Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (736)

Search Parameters:
Keywords = community energy planning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1414 KiB  
Review
Systems Thinking for Climate Change and Clean Energy
by Hassan Qudrat-Ullah
Energies 2025, 18(15), 4200; https://doi.org/10.3390/en18154200 - 7 Aug 2025
Abstract
Addressing climate change and advancing clean energy transitions demand holistic approaches that capture complex, interconnected system behaviors. This review focuses on the application of causal loop diagrams (CLDs) as a core systems-thinking methodology to understand and manage dynamic feedback within environmental, social, and [...] Read more.
Addressing climate change and advancing clean energy transitions demand holistic approaches that capture complex, interconnected system behaviors. This review focuses on the application of causal loop diagrams (CLDs) as a core systems-thinking methodology to understand and manage dynamic feedback within environmental, social, and technological domains. CLDs visually map the reinforcing and balancing loops that drive climate risks, clean energy adoption, and sustainable development, offering intuitive insights into system structure and behavior. Through a synthesis of empirical studies and case examples, this paper demonstrates how CLDs help identify leverage points in renewable energy policy, carbon management, and ecosystem resilience. Despite their strengths in simplifying complexity and enhancing stakeholder communication, challenges remain—including data gaps, model validation, and the integration of diverse knowledge systems. The review also examines recent innovations that improve CLD effectiveness, such as hybrid modeling approaches and digital tools that enhance transparency and decision support. By emphasizing CLDs’ unique capacity to reveal feedback mechanisms critical for climate action and energy planning, this study provides actionable recommendations for researchers, policymakers, and practitioners seeking to leverage systems thinking for transformative, sustainable solutions. Full article
(This article belongs to the Special Issue Clean and Efficient Use of Energy: 3rd Edition)
Show Figures

Figure 1

21 pages, 826 KiB  
Article
Socio-Economic and Environmental Trade-Offs of Sustainable Energy Transition in Kentucky
by Sydney Oluoch, Nirmal Pandit and Cecelia Harner
Sustainability 2025, 17(15), 7133; https://doi.org/10.3390/su17157133 - 6 Aug 2025
Abstract
A just and sustainable energy transition in historically coal-dependent regions like Kentucky requires more than the adoption of new technologies and market-based solutions. This study uses a stated preferences approach to evaluate public support for various attributes of energy transition programs, revealing broad [...] Read more.
A just and sustainable energy transition in historically coal-dependent regions like Kentucky requires more than the adoption of new technologies and market-based solutions. This study uses a stated preferences approach to evaluate public support for various attributes of energy transition programs, revealing broad backing for moving away from coal, as indicated by a negative willingness to pay (WTP) for the status quo (–USD 4.63). Key findings show strong bipartisan support for solar energy, with Democrats showing the highest WTP at USD 8.29, followed closely by Independents/Others at USD 8.22, and Republicans at USD 8.08. Wind energy also garnered support, particularly among Republicans (USD 4.04), who may view it as more industry-compatible and less ideologically polarizing. Job creation was a dominant priority across political affiliations, especially for Independents (USD 9.07), indicating a preference for tangible, near-term economic benefits. Similarly, preserving cultural values tied to coal received support among Independents/Others (USD 4.98), emphasizing the importance of place-based identity in shaping preferences. In contrast, social support programs (e.g., job retraining) and certain post-mining land uses (e.g., recreation and conservation) were less favored, possibly due to their abstract nature, delayed benefits, and political framing. Findings from Kentucky offer insights for other coal-reliant states like Wyoming, West Virginia, Pennsylvania, Indiana, and Illinois. Ultimately, equitable transitions must integrate local voices, address cultural and economic realities, and ensure community-driven planning and investment. Full article
(This article belongs to the Special Issue Energy, Environmental Policy and Sustainable Development)
31 pages, 6551 KiB  
Article
Optimization Study of the Electrical Microgrid for a Hybrid PV–Wind–Diesel–Storage System in an Island Environment
by Fahad Maoulida, Kassim Mohamed Aboudou, Rabah Djedjig and Mohammed El Ganaoui
Solar 2025, 5(3), 39; https://doi.org/10.3390/solar5030039 - 4 Aug 2025
Viewed by 311
Abstract
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity [...] Read more.
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity to a rural village in Grande Comore. The proposed system integrates photovoltaic (PV) panels, wind turbines, a diesel generator, and battery storage. Detailed modeling and simulation were conducted using HOMER Energy, accompanied by a sensitivity analysis on solar irradiance, wind speed, and diesel price. The results indicate that the optimal configuration consists solely of PV and battery storage, meeting 100% of the annual electricity demand with a competitive levelized cost of energy (LCOE) of 0.563 USD/kWh and zero greenhouse gas emissions. Solar PV contributes over 99% of the total energy production, while wind and diesel components remain unused under optimal conditions. Furthermore, the system generates a substantial energy surplus of 63.7%, which could be leveraged for community applications such as water pumping, public lighting, or future system expansion. This study highlights the technical viability, economic competitiveness, and environmental sustainability of 100% solar microgrids for non-interconnected island territories. The approach provides a practical and replicable decision-support framework for decentralized energy planning in remote and vulnerable regions. Full article
Show Figures

