Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,065)

Search Parameters:
Keywords = combination fusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5340 KiB  
Article
Potential of Multi-Source Multispectral vs. Hyperspectral Remote Sensing for Winter Wheat Nitrogen Monitoring
by Xiaokai Chen, Yuxin Miao, Krzysztof Kusnierek, Fenling Li, Chao Wang, Botai Shi, Fei Wu, Qingrui Chang and Kang Yu
Remote Sens. 2025, 17(15), 2666; https://doi.org/10.3390/rs17152666 (registering DOI) - 1 Aug 2025
Abstract
Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral [...] Read more.
Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral data (S185 sensor) with simulated multispectral data from DJI Phantom 4 Multispectral (P4M), PlanetScope (PS), and Sentinel-2A (S2) in estimating winter wheat PNC. Spectral data were collected across six growth stages over two seasons and resampled to match the spectral characteristics of the three multispectral sensors. Three variable selection strategies (one-dimensional (1D) spectral reflectance, optimized two-dimensional (2D), and three-dimensional (3D) spectral indices) were combined with Random Forest Regression (RFR), Support Vector Machine Regression (SVMR), and Partial Least Squares Regression (PLSR) to build PNC prediction models. Results showed that, while hyperspectral data yielded slightly higher accuracy, optimized multispectral indices, particularly from PS and S2, achieved comparable performance. Among models, SVM and RFR showed consistent effectiveness across strategies. These findings highlight the potential of low-cost multispectral platforms for practical crop N monitoring. Future work should validate these models using real satellite imagery and explore multi-source data fusion with advanced learning algorithms. Full article
(This article belongs to the Special Issue Perspectives of Remote Sensing for Precision Agriculture)
26 pages, 4289 KiB  
Article
A Voronoi–A* Fusion Algorithm with Adaptive Layering for Efficient UAV Path Planning in Complex Terrain
by Boyu Dong, Gong Zhang, Yan Yang, Peiyuan Yuan and Shuntong Lu
Drones 2025, 9(8), 542; https://doi.org/10.3390/drones9080542 (registering DOI) - 31 Jul 2025
Abstract
Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with [...] Read more.
Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with A* supplementary expansion for enhanced performance. First, an adaptive DEM layering strategy divides the terrain into horizontal planes based on obstacle density, reducing computational complexity while preserving 3D flexibility. The Voronoi vertices within each layer serve as a sparse waypoint network, with greedy heuristic prioritizing vertices that ensure safety margins, directional coherence, and goal proximity. For unresolved segments, A* performs localized searches to ensure complete connectivity. Finally, a line-segment interpolation search further optimizes the path to minimize both length and turning maneuvers. Simulations in mountainous environments demonstrate superior performance over traditional methods in terms of path planning success rates, path optimality, and computation. Our framework excels in real-time scenarios, such as disaster rescue and logistics, although it assumes static environments and trades slight path elongation for robustness. Future research should integrate dynamic obstacle avoidance and weather impact analysis to enhance adaptability in real-world conditions. Full article
Show Figures

Figure 1

22 pages, 4399 KiB  
Article
Deep Learning-Based Fingerprint–Vein Biometric Fusion: A Systematic Review with Empirical Evaluation
by Sarah Almuwayziri, Abeer Al-Nafjan, Hessah Aljumah and Mashael Aldayel
Appl. Sci. 2025, 15(15), 8502; https://doi.org/10.3390/app15158502 (registering DOI) - 31 Jul 2025
Abstract
User authentication is crucial for safeguarding access to digital systems and services. Biometric authentication serves as a strong and user-friendly alternative to conventional security methods such as passwords and PINs, which are often susceptible to breaches. This study proposes a deep learning-based multimodal [...] Read more.
User authentication is crucial for safeguarding access to digital systems and services. Biometric authentication serves as a strong and user-friendly alternative to conventional security methods such as passwords and PINs, which are often susceptible to breaches. This study proposes a deep learning-based multimodal biometric system that combines fingerprint (FP) and finger vein (FV) modalities to improve accuracy and security. The system explores three fusion strategies: feature-level fusion (combining feature vectors from each modality), score-level fusion (integrating prediction scores from each modality), and a hybrid approach that leverages both feature and score information. The implementation involved five pretrained convolutional neural network (CNN) models: two unimodal (FP-only and FV-only) and three multimodal models corresponding to each fusion strategy. The models were assessed using the NUPT-FPV dataset, which consists of 33,600 images collected from 140 subjects with a dual-mode acquisition device in varied environmental conditions. The results indicate that the hybrid-level fusion with a dominant score weight (0.7 score, 0.3 feature) achieved the highest accuracy (99.79%) and the lowest equal error rate (EER = 0.0018), demonstrating superior robustness. Overall, the results demonstrate that integrating deep learning with multimodal fusion is highly effective for advancing scalable and accurate biometric authentication solutions suitable for real-world deployments. Full article
Show Figures

