Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (180)

Search Parameters:
Keywords = commercial software packages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 22821 KiB  
Article
Geometric Calibration of Thermal Infrared Cameras: A Comparative Analysis for Photogrammetric Data Fusion
by Neil Sutherland, Stuart Marsh, Fabio Remondino, Giulio Perda, Paul Bryan and Jon Mills
Metrology 2025, 5(3), 43; https://doi.org/10.3390/metrology5030043 - 8 Jul 2025
Viewed by 452
Abstract
The determination of precise and reliable interior (IO) and relative (RO) orientation parameters for thermal infrared (TIR) cameras is critical for their subsequent use in photogrammetric processes. Although 2D calibration boards have become the predominant approach for TIR geometric calibration, these targets are [...] Read more.
The determination of precise and reliable interior (IO) and relative (RO) orientation parameters for thermal infrared (TIR) cameras is critical for their subsequent use in photogrammetric processes. Although 2D calibration boards have become the predominant approach for TIR geometric calibration, these targets are susceptible to projective coupling and often introduce error through manual construction methods, necessitating the development of 3D targets tailored to TIR geometric calibration. Therefore, this paper evaluates TIR geometric calibration results obtained from 2D board and 3D field calibration approaches, documenting the construction, observation, and calculation of IO and RO parameters. This includes a comparative analysis of values derived from three popular commercial software packages commonly used for geometric calibration: MathWorks’ MATLAB, Agisoft Metashape, and Photometrix’s Australis. Furthermore, to assess the validity of derived parameters, two InfraRed Thermography 3D-Data Fusion (IRT-3DDF) methods are developed to model historic building façades and medieval frescoes. The results demonstrate the success of the proposed 3D field calibration targets for the calculation of both IO and RO parameters tailored to photogrammetric data fusion. Additionally, a novel combined TIR-RGB bundle block adjustment approach demonstrates the success of applying ‘out-of-the-box’ deep-learning neural networks for multi-modal image matching and thermal modelling. Considerations for the development of TIR geometric calibration approaches and the evolution of proposed IRT-3DDF methods are provided for future work. Full article
Show Figures

Figure 1

25 pages, 6368 KiB  
Article
Development of a Thermal Infrared Network for Volcanic and Environmental Monitoring: Hardware Design and Data Analysis Software Code
by Fabio Sansivero, Giuseppe Vilardo and Ciro Buonocunto
Sensors 2025, 25(13), 4141; https://doi.org/10.3390/s25134141 - 2 Jul 2025
Viewed by 297
Abstract
Thermal infrared (TIR) ground observations are a well-established method for investigating surface temperature variations in thermally anomalous areas. However, commercially available technical solutions are currently limited, often offering proprietary products with minimal customization options for establishing a permanent TIR monitoring network. This work [...] Read more.
Thermal infrared (TIR) ground observations are a well-established method for investigating surface temperature variations in thermally anomalous areas. However, commercially available technical solutions are currently limited, often offering proprietary products with minimal customization options for establishing a permanent TIR monitoring network. This work presents the comprehensive development of a thermal infrared monitoring network, detailing everything from the hardware schematics of the remote monitoring station (RMS) to the code for the final data processing software. The procedures implemented in the RMS for managing TIR sensor operations, acquiring environmental data, and transmitting data remotely are thoroughly discussed, along with the technical solutions adopted. The processing of TIR imagery is carried out using ASIRA (Automated System of InfraRed Analysis), a free software package, now developed for GNU Octave. ASIRA performs quality filtering and co-registration, and applies various seasonal correction methodologies to extract time series of deseasoned surface temperatures, estimate heat fluxes, and track variations in thermally anomalous areas. Processed outputs include binary, Excel, and CSV formats, with interactive HTML plots for visualization. The system’s effectiveness has been validated in active volcanic areas of southern Italy, demonstrating high reliability in detecting anomalous thermal behavior and distinguishing endogenous geophysical processes. The aim of this work is to enable readers to easily replicate and deploy this open-source, low-cost system for the continuous, automated thermal monitoring of active volcanic and geothermal areas and environmental pollution, thereby supporting hazard assessment and scientific research. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Thermography and Sensing Technologies)
Show Figures

