Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = collinear magnetic ground state

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3696 KB  
Article
Strain-Induced Robust Exchange Bias Effect in Epitaxial La0.7Sr0.3MnO3/LaFeO3 Bilayers
by Jun Zhang, Tiancong Su and Jianchun Ma
Molecules 2024, 29(14), 3244; https://doi.org/10.3390/molecules29143244 - 9 Jul 2024
Cited by 1 | Viewed by 1456
Abstract
The ground state of correlated electrons in complex oxide films can be controlled by applying epitaxial strain, offering the potential to produce unexpected phenomena applicable to modern spintronic devices. In this study, we demonstrate that substrate-induced strain strongly affects the coupling mode of [...] Read more.
The ground state of correlated electrons in complex oxide films can be controlled by applying epitaxial strain, offering the potential to produce unexpected phenomena applicable to modern spintronic devices. In this study, we demonstrate that substrate-induced strain strongly affects the coupling mode of interfacial magnetic moments in a ferromagnetic (FM)/antiferromagnetic (AFM) system. In an epitaxial bilayer comprising AFM LaFeO3 (LFO) and FM La0.7Sr0.3MnO3 (LSMO), samples grown on a LaAlO3 (LAO) substrate exhibit a larger exchange bias field than those grown on a SrTiO3 substrate. Our results indicate a transition in the alignment of magnetic moments from perpendicular to collinear due to the large compressive strain exerted by the LAO substrate. Collinear magnetic moments at the LSMO/LFO interface generate strong exchange coupling, leading to a considerable exchange bias effect. Thus, our findings provide a method for tailoring and manipulating the orientations of magnetic moments at the FM/AFM heterogeneous interface using strain engineering, thereby augmenting methods for exchange bias generation. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

14 pages, 19050 KB  
Article
First-Principles Study of the Magnetic and Electronic Structure of NdB4
by Pengyan Tao, Jiangjiang Ma, Shujing Li, Xiaohong Shao and Baotian Wang
Materials 2023, 16(7), 2627; https://doi.org/10.3390/ma16072627 - 26 Mar 2023
Cited by 2 | Viewed by 2027
Abstract
Due to their magnetic and physical properties, rare earth magnetic borides have been applied to a variety of critical technologies. In particular, rare earth tetraborides are more abundant as frustrated antiferromagnets. Here, the atomic structures, magnetic structures, and electronic structures of NdB4 [...] Read more.
Due to their magnetic and physical properties, rare earth magnetic borides have been applied to a variety of critical technologies. In particular, rare earth tetraborides are more abundant as frustrated antiferromagnets. Here, the atomic structures, magnetic structures, and electronic structures of NdB4 have been studied by first-principle calculations. The ground state magnetic structure of NdB4 is determined. Moreover, the small energy difference between different magnetic structures means that there may be more than one magnetic structure that coexist. One can glean from the electronic structure of the magnetic ground state that the d orbital of Nd is strongly hybridized with the p orbital of B, and the f electron of Nd is highly localized. The computational results reveal the complexity of the magnetic structure and provide a theoretical basis for studying the magnetic ground state of NdB4. Full article
Show Figures