Figure 1

28 pages, 14684 KiB  
Article
SDT4Solar: A Spatial Digital Twin Framework for Scalable Rooftop PV Planning in Urban Environments
by Athenee Teofilo, Qian (Chayn) Sun and Marco Amati
Smart Cities 2025, 8(4), 128; https://doi.org/10.3390/smartcities8040128 - 4 Aug 2025
Viewed by 176
Abstract
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. [...] Read more.
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. However, their application in solar energy planning remains underexplored. This study introduces SDT4Solar, a novel SDT-based framework designed to integrate city-scale rooftop solar planning through 3D building semantisation, solar modelling, and a unified geospatial database. By leveraging advanced spatial modelling and Internet of Things (IoT) technologies, SDT4Solar facilitates high-resolution 3D solar potential simulations, improving the accuracy and equity of solar infrastructure deployment. We demonstrate the framework through a proof-of-concept implementation in Ballarat East, Victoria, Australia, structured in four key stages: (a) spatial representation of the urban built environment, (b) integration of multi-source datasets into a unified geospatial database, (c) rooftop solar potential modelling using 3D simulation tools, and (d) dynamic visualization and analysis in a testbed environment. Results highlight SDT4Solar’s effectiveness in enabling data-driven, spatially explicit decision-making for rooftop PV deployment. This work advances the role of SDTs in urban energy transitions, demonstrating their potential to optimise efficiency in solar infrastructure planning. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

11 pages, 379 KiB  
Article
Preoperative Suffering of Patients with Central Neuropathic Pain and Their Expectations Prior to Motor Cortex Stimulation: A Qualitative Study
by Erkan Kurt, Richard Witkam, Robert van Dongen, Kris Vissers, Yvonne Engels and Dylan Henssen
Healthcare 2025, 13(15), 1900; https://doi.org/10.3390/healthcare13151900 - 4 Aug 2025
Viewed by 115
Abstract
Objective: This study aimed to improve the understanding of the lives of patients with chronic neuropathic pain planned for invasive motor cortex stimulation (iMCS) and assess their expectations towards this intervention and its impact. Methods: Semi-structured face-to-face interviews were conducted until [...] Read more.
Objective: This study aimed to improve the understanding of the lives of patients with chronic neuropathic pain planned for invasive motor cortex stimulation (iMCS) and assess their expectations towards this intervention and its impact. Methods: Semi-structured face-to-face interviews were conducted until saturation of data was reached. Patients were recruited from one university medical center in the Netherlands. All interviews were audio-recorded, transcribed verbatim, and subjected to thematic analysis using iterative and inductive coding by two researchers independently. Results: Fifteen patients were included (11 females; mean age 63 ± 9.4 yrs). Analysis of the coded interviews revealed seven themes: (1) the consequences of living with chronic neuropathic pain; (2) loss of autonomy and performing usual activities; (3) balancing energy and mood; (4) intimacy; (5) feeling understood and accepted; (6) meaning of life; and (7) the expectations of iMCS treatment. Conclusions: This is the first qualitative study that describes the suffering of patients with chronic neuropathic pain, and their expectations prior to invasive brain stimulation. Significant themes in the lives of patients with chronic pain have been brought to light. The findings strengthen communication between physicians, caregivers, and patients. Practice Implications: The insights gathered from the interviews create a structured framework for comprehending the values and expectations of patients living with central pain and reveal the impact of symptoms due to the central pain. This knowledge improves the communication between physicians and caregivers on one side and the patient on the other side. Furthermore, the framework enhances the capacity for shared decision-making, particularly in managing expectations related to iMCS. Full article
(This article belongs to the Special Issue Pain Management Practice and Research)
Show Figures