Figure 1

8 pages, 1252 KiB  
Proceeding Paper
Investigation of an Open Loop Resonator for Crack Detection
by Adithya Krishna Menon, C. B. Abhinav, Sreedevi K. Menon and M. P. Hariprasad
Eng. Proc. 2025, 93(1), 6; https://doi.org/10.3390/engproc2025093006 - 1 Jul 2025
Viewed by 288
Abstract
Structural Health Monitoring (SHM) of composite systems is challenging due to multiple factors unique to composites. Early detection of any defects in composites is essential to ensure structural integrity and prevent catastrophic failure. In this work, a square Open Loop Resonator (OLR) sensor [...] Read more.
Structural Health Monitoring (SHM) of composite systems is challenging due to multiple factors unique to composites. Early detection of any defects in composites is essential to ensure structural integrity and prevent catastrophic failure. In this work, a square Open Loop Resonator (OLR) sensor is proposed for the evaluation of cracks in composite structures. Radio frequency characteristics of the newly designed sensors are analyzed, and their efficiency is studied with respect to various crack sizes and orientations. For the present study, early detection of the crack is focused, and cracking is considered to have occurred in the ground plane of the sensor. A band-pass resonator centered at 2.5 GHz is selected for the study. Structural and HFSS simulations are carried out using commercially available software packages. The proposed sensor is found to be effective in early detection of the cracks and is a viable choice for structural health monitoring applications. Full article
Show Figures

Figure 1

18 pages, 7499 KiB  
Article
Biplanar Nulling Coil System for OPM-MEG Using Printed Circuit Boards
by Mainak Jas, John Kamataris, Teppei Matsubara, Chunling Dong, Gabriel Motta, Abbas Sohrabpour, Seppo P. Ahlfors, Matti Hämäläinen, Yoshio Okada and Padmavathi Sundaram
Sensors 2025, 25(9), 2759; https://doi.org/10.3390/s25092759 - 27 Apr 2025
Viewed by 687
Abstract
Optically pumped magnetometers (OPMs) are a promising magnetoencephalography (MEG) technology for the non-invasive measurement of human electrophysiological signals. Prior work developed biplanar background field-nulling coils necessary for OPM operation, but these were expensive to produce and required tedious error-prone manual winding of >1 [...] Read more.
Optically pumped magnetometers (OPMs) are a promising magnetoencephalography (MEG) technology for the non-invasive measurement of human electrophysiological signals. Prior work developed biplanar background field-nulling coils necessary for OPM operation, but these were expensive to produce and required tedious error-prone manual winding of >1 km of copper wire. Here, we developed a precise and reproducible manufacturing process by fabricating these coils on two-layer printed circuit boards (PCBs). Building on open-source software (bfieldtools), we developed a pipeline to determine the optimal current loops of 1.5 × 1.5 m2 biplanar nulling coils, connected these loops into a continuous conducting path across PCB layers, and printed them as pairs of 1.5 × 0.75 m2 PCBs, which were soldered and mounted on an aluminum frame. Our coils achieved efficiencies of 1.3–7.1 nT/mA, similar to or higher than previous designs. We reduced the largest background field component from 21 to 2 nT, enabling OPMs in a lightly shielded room to record somatosensory evoked fields (SEFs) comparable to SQUID-MEG. Our coil system is cheaper than commercial alternatives and is available as an open-source package opmcoils, thus enabling more affordable background field nulling for OPM-MEG and realizing its potential as an accessible sensor technology for human neuroscience. Full article
(This article belongs to the Special Issue Biomedical Imaging, Sensing and Signal Processing)
Show Figures