Figure 1

29 pages, 15488 KiB  
Article
GOFENet: A Hybrid Transformer–CNN Network Integrating GEOBIA-Based Object Priors for Semantic Segmentation of Remote Sensing Images
by Tao He, Jianyu Chen and Delu Pan
Remote Sens. 2025, 17(15), 2652; https://doi.org/10.3390/rs17152652 (registering DOI) - 31 Jul 2025
Abstract
Geographic object-based image analysis (GEOBIA) has demonstrated substantial utility in remote sensing tasks. However, its integration with deep learning remains largely confined to image-level classification. This is primarily due to the irregular shapes and fragmented boundaries of segmented objects, which limit its applicability [...] Read more.
Geographic object-based image analysis (GEOBIA) has demonstrated substantial utility in remote sensing tasks. However, its integration with deep learning remains largely confined to image-level classification. This is primarily due to the irregular shapes and fragmented boundaries of segmented objects, which limit its applicability in semantic segmentation. While convolutional neural networks (CNNs) excel at local feature extraction, they inherently struggle to capture long-range dependencies. In contrast, Transformer-based models are well suited for global context modeling but often lack fine-grained local detail. To overcome these limitations, we propose GOFENet (Geo-Object Feature Enhanced Network)—a hybrid semantic segmentation architecture that effectively fuses object-level priors into deep feature representations. GOFENet employs a dual-encoder design combining CNN and Swin Transformer architectures, enabling multi-scale feature fusion through skip connections to preserve both local and global semantics. An auxiliary branch incorporating cascaded atrous convolutions is introduced to inject information of segmented objects into the learning process. Furthermore, we develop a cross-channel selection module (CSM) for refined channel-wise attention, a feature enhancement module (FEM) to merge global and local representations, and a shallow–deep feature fusion module (SDFM) to integrate pixel- and object-level cues across scales. Experimental results on the GID and LoveDA datasets demonstrate that GOFENet achieves superior segmentation performance, with 66.02% mIoU and 51.92% mIoU, respectively. The model exhibits strong capability in delineating large-scale land cover features, producing sharper object boundaries and reducing classification noise, while preserving the integrity and discriminability of land cover categories. Full article
Show Figures

Figure 1

21 pages, 1681 KiB  
Article
Cross-Modal Complementarity Learning for Fish Feeding Intensity Recognition via Audio–Visual Fusion
by Jian Li, Yanan Wei, Wenkai Ma and Tan Wang
Animals 2025, 15(15), 2245; https://doi.org/10.3390/ani15152245 - 31 Jul 2025
Abstract
Accurate evaluation of fish feeding intensity is crucial for optimizing aquaculture efficiency and the healthy growth of fish. Previous methods mainly rely on single-modal approaches (e.g., audio or visual). However, the complex underwater environment makes single-modal monitoring methods face significant challenges: visual systems [...] Read more.
Accurate evaluation of fish feeding intensity is crucial for optimizing aquaculture efficiency and the healthy growth of fish. Previous methods mainly rely on single-modal approaches (e.g., audio or visual). However, the complex underwater environment makes single-modal monitoring methods face significant challenges: visual systems are severely affected by water turbidity, lighting conditions, and fish occlusion, while acoustic systems suffer from background noise. Although existing studies have attempted to combine acoustic and visual information, most adopt simple feature-level fusion strategies, which fail to fully explore the complementary advantages of the two modalities under different environmental conditions and lack dynamic evaluation mechanisms for modal reliability. To address these problems, we propose the Adaptive Cross-modal Attention Fusion Network (ACAF-Net), a cross-modal complementarity learning framework with a two-stage attention fusion mechanism: (1) a cross-modal enhancement stage that enriches individual representations through Low-rank Bilinear Pooling and learnable fusion weights; (2) an adaptive attention fusion stage that dynamically weights acoustic and visual features based on complementarity and environmental reliability. Our framework incorporates dimension alignment strategies and attention mechanisms to capture temporal–spatial complementarity between acoustic feeding signals and visual behavioral patterns. Extensive experiments demonstrate superior performance compared to single-modal and conventional fusion approaches, with 6.4% accuracy improvement. The results validate the effectiveness of exploiting cross-modal complementarity for underwater behavioral analysis and establish a foundation for intelligent aquaculture monitoring systems. Full article
Show Figures