Figure 1

13 pages, 6613 KB  
Article
Impact of Erbium Doping in the Structural and Magnetic Properties of the Anisotropic and Frustrated SrYb2O4 Antiferromagnet
by Diana Lucia Quintero-Castro, Juanita Hincapie, Abhijit Bhat Kademane, Minki Jeong, Matthias Frontzek, Alexandra Franz, Amutha Ramachandran, Fabiano Yokaichiya, J Ross Stewart and Rasmus Toft-Petersen
Crystals 2023, 13(3), 529; https://doi.org/10.3390/cryst13030529 - 20 Mar 2023
Cited by 1 | Viewed by 2875
Abstract
We present a systematic study of the structural and magnetic properties of a series of powder samples of SrYb2xErxO4 with different Yb/Er concentrations. Magnetometry and neutron diffraction have been used to study the magnetic ground states [...] Read more.
We present a systematic study of the structural and magnetic properties of a series of powder samples of SrYb2xErxO4 with different Yb/Er concentrations. Magnetometry and neutron diffraction have been used to study the magnetic ground states of the compound series, while inelastic neutron scattering was used to investigate the crystal field excitations for a chosen concentration. These results show that the crystal structure remains the same for all compositions, while the lattice parameters increase linearly with the Er content. All compounds showed some type of magnetic transition below 1 K, however, both the magnetic structure and nature of the phase transition vary throughout the series. The samples present a non-collinear magnetic structure with the moments lying on the ab plane for low Er content. For high Er content, the magnetic structure is collinear with the moments aligned along the c-axis. A critical concentration is found where there is a bifurcation between zero-field and field-cooled magnetic susceptibility. This irreversible process could be due to the random mixture of single-ion magnetic anisotropies. Full article
(This article belongs to the Special Issue Rare Earths-Doped Materials (Volume II))
Show Figures

Figure 1

35 pages, 1933 KB  
Review
Quantum Spin-Wave Theory for Non-Collinear Spin Structures, a Review
by Hung T. Diep
Symmetry 2022, 14(8), 1716; https://doi.org/10.3390/sym14081716 - 17 Aug 2022
Cited by 4 | Viewed by 4962
Abstract
In this review, we trace the evolution of the quantum spin-wave theory treating non-collinear spin configurations. Non-collinear spin configurations are consequences of the frustration created by competing interactions. They include simple chiral magnets due to competing nearest-neighbor (NN) and next-NN interactions and systems [...] Read more.
In this review, we trace the evolution of the quantum spin-wave theory treating non-collinear spin configurations. Non-collinear spin configurations are consequences of the frustration created by competing interactions. They include simple chiral magnets due to competing nearest-neighbor (NN) and next-NN interactions and systems with geometry frustration such as the triangular antiferromagnet and the Kagomé lattice. We review here spin-wave results of such systems and also systems with the Dzyaloshinskii–Moriya interaction. Accent is put on these non-collinear ground states which have to be calculated before applying any spin-wave theory to determine the spectrum of the elementary excitations from the ground states. We mostly show results obtained by the use of a Green’s function method. These results include the spin-wave dispersion relation and the magnetizations, layer by layer, as functions of T in 2D, 3D and thin films. Some new unpublished results are also included. Technical details and discussion on the method are shown and discussed. Full article
(This article belongs to the Special Issue Quantum Mechanics: Concepts, Symmetries, and Recent Developments)
Show Figures

Figure 1

12 pages, 1826 KB  
Article
Magnetic Behaviour of Perovskite Compositions Derived from BiFeO3
by Andrei N. Salak, João Pedro V. Cardoso, Joaquim M. Vieira, Vladimir V. Shvartsman, Dmitry D. Khalyavin, Elena L. Fertman, Alexey V. Fedorchenko, Anatoli V. Pushkarev, Yury V. Radyush, Nikolai M. Olekhnovich, Róbert Tarasenko, Alexander Feher and Erik Čižmár
Magnetochemistry 2021, 7(11), 151; https://doi.org/10.3390/magnetochemistry7110151 - 16 Nov 2021
Cited by 4 | Viewed by 3593
Abstract
The phase content and sequence, the crystal structure, and the magnetic properties of perovskite solid solutions of the (1−y)BiFeO3yBiZn0.5Ti0.5O3 series (0.05 ≤ y ≤ 0.90) synthesized under high pressure have been studied. [...] Read more.
The phase content and sequence, the crystal structure, and the magnetic properties of perovskite solid solutions of the (1−y)BiFeO3yBiZn0.5Ti0.5O3 series (0.05 ≤ y ≤ 0.90) synthesized under high pressure have been studied. Two perovskite phases, namely the rhombohedral R3c and the tetragonal P4mm, which correspond to the structural types of the end members, BiFeO3 and BiZn0.5Ti0.5O3, respectively, were revealed in the as-synthesized samples. The rhombohedral and the tetragonal phases were found to coexist in the compositional range of 0.30 ≤ y ≤ 0.90. Magnetic properties of the BiFe1−y[Zn0.5Ti0.5]yO3 ceramics with y < 0.30 were measured as a function of temperature. The obtained compositional variations of the normalized unit-cell volume and the Néel temperature of the BiFe1−y[Zn0.5Ti0.5]yO3 perovskites in the range of their rhombohedral phase were compared with the respective dependences for the BiFe1−yB3+yO3 perovskites (where B3+ = Ga, Co, Mn, Cr, and Sc). The role of the high-pressure synthesis in the formation of the antiferromagnetic states different from the modulated cycloidal one characteristic of the parent BiFeO3 is discussed. Full article
(This article belongs to the Special Issue Ferromagnetism)
Show Figures