Figure 1

24 pages, 3172 KiB  
Article
A DDPG-LSTM Framework for Optimizing UAV-Enabled Integrated Sensing and Communication
by Xuan-Toan Dang, Joon-Soo Eom, Binh-Minh Vu and Oh-Soon Shin
Drones 2025, 9(8), 548; https://doi.org/10.3390/drones9080548 - 1 Aug 2025
Viewed by 345
Abstract
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users [...] Read more.
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users (UEs) and perform radar-based sensing tasks. A key challenge stems from the target position uncertainty due to movement, which impairs matched filtering and beamforming, thereby degrading both uplink reception and sensing performance. Moreover, UAV energy consumption associated with mobility must be considered to ensure energy-efficient operation. We aim to jointly maximize radar sensing accuracy and minimize UAV movement energy over multiple time steps, while maintaining reliable uplink communications. To address this multi-objective optimization, we propose a deep reinforcement learning (DRL) framework based on a long short-term memory (LSTM)-enhanced deep deterministic policy gradient (DDPG) network. By leveraging historical target trajectory data, the model improves prediction of target positions, enhancing sensing accuracy. The proposed DRL-based approach enables joint optimization of UAV trajectory and uplink power control over time. Extensive simulations validate that our method significantly improves communication quality and sensing performance, while ensuring energy-efficient UAV operation. Comparative results further confirm the model’s adaptability and robustness in dynamic environments, outperforming existing UAV trajectory planning and resource allocation benchmarks. Full article
Show Figures

Figure 1

24 pages, 13362 KiB  
Article
Optimizing the Spatial Configuration of Renewable Energy Communities: A Model Applied in the RECMOP Project
by Michele Grimaldi and Alessandra Marra
Sustainability 2025, 17(15), 6744; https://doi.org/10.3390/su17156744 - 24 Jul 2025
Viewed by 237
Abstract
Renewable Energy Communities (RECs) are voluntary coalitions of citizens, small and medium-sized enterprises and local authorities, which cooperate to share locally produced renewable energy, providing environmental, economic, and social benefits rather than profits. Despite a favorable European and Italian regulatory framework, their development [...] Read more.
Renewable Energy Communities (RECs) are voluntary coalitions of citizens, small and medium-sized enterprises and local authorities, which cooperate to share locally produced renewable energy, providing environmental, economic, and social benefits rather than profits. Despite a favorable European and Italian regulatory framework, their development is still limited in the Member States. To this end, this paper proposes a methodology to identify optimal spatial configurations of RECs, based on proximity criteria and maximization of energy self-sufficiency. This result is achieved through the mapping of the demand, expressive of the energy consumption of residential buildings; the suitable areas for installing photovoltaic panels on the roofs of existing buildings; the supply; the supply–demand balance, from which it is possible to identify Positive Energy Districts (PEDs) and Negative Energy Districts (NEDs). Through an iterative process, the optimal configuration is then sought, aggregating only PEDs and NEDs that meet the chosen criteria. This method is applied to the case study of the Avellino Province in the Campania Region (Italy). The maps obtained allow local authorities to inform citizens about the areas where it is convenient to aggregate with their neighbors in a REC to have benefits in terms of energy self-sufficiency, savings on bills or incentives at the local level, including those deriving from urban plans. The latter can encourage private initiative in order to speed up the RECs’ deployment. The presented model is being implemented in the framework of an ongoing research and development project, titled Renewable Energy Communities Monitoring, Optimization, and Planning (RECMOP). Full article
(This article belongs to the Special Issue Urban Vulnerability and Resilience)
Show Figures