Figure 1

24 pages, 4618 KiB  
Article
A Sensor Data Prediction and Early-Warning Method for Coal Mining Faces Based on the MTGNN-Bayesian-IF-DBSCAN Algorithm
by Mingyang Liu, Xiaodong Wang, Wei Qiao, Hongbo Shang, Zhenguo Yan and Zhixin Qin
Sensors 2025, 25(15), 4717; https://doi.org/10.3390/s25154717 (registering DOI) - 31 Jul 2025
Abstract
In the context of intelligent coal mine safety monitoring, an integrated prediction and early-warning method named MTGNN-Bayesian-IF-DBSCAN (Multi-Task Graph Neural Network–Bayesian Optimization–Isolation Forest–Density-Based Spatial Clustering of Applications with Noise) is proposed to address the challenges of gas concentration prediction and anomaly detection in [...] Read more.
In the context of intelligent coal mine safety monitoring, an integrated prediction and early-warning method named MTGNN-Bayesian-IF-DBSCAN (Multi-Task Graph Neural Network–Bayesian Optimization–Isolation Forest–Density-Based Spatial Clustering of Applications with Noise) is proposed to address the challenges of gas concentration prediction and anomaly detection in coal mining faces. The MTGNN (Multi-Task Graph Neural Network) is first employed to model the spatiotemporal coupling characteristics of gas concentration and wind speed data. By constructing a graph structure based on sensor spatial dependencies and utilizing temporal convolutional layers to capture long short-term time-series features, the high-precision dynamic prediction of gas concentrations is achieved via the MTGNN. Experimental results indicate that the MTGNN outperforms comparative algorithms, such as CrossGNN and FourierGNN, in prediction accuracy, with the mean absolute error (MAE) being as low as 0.00237 and the root mean square error (RMSE) maintained below 0.0203 across different sensor locations (T0, T1, T2). For anomaly detection, a Bayesian optimization framework is introduced to adaptively optimize the fusion weights of IF (Isolation Forest) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise). Through defining the objective function as the F1 score and employing Gaussian process surrogate models, the optimal weight combination (w_if = 0.43, w_dbscan = 0.52) is determined, achieving an F1 score of 1.0. By integrating original concentration data and residual features, gas anomalies are effectively identified by the proposed method, with the detection rate reaching a range of 93–96% and the false alarm rate controlled below 5%. Multidimensional analysis diagrams (e.g., residual distribution, 45° diagonal error plot, and boxplots) further validate the model’s robustness in different spatial locations, particularly in capturing abrupt changes and low-concentration anomalies. This study provides a new technical pathway for intelligent gas warning in coal mines, integrating spatiotemporal modeling, multi-algorithm fusion, and statistical optimization. The proposed framework not only enhances the accuracy and reliability of gas prediction and anomaly detection but also demonstrates potential for generalization to other industrial sensor networks. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

