Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = complementary metal-oxide semiconductor/charge-coupled device (CMOS/CCD) image sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 3495 KiB  
Review
Optical Image Sensors for Smart Analytical Chemiluminescence Biosensors
by Reza Abbasi, Xinyue Hu, Alain Zhang, Isabelle Dummer and Sebastian Wachsmann-Hogiu
Bioengineering 2024, 11(9), 912; https://doi.org/10.3390/bioengineering11090912 - 12 Sep 2024
Cited by 6 | Viewed by 3296
Abstract
Optical biosensors have emerged as a powerful tool in analytical biochemistry, offering high sensitivity and specificity in the detection of various biomolecules. This article explores the advancements in the integration of optical biosensors with microfluidic technologies, creating lab-on-a-chip (LOC) platforms that enable rapid, [...] Read more.
Optical biosensors have emerged as a powerful tool in analytical biochemistry, offering high sensitivity and specificity in the detection of various biomolecules. This article explores the advancements in the integration of optical biosensors with microfluidic technologies, creating lab-on-a-chip (LOC) platforms that enable rapid, efficient, and miniaturized analysis at the point of need. These LOC platforms leverage optical phenomena such as chemiluminescence and electrochemiluminescence to achieve real-time detection and quantification of analytes, making them ideal for applications in medical diagnostics, environmental monitoring, and food safety. Various optical detectors used for detecting chemiluminescence are reviewed, including single-point detectors such as photomultiplier tubes (PMT) and avalanche photodiodes (APD), and pixelated detectors such as charge-coupled devices (CCD) and complementary metal–oxide–semiconductor (CMOS) sensors. A significant advancement discussed in this review is the integration of optical biosensors with pixelated image sensors, particularly CMOS image sensors. These sensors provide numerous advantages over traditional single-point detectors, including high-resolution imaging, spatially resolved measurements, and the ability to simultaneously detect multiple analytes. Their compact size, low power consumption, and cost-effectiveness further enhance their suitability for portable and point-of-care diagnostic devices. In the future, the integration of machine learning algorithms with these technologies promises to enhance data analysis and interpretation, driving the development of more sophisticated, efficient, and accessible diagnostic tools for diverse applications. Full article
Show Figures

Figure 1

19 pages, 2810 KiB  
Review
Application of Image Sensors to Detect and Locate Electrical Discharges: A Review
by Jordi-Roger Riba
Sensors 2022, 22(15), 5886; https://doi.org/10.3390/s22155886 - 6 Aug 2022
Cited by 26 | Viewed by 5558
Abstract
Today, there are many attempts to introduce the Internet of Things (IoT) in high-voltage systems, where partial discharges are a focus of concern since they degrade the insulation. The idea is to detect such discharges at a very early stage so that corrective [...] Read more.
Today, there are many attempts to introduce the Internet of Things (IoT) in high-voltage systems, where partial discharges are a focus of concern since they degrade the insulation. The idea is to detect such discharges at a very early stage so that corrective actions can be taken before major damage is produced. Electronic image sensors are traditionally based on charge-coupled devices (CCDs) and, next, on complementary metal oxide semiconductor (CMOS) devices. This paper performs a review and analysis of state-of-the-art image sensors for detecting, locating, and quantifying partial discharges in insulation systems and, in particular, corona discharges since it is an area with an important potential for expansion due to the important consequences of discharges and the complexity of their detection. The paper also discusses the recent progress, as well as the research needs and the challenges to be faced, in applying image sensors in this area. Although many of the cited research works focused on high-voltage applications, partial discharges can also occur in medium- and low-voltage applications. Thus, the potential applications that could potentially benefit from the introduction of image sensors to detect electrical discharges include power substations, buried power cables, overhead power lines, and automotive applications, among others. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2022)
Show Figures