Figure 1

26 pages, 2204 KiB  
Article
A Qualitative Methodology for Identifying Governance Challenges and Advancements in Positive Energy District Labs
by Silvia Soutullo, Oscar Seco, María Nuria Sánchez, Ricardo Lima, Fabio Maria Montagnino, Gloria Pignatta, Ghazal Etminan, Viktor Bukovszki, Touraj Ashrafian, Maria Beatrice Andreucci and Daniele Vettorato
Urban Sci. 2025, 9(8), 288; https://doi.org/10.3390/urbansci9080288 - 23 Jul 2025
Viewed by 389
Abstract
Governance challenges, success factors, and stakeholder dynamics are central to the implementation of Positive Energy District (PED) Labs, which aim to develop energy-positive and sustainable urban areas. In this paper, a qualitative analysis combining expert surveys, participatory workshops with practitioners from the COST [...] Read more.
Governance challenges, success factors, and stakeholder dynamics are central to the implementation of Positive Energy District (PED) Labs, which aim to develop energy-positive and sustainable urban areas. In this paper, a qualitative analysis combining expert surveys, participatory workshops with practitioners from the COST Action PED-EU-NET network, and comparative case studies across Europe identifies key barriers, drivers, and stakeholder roles throughout the implementation process. Findings reveal that fragmented regulations, social inertia, and limited financial mechanisms are the main barriers to PED Lab development, while climate change mitigation goals, strong local networks, and supportive policy frameworks are critical drivers. The analysis maps stakeholder engagement across six development phases, showing how leadership shifts between governments, industry, planners, and local communities. PED Labs require intangible assets such as inclusive governance frameworks, education, and trust-building in the early phases, while tangible infrastructures become more relevant in later stages. The conclusions emphasize that robust, inclusive governance is not merely supportive but a key driver of PED Lab success. Adaptive planning, participatory decision-making, and digital coordination tools are essential for overcoming systemic barriers. Scaling PED Labs effectively requires regulatory harmonization and the integration of social and technological innovation to accelerate the transition toward energy-positive, climate-resilient cities. Full article
(This article belongs to the Collection Urban Agenda)
Show Figures

Figure 1

23 pages, 3885 KiB  
Article
Sustainable Urban Branding: The Nexus Between Digital Marketing and Smart Cities
by Maria Briana, Roido Mitoula and Eleni Sardianou
Urban Sci. 2025, 9(7), 278; https://doi.org/10.3390/urbansci9070278 - 17 Jul 2025
Viewed by 434
Abstract
Smart cities leverage digital marketing to promote sustainability and build a distinctive global branding. Despite its growing significance, the role digital marketing in smart city development remains underexplored. This study aims to fill this gap by employing bibliometric analysis of 1908 articles indexed [...] Read more.
Smart cities leverage digital marketing to promote sustainability and build a distinctive global branding. Despite its growing significance, the role digital marketing in smart city development remains underexplored. This study aims to fill this gap by employing bibliometric analysis of 1908 articles indexed in the Scopus database (2000–2024), using the Bibliometrix R-Studio (version 1.4.1743) and VOSviewer (version 1.6.20). The analysis reveals two thematic clusters: (1) “Digital Innovation and Sustainability”, which emphasizes technologies such as artificial intelligence (AI), the Internet of Things (IoT), and big data for energy efficiency and green urban development; and (2) “Governance and Policy”, which highlights digital marketing’s role in enabling participatory governance, citizen engagement, and inclusive urban policies. Findings underscore that digital marketing is not only a strategic communication channel but also a driver of sustainable urban transformation. By synthesizing insights from urban planning, technology, and sustainability, this paper provides a novel perspective on the intersection of digital marketing and smart cities. The results provide valuable guidance for policymakers, city planners, and researchers to harness digital marketing in promoting sustainability and further develop the smart city concept. Full article
Show Figures

Figure 1

22 pages, 76473 KiB  
Article
Modeling Renewable Energy Feed-In Dynamics in a German Metropolitan Region
by Sebastian Bottler and Christian Weindl
Processes 2025, 13(7), 2270; https://doi.org/10.3390/pr13072270 - 16 Jul 2025
Viewed by 259
Abstract
This study presents community-specific modeling approaches for simulating power injection from photovoltaic and wind energy systems in a German metropolitan region. Developed within the EMN_SIM project and based on openly accessible datasets, the methods are broadly transferable across Germany. For PV, a cluster-based [...] Read more.
This study presents community-specific modeling approaches for simulating power injection from photovoltaic and wind energy systems in a German metropolitan region. Developed within the EMN_SIM project and based on openly accessible datasets, the methods are broadly transferable across Germany. For PV, a cluster-based model groups systems by geographic and technical characteristics, using real weather data to reduce computational effort. Validation against measured specific yields shows strong agreement, confirming energetic accuracy. The wind model operates on a per-turbine basis, integrating technical specifications, land use, and high-resolution wind data. Energetic validation indicates good consistency with Bavarian reference values, while power-based comparisons with selected turbines show reasonable correlation, subject to expected limitations in wind data resolution. The resulting high-resolution generation profiles reveal spatial and temporal patterns valuable for grid planning and targeted policy design. While further validation with additional measurement data could enhance model precision, the current results already offer a robust foundation for urban energy system analyses and future grid integration studies. Full article
(This article belongs to the Special Issue Recent Advances in Energy and Dynamical Systems)
Show Figures