25 pages, 2023 KiB  
Article
Geographical Origin Authentication of Leaves and Drupes from Olea europaea via 1H NMR and Excitation–Emission Fluorescence Spectroscopy: A Data Fusion Approach
by Duccio Tatini, Flavia Bisozzi, Sara Costantini, Giacomo Fattori, Amedeo Boldrini, Michele Baglioni, Claudia Bonechi, Alessandro Donati, Cristiana Tozzi, Angelo Riccaboni, Gabriella Tamasi and Claudio Rossi
Molecules 2025, 30(15), 3208; https://doi.org/10.3390/molecules30153208 - 30 Jul 2025
Abstract
Geographical origin authentication of agrifood products is essential for ensuring their quality, preventing fraud, and maintaining consumers’ trust. In this study, we used proton nuclear magnetic resonance (1H NMR) and excitation–emission matrix (EEM) fluorescence spectroscopy combined with chemometric methods for the [...] Read more.
Geographical origin authentication of agrifood products is essential for ensuring their quality, preventing fraud, and maintaining consumers’ trust. In this study, we used proton nuclear magnetic resonance (1H NMR) and excitation–emission matrix (EEM) fluorescence spectroscopy combined with chemometric methods for the geographical origin characterization of olive drupes and leaves from different Tuscany subregions, where olive oil production is relevant. Single-block approaches were implemented for individual datasets, using principal component analysis (PCA) for data visualization and Soft Independent Modeling of Class Analogy (SIMCA) for sample classification. 1H NMR spectroscopy provided detailed metabolomic profiles, identifying key compounds such as polyphenols and organic acids that contribute to geographical differentiation. EEM fluorescence spectroscopy, in combination with Parallel Factor Analysis (PARAFAC), revealed distinctive fluorescence signatures associated with polyphenolic content. A mid-level data fusion strategy, integrating the common dimensions (ComDim) method, was explored to improve the models’ performance. The results demonstrated that both spectroscopic techniques independently provided valuable insights in terms of geographical characterization, while data fusion further improved the model performances, particularly for olive drupes. Notably, this study represents the first attempt to apply EEM fluorescence for the geographical classification of olive drupes and leaves, highlighting its potential as a complementary tool in geographic origin authentication. The integration of advanced spectroscopic and chemometric methods offers a reliable approach for the differentiation of samples from closely related areas at a subregional level. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Graphical abstract

21 pages, 651 KiB  
Article
PAD-MPFN: Dynamic Fusion with Popularity Decay for News Recommendation
by Biyang Ma, Yiwei Deng and Huifan Gao
Electronics 2025, 14(15), 3057; https://doi.org/10.3390/electronics14153057 - 30 Jul 2025
Abstract
News recommendation systems must simultaneously address multiple challenges, including dynamic user interest modeling, nonlinear popularity patterns, and diversity recommendation in cold-start scenarios. We present a Popularity-Aware Dynamic Multi-Perspective Fusion Network (PAD-MPFN) that innovatively integrates three key components: adaptive subspace projection for multi-source interest [...] Read more.
News recommendation systems must simultaneously address multiple challenges, including dynamic user interest modeling, nonlinear popularity patterns, and diversity recommendation in cold-start scenarios. We present a Popularity-Aware Dynamic Multi-Perspective Fusion Network (PAD-MPFN) that innovatively integrates three key components: adaptive subspace projection for multi-source interest fusion, logarithmic time-decay factors for popularity bias mitigation, and dynamic gating mechanisms for personalized recommendation weighting. The framework uniquely combines sequential behavior analysis, social graph propagation, and temporal popularity modeling through a unified architecture. Experimental results on the MIND dataset, an open-source version of MSN News, demonstrate that PAD-MPFN outperforms existing methods in terms of recommendation performance and cold-start scenarios while effectively alleviating information overload. This study offers a new solution for dynamic interest modeling and diverse recommendation. Full article
(This article belongs to the Special Issue Data-Driven Intelligence in Autonomous Systems)
Show Figures

Figure 1

20 pages, 1536 KiB  
Article
Graph Convolution-Based Decoupling and Consistency-Driven Fusion for Multimodal Emotion Recognition
by Yingmin Deng, Chenyu Li, Yu Gu, He Zhang, Linsong Liu, Haixiang Lin, Shuang Wang and Hanlin Mo
Electronics 2025, 14(15), 3047; https://doi.org/10.3390/electronics14153047 - 30 Jul 2025
Abstract
Multimodal emotion recognition (MER) is essential for understanding human emotions from diverse sources such as speech, text, and video. However, modality heterogeneity and inconsistent expression pose challenges for effective feature fusion. To address this, we propose a novel MER framework combining a Dynamic [...] Read more.
Multimodal emotion recognition (MER) is essential for understanding human emotions from diverse sources such as speech, text, and video. However, modality heterogeneity and inconsistent expression pose challenges for effective feature fusion. To address this, we propose a novel MER framework combining a Dynamic Weighted Graph Convolutional Network (DW-GCN) for feature disentanglement and a Cross-Attention Consistency-Gated Fusion (CACG-Fusion) module for robust integration. DW-GCN models complex inter-modal relationships, enabling the extraction of both common and private features. The CACG-Fusion module subsequently enhances classification performance through dynamic alignment of cross-modal cues, employing attention-based coordination and consistency-preserving gating mechanisms to optimize feature integration. Experiments on the CMU-MOSI and CMU-MOSEI datasets demonstrate that our method achieves state-of-the-art performance, significantly improving the ACC7, ACC2, and F1 scores. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