Figure 1

20 pages, 17704 KiB  
Article
Soft Actor-Critic Reinforcement Learning Improves Distillation Column Internals Design Optimization
by Dhan Lord B. Fortela, Holden Broussard, Renee Ward, Carly Broussard, Ashley P. Mikolajczyk, Magdy A. Bayoumi and Mark E. Zappi
ChemEngineering 2025, 9(2), 34; https://doi.org/10.3390/chemengineering9020034 - 18 Mar 2025
Viewed by 899
Abstract
Amid the advancements in computer-based chemical process modeling and simulation packages used in commercial applications aimed at accelerating chemical process design and analysis, there are still certain tasks in design optimization, such as distillation column internals design, that become bottlenecks due to inherent [...] Read more.
Amid the advancements in computer-based chemical process modeling and simulation packages used in commercial applications aimed at accelerating chemical process design and analysis, there are still certain tasks in design optimization, such as distillation column internals design, that become bottlenecks due to inherent limitations in such software packages. This work demonstrates the use of soft actor-critic (SAC) reinforcement learning (RL) in automating the task of determining the optimal design of trayed multistage distillation columns. The design environment was created using the AspenPlus® software (version 12, Aspen Technology Inc., Bedford, Massachusetts, USA) with its RadFrac module for the required rigorous modeling of the column internals. The RL computational work was achieved by developing a Python package that allows interfacing with AspenPlus® and by implementing in OpenAI’s Gymnasium module (version 1.0.0, OpenAI Inc., San Francisco, California, USA) the learning space for the state and action variables. The results evidently show that (1) SAC RL works as an automation approach for the design of distillation column internals, (2) the reward scheme in the SAC model significantly affects SAC performance, (3) column diameter is a significant constraint in achieving column internals design specifications in flooding, and (4) SAC hyperparameters have varying effects on SAC performance. SAC RL can be implemented as a one-shot learning model that can significantly improve the design of multistage distillation column internals by automating the optimization process. Full article
(This article belongs to the Special Issue New Advances in Chemical Engineering)
Show Figures

Figure 1

19 pages, 3547 KiB  
Article
Slope Stability Analysis Considering Degradation of Soil Properties Induced by Intermittent Rainfall
by Minghao Wang and Liang Li
Water 2025, 17(6), 814; https://doi.org/10.3390/w17060814 - 12 Mar 2025
Cited by 2 | Viewed by 1136
Abstract
This paper aims to emphasize the importance of considering the degradation of soil properties induced by intermittent rainfall infiltration in the slope stability analysis of unsaturated soils. A simplified linear degradation model and an exponential degradation model, which are characterized by degradation rate [...] Read more.
This paper aims to emphasize the importance of considering the degradation of soil properties induced by intermittent rainfall infiltration in the slope stability analysis of unsaturated soils. A simplified linear degradation model and an exponential degradation model, which are characterized by degradation rate and maximum degradation degree, are used to determine the degradation coefficient at specific time steps within the intermittent rainfall. The proposed simplified linear degradation model is implemented through the commercial software package, Geo-studio 2018, specifically the Seep/w and Slope/w modules. The incorporation of soil degradation into the slope stability analysis is justified via comparisons against an example on the Geo-studio website. It is found that the number of sub-rainfalls exerts a significant influence on the minimum Factor of Safety (FoS) of the unsaturated soil slope stability, whereas the effect of rainfall intervals on the minimum FoS at the end of each sub-rainfall is trivial. The degradation of soil properties induced by intermittent rainfall infiltration can be properly simulated by the proposed simplified linear and nonlinear degradation models. It must be noted that decision making on early warnings can be different even for moderate rainfall with and without consideration of the degradation of soil properties. Full article
Show Figures

Figure 1

34 pages, 2580 KiB  
Article
Bayesian Estimation of Generalized Log-Linear Poisson Item Response Models for Fluency Scores Using brms and Stan
by Nils Myszkowski and Martin Storme
J. Intell. 2025, 13(3), 26; https://doi.org/10.3390/jintelligence13030026 - 23 Feb 2025
Viewed by 1183
Abstract
Divergent thinking tests are popular instruments to measure a person’s creativity. They often involve scoring fluency, which refers to the count of ideas generated in response to a prompt. The two-parameter Poisson counts model (2PPCM), a generalization of the Rasch Poisson counts model [...] Read more.
Divergent thinking tests are popular instruments to measure a person’s creativity. They often involve scoring fluency, which refers to the count of ideas generated in response to a prompt. The two-parameter Poisson counts model (2PPCM), a generalization of the Rasch Poisson counts model (RPCM) that includes discrimination parameters, has been proposed as a useful approach to analyze fluency scores in creativity tasks, but its estimation was presented in the context of generalized structural equation modeling (GSEM) commercial software (e.g., Mplus). Here, we show how the 2PPCM (and RPCM) can be estimated in a Bayesian multilevel regression framework and interpreted using the R package brms, which provides an interface for the Stan programming language. We illustrate this using an example dataset, which contains fluency scores for three tasks and 202 participants. We discuss model specification, estimation, convergence, fit and comparisons. Furthermore, we provide instructions on plotting item response functions, comparing models, calculating overdispersion and reliability, as well as extracting factor scores. Full article
(This article belongs to the Special Issue Analysis of a Divergent Thinking Dataset)
Show Figures