Figure 1

26 pages, 4802 KB  
Review
Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium Iridates
by Peitao Liu and Cesare Franchini
Appl. Sci. 2021, 11(6), 2527; https://doi.org/10.3390/app11062527 - 11 Mar 2021
Cited by 11 | Viewed by 4512
Abstract
In this review, we provide a survey of the application of advanced first-principle methods on the theoretical modeling and understanding of novel electronic, optical, and magnetic properties of the spin-orbit coupled Ruddlesden–Popper series of iridates Srn+1IrnO [...] Read more.
In this review, we provide a survey of the application of advanced first-principle methods on the theoretical modeling and understanding of novel electronic, optical, and magnetic properties of the spin-orbit coupled Ruddlesden–Popper series of iridates Srn+1IrnO3n+1 (n = 1, 2, and ). After a brief description of the basic aspects of the adopted methods (noncollinear local spin density approximation plus an on-site Coulomb interaction (LSDA+U), constrained random phase approximation (cRPA), GW, and Bethe–Salpeter equation (BSE)), we present and discuss select results. We show that a detailed phase diagrams of the metal–insulator transition and magnetic phase transition can be constructed by inspecting the evolution of electronic and magnetic properties as a function of Hubbard U, spin–orbit coupling (SOC) strength, and dimensionality n, which provide clear evidence for the crucial role played by SOC and U in establishing a relativistic (Dirac) Mott–Hubbard insulating state in Sr2IrO4 and Sr3Ir2O7. To characterize the ground-state phases, we quantify the most relevant energy scales fully ab initio—crystal field energy, Hubbard U, and SOC constant of three compounds—and discuss the quasiparticle band structures in detail by comparing GW and LSDA+U data. We examine the different magnetic ground states of structurally similar n = 1 and n = 2 compounds and clarify that the origin of the in-plane canted antiferromagnetic (AFM) state of Sr2IrO4 arises from competition between isotropic exchange and Dzyaloshinskii–Moriya (DM) interactions whereas the collinear AFM state of Sr3Ir2O7 is due to strong interlayer magnetic coupling. Finally, we report the dimensionality controlled metal–insulator transition across the series by computing their optical transitions and conductivity spectra at the GW+BSE level from the the quasi two-dimensional insulating n = 1 and 2 phases to the three-dimensional metallic n= phase. Full article
Show Figures