23 pages, 3481 KiB  
Article
Research on Adaptive Identification Technology for Rolling Bearing Performance Degradation Based on Vibration–Temperature Fusion
by Zhenghui Li, Lixia Ying, Liwei Zhan, Shi Zhuo, Hui Li and Xiaofeng Bai
Sensors 2025, 25(15), 4707; https://doi.org/10.3390/s25154707 - 30 Jul 2025
Abstract
To address the issue of low accuracy in identifying the transition states of rolling bearing performance degradation when relying solely on vibration signals, this study proposed a vibration–temperature fusion-based adaptive method for bearing performance degradation assessments. First, a multidimensional time–frequency feature set was [...] Read more.
To address the issue of low accuracy in identifying the transition states of rolling bearing performance degradation when relying solely on vibration signals, this study proposed a vibration–temperature fusion-based adaptive method for bearing performance degradation assessments. First, a multidimensional time–frequency feature set was constructed by integrating vibration acceleration and temperature signals. Second, a novel composite sensitivity index (CSI) was introduced, incorporating the trend persistence, monotonicity, and signal complexity to perform preliminary feature screening. Mutual information clustering and regularized entropy weight optimization were then combined to reselect highly sensitive parameters from the initially screened features. Subsequently, an adaptive feature fusion method based on auto-associative kernel regression (AFF-AAKR) was introduced to compress the data in the spatial dimension while enhancing the degradation trend characterization capability of the health indicator (HI) through a temporal residual analysis. Furthermore, the entropy weight method was employed to quantify the information entropy differences between the vibration and temperature signals, enabling dynamic weight allocation to construct a comprehensive HI. Finally, a dual-criteria adaptive bottom-up merging algorithm (DC-ABUM) was proposed, which achieves bearing life-stage identification through error threshold constraints and the adaptive optimization of segmentation quantities. The experimental results demonstrated that the proposed method outperformed traditional vibration-based life-stage identification approaches. Full article
(This article belongs to the Special Issue Fault Diagnosis Based on Sensing and Control Systems)
Show Figures

Figure 1

22 pages, 12983 KiB  
Article
A Hybrid Model for Fluorescein Funduscopy Image Classification by Fusing Multi-Scale Context-Aware Features
by Yawen Wang, Chao Chen, Zhuo Chen and Lingling Wu
Technologies 2025, 13(8), 323; https://doi.org/10.3390/technologies13080323 (registering DOI) - 30 Jul 2025
Abstract
With the growing use of deep learning in medical image analysis, automated classification of fundus images is crucial for the early detection of fundus diseases. However, the complexity of fluorescein fundus angiography (FFA) images poses challenges in the accurate identification of lesions. To [...] Read more.
With the growing use of deep learning in medical image analysis, automated classification of fundus images is crucial for the early detection of fundus diseases. However, the complexity of fluorescein fundus angiography (FFA) images poses challenges in the accurate identification of lesions. To address these issues, we propose the Enhanced Feature Fusion ConvNeXt (EFF-ConvNeXt) model, a novel architecture combining VGG16 and an enhanced ConvNeXt for FFA image classification. VGG16 is employed to extract edge features, while an improved ConvNeXt incorporates the Context-Aware Feature Fusion (CAFF) strategy to enhance global contextual understanding. CAFF integrates an Improved Global Context (IGC) module with multi-scale feature fusion to jointly capture local and global features. Furthermore, an SKNet module is used in the final stages to adaptively recalibrate channel-wise features. The model demonstrates improved classification accuracy and robustness, achieving 92.50% accuracy and 92.30% F1 score on the APTOS2023 dataset—surpassing the baseline ConvNeXt-T by 3.12% in accuracy and 4.01% in F1 score. These results highlight the model’s ability to better recognize complex disease features, providing significant support for more accurate diagnosis of fundus diseases. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Medical Image Analysis)
Show Figures