Figure 1

23 pages, 5375 KiB  
Article
Power Flow Analysis of Ring AC/DC Hybrid Network with Multiple Power Electronic Transformers Based on Hybrid Alternating Iteration Power Flow Algorithm
by Zhen Zheng, Chenhong Huang, Xiaoli Ma, Wenwen Chen, Yinan Huang, Min Wang and Dongqian Pan
Processes 2025, 13(1), 7; https://doi.org/10.3390/pr13010007 - 24 Dec 2024
Cited by 2 | Viewed by 940
Abstract
AC/DC hybrid distribution networks with power electronic transformers (PETs) as distribution hubs are in line with the future development direction of the AC/DC hybrid distribution network. Unlike traditional transformers, power electronic transformers introduce new node types and may transform the network topology from [...] Read more.
AC/DC hybrid distribution networks with power electronic transformers (PETs) as distribution hubs are in line with the future development direction of the AC/DC hybrid distribution network. Unlike traditional transformers, power electronic transformers introduce new node types and may transform the network topology from radial to ring structures. These changes render traditional power flow calculation methods inadequate for achieving satisfactory results in AC/DC hybrid networks. In addition, existing commercial power flow calculation software packages are mainly based on the traditional AC power flow calculation method, which have limited support for the DC network. Especially when the DC network is coupled with the AC network, it is difficult to achieve a unified calculation of its power flow. To address these challenges, this paper proposes a novel power flow calculation method for ring AC/DC hybrid distribution networks with power electronic transformers. The proposed method is based on the alternating iterative method to ensure compatibility with mature AC power flow calculation programs in commercial software, thereby improving the feasibility of engineering applications. Firstly, the steady-state power flow calculation model of PET is constructed by analyzing that the working principle and control modes of power electronic transformer are proposed based on the source-load attributes of its connected subnetworks. According to the characteristics of the power electronic transformer, AC distribution network, and DC distribution network, a hybrid alternating iteration method combining the high computational accuracy of the Newton–Raphson (NR) method with the high efficiency of the Zbus Gaussian method in dealing with ring networks is proposed. On this basis, the power flow calculation model of the AC/DC hybrid distribution network with power electronic transformers is established. Finally, the simulation of the constructed 44-node ring AC/DC hybrid distribution network example is carried out. The simulation results show that the proposed method can not only converge reliably when the convergence accuracy is 1 × 10−6 p.u., but also ensure that the voltage magnitudes of all nodes are above 0.96 p.u. whose maximum offset value is 0.789% when the outputs of the connected distributed generations fluctuate, which verifies the effectiveness and accuracy of the proposed method. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 776 KiB  
Systematic Review
Performance of Commercial Deep Learning-Based Auto-Segmentation Software for Breast Cancer Radiation Therapy Planning: A Systematic Review
by Curtise K. C. Ng
Multimodal Technol. Interact. 2024, 8(12), 114; https://doi.org/10.3390/mti8120114 - 20 Dec 2024
Cited by 2 | Viewed by 1589
Abstract
As yet, no systematic review on commercial deep learning-based auto-segmentation (DLAS) software for breast cancer radiation therapy (RT) planning has been published, although NRG Oncology has highlighted the necessity for such. The purpose of this systematic review is to investigate the performances of [...] Read more.
As yet, no systematic review on commercial deep learning-based auto-segmentation (DLAS) software for breast cancer radiation therapy (RT) planning has been published, although NRG Oncology has highlighted the necessity for such. The purpose of this systematic review is to investigate the performances of commercial DLAS software packages for breast cancer RT planning and methods for their performance evaluation. A literature search was conducted with the use of electronic databases. Fifteen papers met the selection criteria and were included. The included studies evaluated eight software packages (Limbus Contour, Manteia AccuLearning, Mirada DLCExpert, MVision.ai Contour+, Radformation AutoContour, RaySearch RayStation, Siemens syngo.via RT Image Suite/AI-Rad Companion Organs RT, and Therapanacea Annotate). Their findings show that the DLAS software could contour ten organs at risk (body, contralateral breast, esophagus-overlapping area, heart, ipsilateral humeral head, left and right lungs, liver, and sternum and trachea) and three clinical target volumes (CTVp_breast, CTVp_chestwall, and CTVn_L1) up to the clinically acceptable standard. This can contribute to 45.4%–93.7% contouring time reduction per patient. Although NRO Oncology has suggested that every clinical center should conduct its own DLAS software evaluation before clinical implementation, such testing appears particularly crucial for Manteia AccuLearning, Mirada DLCExpert, and MVision.ai Contour+ as a result of the methodological weaknesses of the corresponding studies such as the use of small datasets collected retrospectively from single centers for the evaluation. Full article
Show Figures