Figure 1

10 pages, 2732 KB  
Article
Magnetic Diagram of the High-Pressure Stabilized Multiferroic Perovskites of the BiFe1-yScyO3 Series
by Elena L. Fertman, Alexey V. Fedorchenko, Erik Čižmár, Serhii Vorobiov, Alexander Feher, Yury V. Radyush, Anatoli V. Pushkarev, Nikolai M. Olekhnovich, Andrius Stanulis, Andrew R. Barron, Dmitry D. Khalyavin and Andrei N. Salak
Crystals 2020, 10(10), 950; https://doi.org/10.3390/cryst10100950 - 17 Oct 2020
Cited by 10 | Viewed by 3733
Abstract
Magnetic properties of the high-pressure stabilized perovskite BiFe1-yScyO3 phases (0.1 ≤ y ≤ 0.9) have been studied by means of magnetization measurements and neutron diffraction. The metastable perovskites of this series undergo irreversible polymorphic transformations upon annealing, [...] Read more.
Magnetic properties of the high-pressure stabilized perovskite BiFe1-yScyO3 phases (0.1 ≤ y ≤ 0.9) have been studied by means of magnetization measurements and neutron diffraction. The metastable perovskites of this series undergo irreversible polymorphic transformations upon annealing, the phenomenon referred to as conversion polymorphism. It has been found that the solid solutions with y ≥ 0.70 exhibit no long-range magnetic ordering regardless of their polymorph modification, while those with y ≤ 0.60 are all antiferromagnets. Depending on the scandium content, temperature and structural distortions, three types of the antiferromagnetic orderings, involving collinear, canted and cycloidal spin arrangements, have been revealed in the phases obtained via conversion polymorphism and the corresponding magnetic phase diagram has been suggested. Full article
(This article belongs to the Special Issue Magnetіc Structure Compounds)
Show Figures

Figure 1

16 pages, 3213 KB  
Article
Skyrmions and Spin Waves in Magneto–Ferroelectric Superlattices
by Ildus F. Sharafullin and Hung T. Diep
Entropy 2020, 22(8), 862; https://doi.org/10.3390/e22080862 - 4 Aug 2020
Cited by 3 | Viewed by 4070
Abstract
We present in this paper the effects of Dzyaloshinskii–Moriya (DM) magneto–electric coupling between ferroelectric and magnetic interface atomic layers in a superlattice formed by alternate magnetic and ferroelectric films. We consider two cases: magnetic and ferroelectric films have the simple cubic lattice and [...] Read more.
We present in this paper the effects of Dzyaloshinskii–Moriya (DM) magneto–electric coupling between ferroelectric and magnetic interface atomic layers in a superlattice formed by alternate magnetic and ferroelectric films. We consider two cases: magnetic and ferroelectric films have the simple cubic lattice and the triangular lattice. In the two cases, magnetic films have Heisenberg spins interacting with each other via an exchange J and a DM interaction with the ferroelectric interface. The electrical polarizations of ±1 are assumed for the ferroelectric films. We determine the ground-state (GS) spin configuration in the magnetic film and study the phase transition in each case. In the simple cubic lattice case, in zero field, the GS is periodically non collinear (helical structure) and in an applied field H perpendicular to the layers, it shows the existence of skyrmions at the interface. Using the Green’s function method we study the spin waves (SW) excited in a monolayer and also in a bilayer sandwiched between ferroelectric films, in zero field. We show that the DM interaction strongly affects the long-wave length SW mode. We calculate also the magnetization at low temperatures. We use next Monte Carlo simulations to calculate various physical quantities at finite temperatures such as the critical temperature, the layer magnetization and the layer polarization, as functions of the magneto–electric DM coupling and the applied magnetic field. Phase transition to the disordered phase is studied. In the case of the triangular lattice, we show the formation of skyrmions even in zero field and a skyrmion crystal in an applied field when the interface coupling between the ferroelectric film and the ferromagnetic film is rather strong. The skyrmion crystal is stable in a large region of the external magnetic field. The phase transition is studied. Full article
Show Figures