Figure 1

34 pages, 4388 KiB  
Article
IRSD-Net: An Adaptive Infrared Ship Detection Network for Small Targets in Complex Maritime Environments
by Yitong Sun and Jie Lian
Remote Sens. 2025, 17(15), 2643; https://doi.org/10.3390/rs17152643 - 30 Jul 2025
Abstract
Infrared ship detection plays a vital role in maritime surveillance systems. As a critical remote sensing application, it enables maritime surveillance across diverse geographic scales and operational conditions while offering robust all-weather operation and resilience to environmental interference. However, infrared imagery in complex [...] Read more.
Infrared ship detection plays a vital role in maritime surveillance systems. As a critical remote sensing application, it enables maritime surveillance across diverse geographic scales and operational conditions while offering robust all-weather operation and resilience to environmental interference. However, infrared imagery in complex maritime environments presents significant challenges, including low contrast, background clutter, and difficulties in detecting small-scale or distant targets. To address these issues, we propose an Infrared Ship Detection Network (IRSD-Net), a lightweight and efficient detection network built upon the YOLOv11n framework and specially designed for infrared maritime imagery. IRSD-Net incorporates a Hierarchical Multi-Kernel Convolution Network (HMKCNet), which employs parallel multi-kernel convolutions and channel division to enhance multi-scale feature extraction while reducing redundancy and memory usage. To further improve cross-scale fusion, we design the Dynamic Cross-Scale Feature Pyramid Network (DCSFPN), a bidirectional architecture that combines up- and downsampling to integrate low-level detail with high-level semantics. Additionally, we introduce Wise-PIoU, a novel loss function that improves bounding box regression by enforcing geometric alignment and adaptively weighting gradients based on alignment quality. Experimental results demonstrate that IRSD-Net achieves 92.5% mAP50 on the ISDD dataset, outperforming YOLOv6n and YOLOv11n by 3.2% and 1.7%, respectively. With a throughput of 714.3 FPS, IRSD-Net delivers high-accuracy, real-time performance suitable for practical maritime monitoring systems. Full article
Show Figures

Figure 1

20 pages, 3272 KiB  
Article
Mobile Robot Path Planning Based on Fused Multi-Strategy White Shark Optimisation Algorithm
by Dazhang You, Junjie Yu, Zhiyuan Jia, Yepeng Zhang and Zhiyuan Yang
Appl. Sci. 2025, 15(15), 8453; https://doi.org/10.3390/app15158453 - 30 Jul 2025
Viewed by 40
Abstract
Addressing the limitations of existing path planning algorithms for mobile robots in complex environments, such as poor adaptability, low convergence efficiency, and poor path quality, this study establishes a clear connection between mobile robots and real-world challenges such as unknown environments, dynamic obstacle [...] Read more.
Addressing the limitations of existing path planning algorithms for mobile robots in complex environments, such as poor adaptability, low convergence efficiency, and poor path quality, this study establishes a clear connection between mobile robots and real-world challenges such as unknown environments, dynamic obstacle avoidance, and smooth motion through innovative strategies. A novel multi-strategy fusion white shark optimization algorithm is proposed, focusing on actual scenario requirements, to provide optimal solutions for mobile robot path planning. First, the Chaotic Elite Pool strategy is employed to generate an elite population, enhancing population diversity and improving the quality of initial solutions, thereby boosting the algorithm’s global search capability. Second, adaptive weights are introduced, and the traditional simulated annealing algorithm is improved to obtain the Rapid Annealing Method. The improved simulated annealing algorithm is then combined with the White Shark algorithm to avoid getting stuck in local optima and accelerate convergence speed. Finally, third-order Bézier curves are used to smooth the path. Path length and path smoothness are used as fitness evaluation metrics, and an evaluation function is established in conjunction with a non-complete model that reflects actual motion to assess the effectiveness of path planning. Simulation results show that on the simple 20 × 20 grid map, the fusion of the Fused Multi-strategy White Shark Optimisation algorithm (FMWSO) outperforms WSO, D*, A*, and GWO by 8.43%, 7.37%, 2.08%, and 2.65%, respectively, in terms of path length. On the more complex 40 × 40 grid map, it improved by 6.48%, 26.76%, 0.95%, and 2.05%, respectively. The number of turning points was the lowest in both maps, and the path smoothness was lower. The algorithm’s runtime is optimal on the 20 × 20 map, outperforming other algorithms by 40.11%, 25.93%, 31.16%, and 9.51%, respectively. On the 40 × 40 map, it is on par with A*, and outperforms WSO, D*, and GWO by 14.01%, 157.38%, and 3.48%, respectively. The path planning performance is significantly better than other algorithms. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