Figure 1

22 pages, 2549 KiB  
Article
Aeroelastic Simulation of Full-Machine Wind Turbines Using a Two-Way Fluid-Structure Interaction Approach
by Nan-You Lu, Jia Kai Lam, Yu Lin and Shiu-Wu Chau
J. Mar. Sci. Eng. 2024, 12(12), 2271; https://doi.org/10.3390/jmse12122271 - 10 Dec 2024
Viewed by 1837
Abstract
Two-way fluid–structure interaction (FSI) simulation of wind turbines has gained significant attention in recent years due to the growth of offshore wind energy development. Strong coupling procedures in these simulations predict realistic behavior with higher accuracy but result in increased computational costs and [...] Read more.
Two-way fluid–structure interaction (FSI) simulation of wind turbines has gained significant attention in recent years due to the growth of offshore wind energy development. Strong coupling procedures in these simulations predict realistic behavior with higher accuracy but result in increased computational costs and potential numerical instabilities. This paper proposes a mixed weak and strong coupling approach for the FSI simulation of a 5 MW wind turbine. The deformation of the turbine blade is calculated using a weak coupling approach, ensuring blade deflection meets a convergence criterion before rotating to the next azimuthal position. Fluid and solid solvers are partitioned, utilizing the commercial software packages STAR-CCM+ and Abaqus, respectively. Flexible and rigid blade cases are modeled, and the calculated loads, power, and blade tip displacement for the rotor at a constant rotating speed are compared. The proposed model is validated, showing good agreement with the existing literature and results comparable to those from another validated wind turbine simulator. The effect of rotor–tower interaction is evident in the results. Based on our calculations, the power production of flexible blades is evaluated to be 9.6% lower than that of rigid blades. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 5077 KiB  
Review
A Bibliometric Study on the Evolution of Women’s Football and Determinants Behind Its Growth over the Last 30 Years
by Javier Ventaja-Cruz, Jesús M. Cuevas Rincón, Virginia Tejada-Medina and Ricardo Martín-Moya
Sports 2024, 12(12), 333; https://doi.org/10.3390/sports12120333 - 3 Dec 2024
Cited by 1 | Viewed by 12353
Abstract
Background: The evolution of women’s football over the past three decades has been remarkable in terms of development, visibility, and acceptance, transforming into a discipline with growing popularity and professionalization. Significant advancements in gender equality and global visibility have occurred, and the combination [...] Read more.
Background: The evolution of women’s football over the past three decades has been remarkable in terms of development, visibility, and acceptance, transforming into a discipline with growing popularity and professionalization. Significant advancements in gender equality and global visibility have occurred, and the combination of emerging talent, increasing commercial interest, and institutional support will continue to drive the growth and consolidation of women’s football worldwide. Methods: The purpose of this study was to present a bibliometric analysis of articles on the evolution of women’s football in terms of scientific production as well as its causes and motivations over the past 30 years (1992–2024). A total of 128 documents indexed in the Web of Science database were reviewed. Outcome measures were analyzed using RStudio version 4.3.1 (Viena, Austria) software and the Bibliometrix data package to evaluate productivity indicators including the number of articles published per year, most productive authors, institutions, countries, and journals as well as identify the most cited articles and common topics. Results: Scientific production on women’s football has shown sustained growth, particularly since 2010. Key research areas have focused on injury prevention, physical performance, psychosocial factors, motivation, and leadership. The United States, the United Kingdom, and Spain have emerged as the most productive countries in this field, with strong international collaboration reflected in co-authorship networks. Conclusions: The study revealed a clear correlation between the evolution of women’s football and the increase in scientific production, providing a strong foundation for future research on emerging topics such as the importance of psychological factors, sport motivation and emotional well-being on performance, gender differences at the physiological and biomechanical levels, or misogyny in social networks, thus promoting comprehensive development in this sport modality. Full article
Show Figures