Figure 1

34 pages, 924 KiB  
Systematic Review
Smart Microgrid Management and Optimization: A Systematic Review Towards the Proposal of Smart Management Models
by Paul Arévalo, Dario Benavides, Danny Ochoa-Correa, Alberto Ríos, David Torres and Carlos W. Villanueva-Machado
Algorithms 2025, 18(7), 429; https://doi.org/10.3390/a18070429 - 11 Jul 2025
Cited by 1 | Viewed by 582
Abstract
The increasing integration of renewable energy sources (RES) in power systems presents challenges related to variability, stability, and efficiency, particularly in smart microgrids. This systematic review, following the PRISMA 2020 methodology, analyzed 66 studies focused on advanced energy storage systems, intelligent control strategies, [...] Read more.
The increasing integration of renewable energy sources (RES) in power systems presents challenges related to variability, stability, and efficiency, particularly in smart microgrids. This systematic review, following the PRISMA 2020 methodology, analyzed 66 studies focused on advanced energy storage systems, intelligent control strategies, and optimization techniques. Hybrid storage solutions combining battery systems, hydrogen technologies, and pumped hydro storage were identified as effective approaches to mitigate RES intermittency and balance short- and long-term energy demands. The transition from centralized to distributed control architectures, supported by predictive analytics, digital twins, and AI-based forecasting, has improved operational planning and system monitoring. However, challenges remain regarding interoperability, data privacy, cybersecurity, and the limited availability of high-quality data for AI model training. Economic analyses show that while initial investments are high, long-term operational savings and improved resilience justify the adoption of advanced microgrid solutions when supported by appropriate policies and financial mechanisms. Future research should address the standardization of communication protocols, development of explainable AI models, and creation of sustainable business models to enhance resilience, efficiency, and scalability. These efforts are necessary to accelerate the deployment of decentralized, low-carbon energy systems capable of meeting future energy demands under increasingly complex operational conditions. Full article
(This article belongs to the Special Issue Algorithms for Smart Cities (2nd Edition))
Show Figures

Figure 1

15 pages, 12820 KiB  
Article
MCDM-Based Analysis of Site Suitability for Renewable Energy Community Projects in the Gargano District
by Rosa Agliata, Filippo Busato and Andrea Presciutti
Sustainability 2025, 17(14), 6376; https://doi.org/10.3390/su17146376 - 11 Jul 2025
Viewed by 573
Abstract
The increasing urgency of the energy transition, particularly in ecologically sensitive regions, demands spatially informed planning tools to guide renewable energy development. This study presents a Multi-Criteria Decision-Making (MCDM) approach to assess the suitability of the Gargano district in southern Italy for the [...] Read more.
The increasing urgency of the energy transition, particularly in ecologically sensitive regions, demands spatially informed planning tools to guide renewable energy development. This study presents a Multi-Criteria Decision-Making (MCDM) approach to assess the suitability of the Gargano district in southern Italy for the implementation of Renewable Energy Communities. The analysis combines expert-based weighting and the Weighted Linear Combination method to evaluate seven key criteria grouped into environmental, socioeconomic, and technical dimensions. The resulting suitability scores, calculated at the municipal scale, highlight spatial disparities across the district, revealing that areas with the highest potential for Renewable Energy Community (REC) deployment are largely situated at the boundaries of the Gargano National Park. These zones benefit from stronger infrastructure, higher energy demand, and fewer environmental constraints, particularly with regard to wind energy initiatives. Conversely, municipalities within the park exhibit lower suitability, constrained by strict landscape regulations and lower population density. The findings provide valuable insights for regional planners and policymakers, supporting the adoption of targeted, environmentally compatible strategies for the advancement of citizen-led renewable energy initiatives in complex territorial contexts. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