23 pages, 7371 KiB  
Article
A Novel Method for Estimating Building Height from Baidu Panoramic Street View Images
by Shibo Ge, Jiping Liu, Xianghong Che, Yong Wang and Haosheng Huang
ISPRS Int. J. Geo-Inf. 2025, 14(8), 297; https://doi.org/10.3390/ijgi14080297 - 30 Jul 2025
Viewed by 44
Abstract
Building height information plays an important role in many urban-related applications, such as urban planning, disaster management, and environmental studies. With the rapid development of real scene maps, street view images are becoming a new data source for building height estimation, considering their [...] Read more.
Building height information plays an important role in many urban-related applications, such as urban planning, disaster management, and environmental studies. With the rapid development of real scene maps, street view images are becoming a new data source for building height estimation, considering their easy collection and low cost. However, existing studies on building height estimation primarily utilize remote sensing images, with little exploration of height estimation from street-view images. In this study, we proposed a deep learning-based method for estimating the height of a single building in Baidu panoramic street view imagery. Firstly, the Segment Anything Model was used to extract the region of interest image and location features of individual buildings from the panorama. Subsequently, a cross-view matching algorithm was proposed by combining Baidu panorama and building footprint data with height information to generate building height samples. Finally, a Two-Branch feature fusion model (TBFF) was constructed to combine building location features and visual features, enabling accurate height estimation for individual buildings. The experimental results showed that the TBFF model had the best performance, with an RMSE of 5.69 m, MAE of 3.97 m, and MAPE of 0.11. Compared with two state-of-the-art methods, the TBFF model exhibited robustness and higher accuracy. The Random Forest model had an RMSE of 11.83 m, MAE of 4.76 m, and MAPE of 0.32, and the Pano2Geo model had an RMSE of 10.51 m, MAE of 6.52 m, and MAPE of 0.22. The ablation analysis demonstrated that fusing building location and visual features can improve the accuracy of height estimation by 14.98% to 69.99%. Moreover, the accuracy of the proposed method meets the LOD1 level 3D modeling requirements defined by the OGC (height error ≤ 5 m), which can provide data support for urban research. Full article
Show Figures

Figure 1

22 pages, 3506 KiB  
Review
Spectroscopic and Imaging Technologies Combined with Machine Learning for Intelligent Perception of Pesticide Residues in Fruits and Vegetables
by Haiyan He, Zhoutao Li, Qian Qin, Yue Yu, Yuanxin Guo, Sheng Cai and Zhanming Li
Foods 2025, 14(15), 2679; https://doi.org/10.3390/foods14152679 - 30 Jul 2025
Viewed by 50
Abstract
Pesticide residues in fruits and vegetables pose a serious threat to food safety. Traditional detection methods have defects such as complex operation, high cost, and long detection time. Therefore, it is of great significance to develop rapid, non-destructive, and efficient detection technologies and [...] Read more.
Pesticide residues in fruits and vegetables pose a serious threat to food safety. Traditional detection methods have defects such as complex operation, high cost, and long detection time. Therefore, it is of great significance to develop rapid, non-destructive, and efficient detection technologies and equipment. In recent years, the combination of spectroscopic techniques and imaging technologies with machine learning algorithms has developed rapidly, providing a new attempt to solve this problem. This review focuses on the research progress of the combination of spectroscopic techniques (near-infrared spectroscopy (NIRS), hyperspectral imaging technology (HSI), surface-enhanced Raman scattering (SERS), laser-induced breakdown spectroscopy (LIBS), and imaging techniques (visible light (VIS) imaging, NIRS imaging, HSI technology, terahertz imaging) with machine learning algorithms in the detection of pesticide residues in fruits and vegetables. It also explores the huge challenges faced by the application of spectroscopic and imaging technologies combined with machine learning algorithms in the intelligent perception of pesticide residues in fruits and vegetables: the performance of machine learning models requires further enhancement, the fusion of imaging and spectral data presents technical difficulties, and the commercialization of hardware devices remains underdeveloped. This review has proposed an innovative method that integrates spectral and image data, enhancing the accuracy of pesticide residue detection through the construction of interpretable machine learning algorithms, and providing support for the intelligent sensing and analysis of agricultural and food products. Full article
Show Figures

Figure 1

Back to TopTop