Figure 1

11 pages, 1272 KiB  
Article
Carbon Footprint of Yerba Mate (Ilex paraguariensis) Value Chain in Misiones Province (Argentina)
by Diego Hernán Chifarelli, Lorena Gruber, Lapo Azzini, Francesco Paolo Nicese and Edgardo Giordani
Sustainability 2024, 16(22), 10127; https://doi.org/10.3390/su162210127 - 20 Nov 2024
Viewed by 1764
Abstract
Yerba mate (YM) is an important crop derived from the cultivation of the native tree Ilex paraguariensis in northeastern Argentina, used for the preparation of mate infusion, which is widely consumed in South America. This study aimed at assessing the environmental impact, namely [...] Read more.
Yerba mate (YM) is an important crop derived from the cultivation of the native tree Ilex paraguariensis in northeastern Argentina, used for the preparation of mate infusion, which is widely consumed in South America. This study aimed at assessing the environmental impact, namely of CO2 equivalent (CO2eq.) emissions, of the YM value chain while identifying environmental hotspots along the production chain, from nursery up to transport. A cradle-to-wholesale approach was carried out, considering as the main functional unit 1 kg of commercial YM produced in Misiones Province and transported to Buenos Aires, the largest YM market in the world. Primary data were gathered from representative nurseries and plantations of the region; processing and packaging data were collected from a local cooperative, while the assessment of the impact due to truck transport was performed considering a distance of 1200 km from Buenos Aires. All the processes were analyzed using LCA methodology following the guidelines outlined in the ISO 14044 regulation (EN ISO 14044); the GaBi software (Sphera Solution, Inc., Chicago, IL, USA), updated to version 10.7.21.8, was used for process modeling, while the CML 2001 calculation method, updated as of the latest release in August 2016, was used to calculate the impacts. The results (1.24 kg CO2eq./kg. YM produced in Misiones and transported to Buenos Aires) show that the cultivation phase of YM has very little impact, while most of the emissions are related to the drying phase and the subsequent transportation from the production area to Buenos Aires. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

15 pages, 3365 KiB  
Article
Theoretical Study of Quaternary nBp InGaAsSb SWIR Detectors for Room Temperature Condition
by Tetiana Manyk, Jarosław Rutkowski, Małgorzata Kopytko, Krzysztof Kłos and Piotr Martyniuk
Materials 2024, 17(22), 5482; https://doi.org/10.3390/ma17225482 - 10 Nov 2024
Cited by 1 | Viewed by 1021
Abstract
This paper presents a theoretical analysis of an nBp infrared barrier detector’s performance intended to operate at a room temperature (300 K) based on AIIIBV materials—In1-xGaxAsySb1−y quaternary compound—lattice-matched to the GaSb [...] Read more.
This paper presents a theoretical analysis of an nBp infrared barrier detector’s performance intended to operate at a room temperature (300 K) based on AIIIBV materials—In1-xGaxAsySb1−y quaternary compound—lattice-matched to the GaSb substrate with a p-n heterojunction ternary Al1−xGaxSb barrier. Numerical simulations were performed using a commercial Crosslight Software—package APSYS. The band structure of the nBp detector and the electric field distribution for the p-n heterojunction with and without a potential barrier were determined. The influence of the barrier-doping level on the detector parameters was analyzed. It was shown that Shockley-Read-Hall (SRH) recombination plays a decisive role in carrier transport for lifetimes shorter than 100 ns. The influence of the absorber/barrier thickness on the detector’s dark current density and photocurrent was investigated. It was shown that valence band offset does not influence the device’s performance. The quantum efficiency reaches its maximum value for an absorber’s thickness of ~3 μm. The performed simulations confirmed the possibility of the detector’s fabrication exhibiting high performance at room temperature based on quaternary compounds of AIIIBV materials for the short wavelength infrared range. Full article
(This article belongs to the Special Issue Advancements in Optical Materials and Photonic Device Technologies)
Show Figures

