through the fluid and vapor phase. The results show that the MHD controller is a powerful method to decrease the amplitude of the vaporization and resulted in oscillations. Full article
(This article belongs to the Special Issue Future and Prospects in Non-Newtonian and Nanofluids)
Show Figures

Figure 1

Back to TopTop