Figure 1

25 pages, 15087 KiB  
Article
Lookup Table Approach for Radiometric Calibration of Miniaturized Multispectral Camera Mounted on an Unmanned Aerial Vehicle
by Hongtao Cao, Xingfa Gu, Xiangqin Wei, Tao Yu and Haifeng Zhang
Remote Sens. 2020, 12(24), 4012; https://doi.org/10.3390/rs12244012 - 8 Dec 2020
Cited by 27 | Viewed by 4679
Abstract
Over recent years, miniaturized multispectral cameras mounted on an unmanned aerial vehicle (UAV) have been widely used in remote sensing. Most of these cameras are integrated with low-cost, image-frame complementary metal-oxide semiconductor (CMOS) sensors. Compared to the typical charged coupled device (CCD) sensors [...] Read more.
Over recent years, miniaturized multispectral cameras mounted on an unmanned aerial vehicle (UAV) have been widely used in remote sensing. Most of these cameras are integrated with low-cost, image-frame complementary metal-oxide semiconductor (CMOS) sensors. Compared to the typical charged coupled device (CCD) sensors or linear array sensors, consumer-grade CMOS sensors have the disadvantages of low responsivity, higher noise, and non-uniformity of pixels, which make it difficult to accurately detect optical radiation. Therefore, comprehensive radiometric calibration is crucial for quantitative remote sensing and comparison of temporal data using such sensors. In this study, we examine three procedures of radiometric calibration: relative radiometric calibration, normalization, and absolute radiometric calibration. The complex features of dark current noise, vignetting effect, and non-uniformity of detector response are analyzed. Further, appropriate procedures are used to derive the lookup table (LUT) of correction factors for these features. Subsequently, an absolute calibration coefficient based on an empirical model is used to convert the digital number (DN) of images to radiance unit. Due to the radiometric calibration, the DNs of targets observed in the image are more consistent than before calibration. Compared to the method provided by the manufacturer of the sensor, LUTs facilitate much better radiometric calibration. The root mean square error (RMSE) of measured reflectance in each band (475, 560, 668, 717, and 840 nm) are 2.30%, 2.87%, 3.66%, 3.98%, and 4.70% respectively. Full article
(This article belongs to the Special Issue Correction of Remotely Sensed Imagery)
Show Figures

Graphical abstract

14 pages, 6348 KiB  
Article
On the Optical Response of Tellurium Activated Zinc Selenide ZnSe:Te Single Crystal
by Dionysios Linardatos, Anastasios Konstantinidis, Ioannis Valais, Konstantinos Ninos, Nektarios Kalyvas, Athanasios Bakas, Ioannis Kandarakis, George Fountos and Christos Michail
Crystals 2020, 10(11), 961; https://doi.org/10.3390/cryst10110961 - 22 Oct 2020
Cited by 15 | Viewed by 3749
Abstract
In this study, the light output of a zinc selenide activated with tellurium (ZnSe: Te) single crystal was measured for X-ray radiography applications. A cubic crystal (10 × 10 × 10 mm) was irradiated using X-rays with tube voltages from 50 to 130 [...] Read more.
In this study, the light output of a zinc selenide activated with tellurium (ZnSe: Te) single crystal was measured for X-ray radiography applications. A cubic crystal (10 × 10 × 10 mm) was irradiated using X-rays with tube voltages from 50 to 130 kV. The resulting energy absorption efficiency, detective quantum efficiency, and absolute luminescence efficiency were compared to published data for equally sized GSO: Ce (gadolinium orthosilicate) and BGO (bismuth germanium oxide) crystals. The emitted light was examined to estimate the spectral compatibility with widely used optical sensors. Energy absorption efficiency and detective quantum efficiency of ZnSe: Te and BGO were found to be similar, within the X-ray energies in question. Light output of all three crystals showed a tendency to increase with increasing X-ray tube voltage, but ZnSe: Te stood at least 2 EU higher than the others. ZnSe: Te can be coupled effectively with certain complementary metal–oxide–semiconductors (CMOS), photocathodes, and charge-coupled-devices (CCD), as the effective luminescence efficiency results assert. These properties render the material suitable for various imaging applications, dual-energy arrays included. Full article
Show Figures