Figure 1

12 pages, 3566 KB  
Article
Magnetic and Luminescent Properties of Isostructural 2D Coordination Polymers Based on 2-Pyrimidinecarboxylate and Lanthanide Ions
by Amalia García-García, Andoni Zabala-Lekuona, Ainhoa Goñi-Cárdenas, Javier Cepeda, José M. Seco, Alfonso Salinas-Castillo, Duane Choquesillo-Lazarte and Antonio Rodríguez-Diéguez
Crystals 2020, 10(7), 571; https://doi.org/10.3390/cryst10070571 - 2 Jul 2020
Cited by 7 | Viewed by 3484
Abstract
A couple of isostructural coordination polymers with the general formula [Ln4(pymca)4(AcO)8]n have been obtained from reactions between pyrimidine-2-carboxylate (pymca) ligand and rare-earth ions (Ln = Dy (1), Nd (2)). These two-dimensional compounds [...] Read more.
A couple of isostructural coordination polymers with the general formula [Ln4(pymca)4(AcO)8]n have been obtained from reactions between pyrimidine-2-carboxylate (pymca) ligand and rare-earth ions (Ln = Dy (1), Nd (2)). These two-dimensional compounds have been characterized and the crystal structures have been solved by single-crystal X-ray diffraction technique, resulting in layers along the bc plane based on pymca and acetate anions that act as bridging ligands between metal atoms. Given that pymca and acetate anions possess carboxylate and hetero-nitrogen groups, it is possible to build a coordination polymer whose metal centers have a nine coordination. Furthermore, static and dynamic magnetic measurements of compound 1 reveal the lack of single molecule-magnet (SMM) behavior in this system due to the following two effects: (i) the ligand field does not stabilize magnetic ground states well separated from excited states, and (ii) anisotropy axes are not collinear, according to results with Magellan software. On another level, luminescent properties of compounds 1 and 2 are attributed to singlet π-π* transitions centered on pymca ligand as corroborated by time-dependent density functional theory (TD-DFT) calculations. Full article
Show Figures

Graphical abstract

14 pages, 1502 KB  
Article
Assessing Relativistic Effects and Electron Correlation in the Actinide Metals Th to Pu
by Babak Sadigh, Andrey Kutepov, Alexander Landa and Per Söderlind
Appl. Sci. 2019, 9(23), 5020; https://doi.org/10.3390/app9235020 - 21 Nov 2019
Cited by 30 | Viewed by 4326
Abstract
Density functional theory (DFT) calculations are employed to explore and assess the effects of the relativistic spin–orbit interaction and electron correlations in the actinide elements. Specifically, we address electron correlations in terms of an intra-atomic Coulomb interaction with a Hubbard U parameter (DFT [...] Read more.
Density functional theory (DFT) calculations are employed to explore and assess the effects of the relativistic spin–orbit interaction and electron correlations in the actinide elements. Specifically, we address electron correlations in terms of an intra-atomic Coulomb interaction with a Hubbard U parameter (DFT + U). Contrary to recent beliefs, we show that for the ground-state properties of the light actinide elements Th to Pu, the DFT + U makes its best predictions for U = 0. Actually, our modeling suggests that the most popular DFT + U formulation leads to the wrong ground-state phase for plutonium. Instead, extending DFT and the generalized gradient approximation (GGA) with orbital–orbital interaction (orbital polarization; OP) is the most accurate approach. We believe the confusion in the literature on the subject mostly originates from incorrectly accounting for the spin–orbit (SO) interaction for the p1/2 state, which is not treated in any of the widely used pseudopotential plane-wave codes. Here, we show that for the actinides it suffices to simply discard the SO coupling for the p states for excellent accuracy. We thus describe a formalism within the projector-augmented-wave (PAW) scheme that allows for spin–orbit coupling, orbital polarization, and non-collinear magnetism, while retaining an efficient calculation of Hellmann–Feynman forces. We present results of the ground-state phases of all the light actinide metals (Th to Pu). Furthermore, we conclude that the contribution from OP is generally small, but substantial in plutonium. Full article
Show Figures