23 pages, 12145 KiB  
Article
Spatial Optimization of Bioenergy Production by Introducing a Cooperative Manure Management System in Bangladesh
by Zinat Mahal and Helmut Yabar
Resources 2025, 14(7), 111; https://doi.org/10.3390/resources14070111 - 10 Jul 2025
Viewed by 479
Abstract
This study anticipates cooperative manure management as a process for generating bioenergy from livestock manure, thereby reducing greenhouse gas (GHG) emissions in Bangladesh. Therefore, this study’s main objective was to identify clusters for cooperative society development and optimize suitable locations for biogas plant [...] Read more.
This study anticipates cooperative manure management as a process for generating bioenergy from livestock manure, thereby reducing greenhouse gas (GHG) emissions in Bangladesh. Therefore, this study’s main objective was to identify clusters for cooperative society development and optimize suitable locations for biogas plant establishment within a cooperative system. Scenarios were explored based on manure types using cluster and network analyses of geographic information systems (GIS). The study observed 13 clusters, which have the potential to produce 6045 million m3 of biogas that can be converted to 9068.64 GWh of electricity yearly. Biogas plants additionally produced 5491.04 kilotons of biofertilizer by reducing GHG emissions estimated to be 10.16 million tons of CO2eq in 2024. This study also optimized 10, 6, and 8 optimum locations for biogas plants according to the scenarios. To implement the findings, this study recommended a coordinated action plan based on the circular economy, which helps to obtain both environmental and economic benefits for a cooperative society. These cooperatives can be implemented for renewable energy production from livestock manure at the community level for sustainable energy generation in Bangladesh. Full article
Show Figures

Figure 1

41 pages, 1749 KiB  
Article
The Integrated Energy Community Performance Index (IECPI): A Multidimensional Tool for Evaluating Energy Communities
by Georgios D. Lamprousis and Spyridon K. Golfinopoulos
Urban Sci. 2025, 9(7), 264; https://doi.org/10.3390/urbansci9070264 - 8 Jul 2025
Viewed by 406
Abstract
This paper presents the Integrated Energy Community Performance Index (IECPI), a novel multi-criteria evaluation framework designed to assess the systemic performance of energy communities (ECs) across environmental, technological, social, and economic/institutional dimensions. Although ECs are increasingly recognized as pivotal actors in the decentralized [...] Read more.
This paper presents the Integrated Energy Community Performance Index (IECPI), a novel multi-criteria evaluation framework designed to assess the systemic performance of energy communities (ECs) across environmental, technological, social, and economic/institutional dimensions. Although ECs are increasingly recognized as pivotal actors in the decentralized energy transition, the absence of integrated assessment tools continues to hinder comparability, strategic planning, and long-term monitoring. The IECPI addresses this critical gap by structuring performance evaluation around nine normalized indicators, with their respective weights empirically derived from an influence matrix calibrated using interdependencies identified in 60 documented case studies. The IECPI integrates both objective and subjective metrics, capturing measurable outcomes alongside governance structures and contextual factors. The results reveal significant disparities in the performance of energy communities, allowing for the identification of five strategic typologies: Technologically Driven, Environmentally Oriented, Socially Embedded, Balanced Performance, and Structurally Fragile. The IECPI facilitates benchmarking, targeted policymaking, and cross-case learning while aligning with international frameworks such as SDG 7, EMAS, and principles of inclusive governance. As a scalable and transferable model, it provides a robust foundation for evidence-based planning, the evaluation of community resilience, and sustainability-oriented decision-making within distributed energy systems. Full article
Show Figures

Figure 1

23 pages, 546 KiB  
Article
Environmental and Social Dimensions of Energy Transformation Using Geothermal Energy
by Michał Kaczmarczyk and Anna Sowiżdżał
Energies 2025, 18(13), 3565; https://doi.org/10.3390/en18133565 - 7 Jul 2025
Viewed by 404
Abstract
The use of geothermal energy is gaining strategic importance in the context of sustainable development and the decarbonisation of local energy systems. As a stable and low-emission renewable energy source, geothermal energy offers tangible environmental and social benefits, including improved air quality, reduced [...] Read more.
The use of geothermal energy is gaining strategic importance in the context of sustainable development and the decarbonisation of local energy systems. As a stable and low-emission renewable energy source, geothermal energy offers tangible environmental and social benefits, including improved air quality, reduced greenhouse gas emissions, and enhanced energy independence. This article presents a comprehensive overview of the social dimensions of geothermal energy deployment in Poland, with a particular focus on environmental impacts, public acceptance, and participatory governance. Based on a Polish geothermal district heating system example, the paper demonstrates that geothermal projects can significantly reduce local pollution and support low-carbon economic transitions. The study includes a comparative assessment of avoided emissions, a critical discussion of potential social barriers, and SWOT and PESTEL analyses identifying systemic enablers and constraints. The authors argue that for geothermal energy to fulfil its sustainability potential, it must be supported by inclusive planning, transparent communication, and a holistic policy framework integrating environmental, technological, and social criteria. Full article
Show Figures

Figure 1

Back to TopTop