Figure 1

24 pages, 3132 KiB  
Article
Comparing Large-Eddy Simulation and Gaussian Plume Model to Sensor Measurements of an Urban Smoke Plume
by Dominic Clements, Matthew Coburn, Simon J. Cox, Florentin M. J. Bulot, Zheng-Tong Xie and Christina Vanderwel
Atmosphere 2024, 15(9), 1089; https://doi.org/10.3390/atmos15091089 - 7 Sep 2024
Cited by 4 | Viewed by 2115
Abstract
The fast prediction of the extent and impact of accidental air pollution releases is important to enable a quick and informed response, especially in cities. Despite this importance, only a small number of case studies are available studying the dispersion of air pollutants [...] Read more.
The fast prediction of the extent and impact of accidental air pollution releases is important to enable a quick and informed response, especially in cities. Despite this importance, only a small number of case studies are available studying the dispersion of air pollutants from fires in a short distance (O(1 km)) in urban areas. While monitoring pollution levels in Southampton, UK, using low-cost sensors, a fire broke out from an outbuilding containing roughly 3000 reels of highly flammable cine nitrate film and movie equipment, which resulted in high values of PM2.5 being measured by the sensors approximately 1500 m downstream of the fire site. This provided a unique opportunity to evaluate urban air pollution dispersion models using observed data for PM2.5 and the meteorological conditions. Two numerical approaches were used to simulate the plume from the transient fire: a high-fidelity computational fluid dynamics model with large-eddy simulation (LES) embedded in the open-source package OpenFOAM, and a lower-fidelity Gaussian plume model implemented in a commercial software package: the Atmospheric Dispersion Modeling System (ADMS). Both numerical models were able to quantitatively reproduce consistent spatial and temporal profiles of the PM2.5 concentration at approximately 1500 m downstream of the fire site. Considering the unavoidable large uncertainties, a comparison between the sensor measurements and the numerical predictions was carried out, leading to an approximate estimation of the emission rate, temperature, and the start and duration of the fire. The estimation of the fire start time was consistent with the local authority report. The LES data showed that the fire lasted for at least 80 min at an emission rate of 50 g/s of PM2.5. The emission was significantly greater than a ‘normal’ house fire reported in the literature, suggesting the crucial importance of the emission estimation and monitoring of PM2.5 concentration in such incidents. Finally, we discuss the advantages and limitations of the two numerical approaches, aiming to suggest the selection of fast-response numerical models at various compromised levels of accuracy, efficiency and cost. Full article
(This article belongs to the Special Issue Advances in Urban Air Pollution Observation and Simulation)
Show Figures

Figure 1

13 pages, 3011 KiB  
Article
Quantitative Approach to Quality Review of Prenatal Ultrasound Examinations: Fetal Biometry
by C. Andrew Combs, Sushma Amara, Carolyn Kline, Olaide Ashimi Balogun and Zachary S. Bowman
J. Clin. Med. 2024, 13(16), 4860; https://doi.org/10.3390/jcm13164860 - 17 Aug 2024
Cited by 3 | Viewed by 1424
Abstract
Background/Objectives: To evaluate the quality of an ultrasound practice, both large-scale and focused audits are recommended by professional organizations, but such audits can be time-consuming, inefficient, and expensive. Our objective was to develop a time-efficient, quantitative, objective, large-scale method to evaluate fetal [...] Read more.
Background/Objectives: To evaluate the quality of an ultrasound practice, both large-scale and focused audits are recommended by professional organizations, but such audits can be time-consuming, inefficient, and expensive. Our objective was to develop a time-efficient, quantitative, objective, large-scale method to evaluate fetal biometry measurements for an entire practice, combined with a process for focused image review for personnel whose measurements are outliers. Methods: Ultrasound exam data for a full year are exported from commercial ultrasound reporting software to a statistical package. Fetal biometry measurements are converted to z-scores to standardize across gestational ages. For a large-scale audit, sonographer mean z-scores are compared using analysis of variance (ANOVA) with Scheffe multiple comparisons test. A focused image review is performed on a random sample of exams for sonographers whose mean z-scores differ significantly from the practice mean. A similar large-scale audit is performed, comparing physician mean z-scores. Results: Using fetal abdominal circumference measurements as an example, significant differences between sonographer mean z-scores are readily identified by the ANOVA and Scheffe test. A method is described for the blinded image audit of sonographers with outlier mean z-scores. Examples are also given for the identification and interpretation of several types of systematic errors that are unlikely to be detectable by image review, including z-scores with large or small standard deviations and physicians with outlier mean z-scores. Conclusions: The large-scale quantitative analysis provides an overview of the biometry measurements of all the sonographers and physicians in a practice, so that image audits can be focused on those whose measurements are outliers. The analysis takes little time to perform after initial development and avoids the time, complexity, and expense of auditing providers whose measurements fall within the expected range. We encourage commercial software developers to include tools in their ultrasound reporting software to facilitate such quantitative reviews. Full article
(This article belongs to the Special Issue Progress in Patient Safety and Quality in Maternal–Fetal Medicine)
Show Figures

Figure 1

Back to TopTop