Figure 1

8 pages, 1620 KB  
Proceeding Paper
Spin Waves and Skyrmions in Magneto-Ferroelectric Superlattices: Theory and Simulation
by Hung T. Diep and Ildus F. Sharafullin
Proceedings 2020, 46(1), 3; https://doi.org/10.3390/ecea-5-06662 - 17 Nov 2019
Viewed by 1725
Abstract
We present in this paper the effects of Dzyaloshinskii–Moriya (DM) magnetoelectric coupling between ferroelectric and magnetic layers in a superlattice formed by alternate magnetic and ferroelectric films. Magnetic films are films of simple cubic lattice with Heisenberg spins interacting with each other via [...] Read more.
We present in this paper the effects of Dzyaloshinskii–Moriya (DM) magnetoelectric coupling between ferroelectric and magnetic layers in a superlattice formed by alternate magnetic and ferroelectric films. Magnetic films are films of simple cubic lattice with Heisenberg spins interacting with each other via an exchange J and a DM interaction with the ferroelectric interface. Electrical polarizations of ±1 are assigned at simple cubic lattice sites in the ferroelectric films. We determine the ground-state (GS) spin configuration in the magnetic film. In zero field, the GS is periodically non-collinear (helical structure) and in an applied field H perpendicular to the layers, it shows the existence of skyrmions at the interface. Using the Green’s function method we study the spin waves (SW) excited in a monolayer and also in a bilayer sandwiched between ferroelectric films, in zero field. We show that the DM interaction strongly affects the long-wave length SW mode. We calculate also the magnetization at low temperatures. We use next Monte Carlo simulations to calculate various physical quantities at finite temperatures such as the critical temperature, the layer magnetization and the layer polarization, as functions of the magneto-electric DM coupling and the applied magnetic field. Phase transition to the disordered phase is studied. Full article
Show Figures

Figure 1

27 pages, 6552 KB  
Review
Interplay of Spin and Spatial Anisotropy in Low-Dimensional Quantum Magnets with Spin 1/2
by Alžbeta Orendáčová, Róbert Tarasenko, Vladimír Tkáč, Erik Čižmár, Martin Orendáč and Alexander Feher
Crystals 2019, 9(1), 6; https://doi.org/10.3390/cryst9010006 - 21 Dec 2018
Cited by 11 | Viewed by 6619
Abstract
Quantum Heisenberg chain and square lattices are important paradigms of a low-dimensional magnetism. Their ground states are determined by the strength of quantum fluctuations. Correspondingly, the ground state of a rectangular lattice interpolates between the spin liquid and the ordered collinear Néel state [...] Read more.
Quantum Heisenberg chain and square lattices are important paradigms of a low-dimensional magnetism. Their ground states are determined by the strength of quantum fluctuations. Correspondingly, the ground state of a rectangular lattice interpolates between the spin liquid and the ordered collinear Néel state with the partially reduced order parameter. The diversity of additional exchange interactions offers variety of quantum models derived from the aforementioned paradigms. Besides the spatial anisotropy of the exchange coupling, controlling the lattice dimensionality and ground-state properties, the spin anisotropy (intrinsic or induced by the magnetic field) represents another important effect disturbing a rotational symmetry of the spin system. The S = 1/2 easy-axis and easy-plane XXZ models on the square lattice even for extremely weak spin anisotropies undergo Heisenberg-Ising and Heisenberg-XY crossovers, respectively, acting as precursors to the onset of the finite-temperature phase transitions within the two-dimensional Ising universality class (for the easy axis anisotropy) and a topological Berezinskii–Kosterlitz–Thouless phase transition (for the easy-plane anisotropy). Experimental realizations of the S = 1/2 two-dimensional XXZ models in bulk quantum magnets appeared only recently. Partial solutions of the problems associated with their experimental identifications are discussed and some possibilities of future investigations in quantum magnets on the square and rectangular lattice are outlined. Full article
(This article belongs to the Special Issue Molecular Magnets)
Show Figures

Figure 1

Back to TopTop