Figure 1

8 pages, 2463 KiB  
Article
Optical Design of Compact Space Autonomous Docking Instrument with CMOS Image Sensor and All Radiation Resistant Lens Elements
by Sheng-Feng Lin and Cheng-Huan Chen
Appl. Sci. 2020, 10(15), 5302; https://doi.org/10.3390/app10155302 - 31 Jul 2020
Cited by 4 | Viewed by 4187
Abstract
Built-in autonomous stereo vision devices play a critical role in the autonomous docking instruments of space vehicles. Traditional stereo cameras for space autonomous docking use charge-coupled device (CCD) image sensors, and it is difficult for the overall size to be reduced due to [...] Read more.
Built-in autonomous stereo vision devices play a critical role in the autonomous docking instruments of space vehicles. Traditional stereo cameras for space autonomous docking use charge-coupled device (CCD) image sensors, and it is difficult for the overall size to be reduced due to the size of the CCD. In addition, only the few outermost elements of the camera lens use radiation-resistant optical glass material. In this paper, a complementary metal–oxide semiconductor (CMOS) device is used as the image sensor, and radiation-resistant optical glass material is introduced to all lens elements in order to make a compact and highly reliable space grade instrument. Despite the limited available material, a fixed focus module with 7 lens elements and overall length of 42 mm has been achieved, while meeting all the required performance demands for the final vision-guided docking process. Full article
(This article belongs to the Special Issue Joint Special Issue With OPTIC 2019)
Show Figures

Figure 1

15 pages, 4630 KiB  
Article
Up-Conversion Sensing of 2D Spatially-Modulated Infrared Information-Carrying Beams with Si-Based Cameras
by Adrián J. Torregrosa, Emir Karamehmedović, Haroldo Maestre, María Luisa Rico and Juan Capmany
Sensors 2020, 20(12), 3610; https://doi.org/10.3390/s20123610 - 26 Jun 2020
Cited by 5 | Viewed by 4342
Abstract
Up-conversion sensing based on optical heterodyning of an IR (infrared) image with a local oscillator laser wave in a nonlinear optical sum-frequency mixing (SFM) process is a practical solution to circumvent some limitations of IR image sensors in terms of signal-to-noise ratio, speed, [...] Read more.
Up-conversion sensing based on optical heterodyning of an IR (infrared) image with a local oscillator laser wave in a nonlinear optical sum-frequency mixing (SFM) process is a practical solution to circumvent some limitations of IR image sensors in terms of signal-to-noise ratio, speed, resolution, or cooling needs in some demanding applications. In this way, the spectral content of an IR image can become spectrally shifted to the visible/near infrared (VIS/NWIR) and then detected with silicon focal plane arrayed sensors (Si-FPA), such as CCD/CMOS (charge-coupled and complementary metal-oxide-semiconductor devices). This work is an extension of a previous study where we recently introduced this technique in the context of optical communications, in particular in FSOC (free-space optical communications). Herein, we present an image up-conversion system based on a 1064 nm Nd3+: YVO4 solid-state laser with a KTP (potassium titanyl phosphate) nonlinear crystal located intra-cavity where a laser beam at 1550 nm 2D spatially-modulated with a binary Quick Response (QR) code is mixed, giving an up-converted code image at 631 nm that is detected with an Si-based camera. The underlying technology allows for the extension of other IR spectral allocations, construction of compact receivers at low cost, and provides a natural way for increased protection against eavesdropping. Full article
Show Figures

Figure 1

10 pages, 3297 KiB  
Article
CCD Multi-Ion Image Sensor with Four 128 × 128 Pixels Array
by Toshiaki Hattori, Fumihiro Dasai, Hikaru Sato, Ryo Kato and Kazuaki Sawada
Sensors 2019, 19(7), 1582; https://doi.org/10.3390/s19071582 - 1 Apr 2019
Cited by 6 | Viewed by 4605
Abstract
A semiconductor array pH image sensor consisting of four separated blocks was fabricated using charged coupled device (CCD) and complementary metal oxide semiconductor (CMOS) technologies. The sensing surface of one of the four blocks was Si3N4 and this block responded [...] Read more.
A semiconductor array pH image sensor consisting of four separated blocks was fabricated using charged coupled device (CCD) and complementary metal oxide semiconductor (CMOS) technologies. The sensing surface of one of the four blocks was Si3N4 and this block responded to H+. The surfaces of the other three blocks were respectively covered with cation sensitive membranes, which were separately printed with plasticized poly (vinyl chloride) solutions including Na+, K+, and Ca2+ ionophores by using an ink-jet printing method. In addition, each block of the image sensor with 128 × 128 pixels could have a calibration curve generated in each independent measurement condition. The present sensor could measure the concentration image of four kinds of ions (H+, K+, Na +, Ca2+) simultaneously at 8.3 frames per second (fps) in separated regions on a chip. Full article
Show Figures

Figure 1

17 pages, 7754 KiB  
Article
Parameter Estimation of Signal-Dependent Random Noise in CMOS/CCD Image Sensor Based on Numerical Characteristic of Mixed Poisson Noise Samples
by Yu Zhang, Guangyi Wang and Jiangtao Xu
Sensors 2018, 18(7), 2276; https://doi.org/10.3390/s18072276 - 13 Jul 2018
Cited by 19 | Viewed by 4169
Abstract
Parameter estimation of Poisson-Gaussian signal-dependent random noise in the complementary metal-oxide semiconductor/charge-coupled device image sensor is a significant step in eliminating noise. The existing estimation algorithms, which are based on finding homogeneous regions, acquire the pair of the variances of noise and the [...] Read more.
Parameter estimation of Poisson-Gaussian signal-dependent random noise in the complementary metal-oxide semiconductor/charge-coupled device image sensor is a significant step in eliminating noise. The existing estimation algorithms, which are based on finding homogeneous regions, acquire the pair of the variances of noise and the intensities of every homogeneous region to fit the linear or piecewise linear curve and ascertain the noise parameters accordingly. In contrast to the existing algorithms, in this study, the Poisson noise samples of all homogeneous regions in every block image are pieced together to constitute a larger sample following the mixed Poisson noise distribution; then, the mean and variance of the mixed Poisson noise sample are deduced. Next, the mapping function among the noise parameters to be estimated—variance of Poisson-Gaussian noise and that of Gaussian noise corresponding to the stitched region in every block image—is constructed. Finally, the unbiased estimations of noise parameters are calculated from the mapping functions of all the image blocks. The experimental results confirm that the proposed method can obtain lower mean absolute error values of estimated noise parameters than the conventional ones. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

9 pages, 7067 KiB  
Article
A Real-Time Ultraviolet Radiation Imaging System Using an Organic Photoconductive Image Sensor
by Toru Okino, Seiji Yamahira, Shota Yamada, Yutaka Hirose, Akihiro Odagawa, Yoshihisa Kato and Tsuyoshi Tanaka
Sensors 2018, 18(1), 314; https://doi.org/10.3390/s18010314 - 22 Jan 2018
Cited by 15 | Viewed by 10340
Abstract
We have developed a real time ultraviolet (UV) imaging system that can visualize both invisible UV light and a visible (VIS) background scene in an outdoor environment. As a UV/VIS image sensor, an organic photoconductive film (OPF) imager is employed. The OPF has [...] Read more.
We have developed a real time ultraviolet (UV) imaging system that can visualize both invisible UV light and a visible (VIS) background scene in an outdoor environment. As a UV/VIS image sensor, an organic photoconductive film (OPF) imager is employed. The OPF has an intrinsically higher sensitivity in the UV wavelength region than those of conventional consumer Complementary Metal Oxide Semiconductor (CMOS) image sensors (CIS) or Charge Coupled Devices (CCD). As particular examples, imaging of hydrogen flame and of corona discharge is demonstrated. UV images overlapped on background scenes are simply made by on-board background subtraction. The system is capable of imaging weaker UV signals by four orders of magnitude than that of VIS background. It is applicable not only to future hydrogen supply stations but also to other UV/VIS monitor systems requiring UV sensitivity under strong visible radiation environment such as power supply substations. Full article
(This article belongs to the Special Issue Special Issue on the 2017 International Image Sensor Workshop (IISW))
Show Figures

Figure 1

15 pages, 4246 KiB  
Article
Per-Pixel Coded Exposure for High-Speed and High-Resolution Imaging Using a Digital Micromirror Device Camera
by Wei Feng, Fumin Zhang, Xinghua Qu and Shiwei Zheng
Sensors 2016, 16(3), 331; https://doi.org/10.3390/s16030331 - 4 Mar 2016
Cited by 20 | Viewed by 8299
Abstract
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of [...] Read more.
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop