Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = collagen rheology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2611 KiB  
Article
Impact of Collagen on the Rheological and Transport Properties of Agarose Hydrogels
by Veronika Richterová, Alžběta Gjevik, Ondřej Vaculík, Jakub Vejrosta and Miloslav Pekař
Gels 2025, 11(6), 396; https://doi.org/10.3390/gels11060396 - 27 May 2025
Viewed by 546
Abstract
This work investigated how collagen addition affects the rheological and transport properties of agarose hydrogels. Collagen did not affect the rheological character of hydrogels (i.e., the overall shape of amplitude and frequency response curves) but changed their viscoelastic moduli and mesh size dependent [...] Read more.
This work investigated how collagen addition affects the rheological and transport properties of agarose hydrogels. Collagen did not affect the rheological character of hydrogels (i.e., the overall shape of amplitude and frequency response curves) but changed their viscoelastic moduli and mesh size dependent on the concentration of both constituents. The diffusion coefficients of the oppositely charged model dyes eosin B and methylene blue were determined in all hydrogels and demonstrated a profound effect of electrostatic interactions. Comparison with similar work with fibroin addition showed that while the effects of these proteins on the viscoelastic properties of a polysaccharide network can be similar, their impact on network transport properties may be different. Full article
(This article belongs to the Special Issue Rheological Properties and Applications of Gel-Based Materials)
Show Figures

Graphical abstract

18 pages, 2680 KiB  
Article
Rheology and Printability of Hydroxyapatite/Sodium Alginate Bioinks Added with Bovine or Fish Collagen Peptides
by Mario Milazzo, Roberta Rovelli, Claudio Ricci, Teresa Macchi, Giuseppe Gallone and Serena Danti
Gels 2025, 11(3), 209; https://doi.org/10.3390/gels11030209 - 15 Mar 2025
Viewed by 907
Abstract
The high biocompatibility and the key role of collagen in bone extracellular matrix make it useful for tissue engineering. However, the high demand, costs, and challenges of extracting good-quality collagen have led to the use of collagen derivatives and search for non-human alternatives. [...] Read more.
The high biocompatibility and the key role of collagen in bone extracellular matrix make it useful for tissue engineering. However, the high demand, costs, and challenges of extracting good-quality collagen have led to the use of collagen derivatives and search for non-human alternatives. This study investigates fish and bovine collagen peptides (Collf and Collb, respectively) as sustainable sources for 3D-printed bone scaffolds by developing and characterizing peptide-incorporated alginate/hydroxyapatite-based bioinks. The chemical analysis revealed structural similarities between the peptides, while rheological tests showed a slightly higher viscosity of Collf-based inks, which improved shape fidelity during the printing process. Upon oscillating rheological tests, both the Collf and Collb-based ink formulations demonstrated a solid-like behavior at frequencies higher than 0.4 Hz, which is crucial for maintaining the printed structure integrity during extrusion. Although Collb-based inks exhibited better pore printability, Collf-based inks achieved superior resolution and geometry retention. Macro-porous structures printed from both inks showed good accuracy, with minimal shrinkage attributed to hydroxyapatite. Both the produced inks had a high gel fraction and swelling behavior, with Collb-based outperforming Collf-based inks. Finally, both ink formulations resulted to be cytocompatibile with human dermal fibroblasts. These findings position Collf- and Collb-based inks as promising alternatives for bone tissue scaffolds, offering a sustainable balance between performance and structural stability in 3D printing applications. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Biomedical Application (2nd Edition))
Show Figures

Graphical abstract

22 pages, 5087 KiB  
Article
Dual Functionalization of Hyaluronan Dermal Fillers with Vitamin B3: Efficient Combination of Bio-Stimulation Properties with Hydrogel System Resilience Enhancement
by Alexandre Porcello, Michèle Chemali, Cíntia Marques, Corinne Scaletta, Kelly Lourenço, Philippe Abdel-Sayed, Wassim Raffoul, Nathalie Hirt-Burri, Lee Ann Applegate and Alexis Laurent
Gels 2024, 10(6), 361; https://doi.org/10.3390/gels10060361 - 24 May 2024
Cited by 4 | Viewed by 2955
Abstract
Hyaluronic acid (HA) hydrogels are commonly used for facial dermal filling and for alternative medical aesthetic purposes. High diversity exists in commercial formulations, notably for the optimization of finished product stability, functionality, and performance. Polyvalent ingredients such as calcium hydroxylapatite (CaHA) or vitamin [...] Read more.
Hyaluronic acid (HA) hydrogels are commonly used for facial dermal filling and for alternative medical aesthetic purposes. High diversity exists in commercial formulations, notably for the optimization of finished product stability, functionality, and performance. Polyvalent ingredients such as calcium hydroxylapatite (CaHA) or vitamin B3 (niacinamide) are notably used as bio-stimulants to improve skin quality attributes at the administration site. The aim of the present study was to perform multi-parametric characterization of two novel cross-linked dermal filler formulas (HAR-1 “Instant Refine” and HAR-3 “Maxi Lift”) for elucidation of the various functional impacts of vitamin B3 incorporation. Therefore, the HAR products were firstly comparatively characterized in terms of in vitro rheology, cohesivity, injectability, and resistance to chemical or enzymatic degradation (exposition to H2O2, AAPH, hyaluronidases, or xanthine oxidase). Then, the HAR products were assessed for cytocompatibility and in vitro bio-stimulation attributes in a primary dermal fibroblast model. The results showed enhanced resilience of the cohesive HAR hydrogels as compared to JUVÉDERM® VOLBELLA® and VOLUMA® reference products in a controlled degradation assay panel. Furthermore, significant induction of total collagen synthesis in primary dermal fibroblast cultures was recorded for HAR-1 and HAR-3, denoting intrinsic bio-stimulatory effects comparable or superior to those of the Radiesse® and Sculptra reference products. Original results of high translational relevance were generated herein using robust and orthogonal experimental methodologies (hydrogel degradation, functional benchmarking) and study designs. Overall, the reported results confirmed the dual functionalization role of vitamin B3 in cross-linked HA dermal fillers, with a significant enhancement of hydrogel system stability attributes and the deployment of potent bio-stimulatory capacities. Full article
Show Figures

Figure 1

18 pages, 6603 KiB  
Article
Comparison of Structural and Physicochemical Characteristics of Skin Collagen from Chum Salmon (Cold-Water Fish) and Nile Tilapia (Warm-Water Fish)
by Yan Zheng, Yushuang Li, Cong Ke, Xiyuan Gao, Zhiyu Liu and Junde Chen
Foods 2024, 13(8), 1213; https://doi.org/10.3390/foods13081213 - 16 Apr 2024
Cited by 4 | Viewed by 2511
Abstract
This study compared collagens from cold-water and warm-water fish for their structural, rheological, and functional properties, and explored their potential applications, aiming to realize the high-value utilization of marine biological resources. To this end, chum salmon skin collagen (CSSC) and Nile tilapia skin [...] Read more.
This study compared collagens from cold-water and warm-water fish for their structural, rheological, and functional properties, and explored their potential applications, aiming to realize the high-value utilization of marine biological resources. To this end, chum salmon skin collagen (CSSC) and Nile tilapia skin collagen (NTSC) were both successfully extracted. Collagens from the two species had different primary and secondary structures, with NTSC having a higher molecular weight, imino acid content, and α-helices and β-turns content. The denaturation temperatures were 12.01 °C for CSSC and 31.31 °C for NTSC. CSSC was dominated by viscous behavior and its structure varied with temperature, while NTSC was dominated by elastic behavior and its structure remained stable with temperature. Both collagens had good oil holding capacity, foaming capacity, and emulsifying activity, but NTSC had better water holding capacity and foaming and emulsifying stability. Their different properties make CSSC more suitable for the preservation of frozen and chilled foods and the production of sparkling beverages, and give NTSC greater potential in biofunctional materials and solid food processing. Full article
(This article belongs to the Special Issue High-Value Utilization of Marine Biological Resources)
Show Figures

Graphical abstract

18 pages, 4136 KiB  
Article
Dual-Delivery Temperature-Sensitive Hydrogel with Antimicrobial and Anti-Inflammatory Brevilin A and Nitric Oxide for Wound Healing in Bacterial Infection
by Linghui Ruan, Chengfeng Pan, Xianting Ran, Yonglan Wen, Rui Lang, Mei Peng, Jiafu Cao and Juan Yang
Gels 2024, 10(4), 219; https://doi.org/10.3390/gels10040219 - 24 Mar 2024
Cited by 4 | Viewed by 2154
Abstract
Bacterial infections impede the wound healing process and can trigger local or systemic inflammatory responses. Therefore, there is an urgent need to develop a dressing with antimicrobial and anti-inflammatory properties to promote the healing of infected wounds. In this study, BA/COs/NO-PL/AL hydrogels were [...] Read more.
Bacterial infections impede the wound healing process and can trigger local or systemic inflammatory responses. Therefore, there is an urgent need to develop a dressing with antimicrobial and anti-inflammatory properties to promote the healing of infected wounds. In this study, BA/COs/NO-PL/AL hydrogels were obtained by adding brevilin A (BA) camellia oil (CO) submicron emulsion and nitric oxide (NO) to hydrogels consisting of sodium alginate (AL) and Pluronic F127 (PL). The hydrogels were characterized through dynamic viscosity analysis, differential scanning calorimetry, and rheology. They were evaluated through anti-inflammatory, antimicrobial, and wound healing property analyses. The results showed that BA/COs/NO-PL/AL hydrogels were thermo-responsive and had good ex vivo and in vivo anti-inflammatory activity, and they also exhibited strong antimicrobial activity against methicillin-resistant Staphylococcus aureus Pseudomonas aeruginosa (MRPA) and methicillin-resistant Staphylococcus aureus (MRSA). They were able to effectively promote healing of the infected wound model and reduce inflammation and bacterial burden. H&E and Masson’s staining showed that BA/COs/NO-PL/AL hydrogels promoted normal epithelial formation and collagen deposition. In conclusion, BA/COs/NO-PL/AL hydrogels are promising candidates for promoting the healing of infected wounds. Full article
(This article belongs to the Special Issue Multifunctional Hydrogel for Wound Healing and Tissue Repair)
Show Figures

Graphical abstract

16 pages, 3453 KiB  
Article
Alginate Conjugation Increases Toughness in Auricular Chondrocyte Seeded Collagen Hydrogels
by Leigh Slyker and Lawrence J. Bonassar
Bioengineering 2023, 10(9), 1037; https://doi.org/10.3390/bioengineering10091037 - 4 Sep 2023
Cited by 3 | Viewed by 2123
Abstract
Current auricular cartilage replacements for pediatric microtia fail to address the need for long-term integration and neocartilage formation. While collagen hydrogels have been successful in fostering neocartilage formation, the toughness and extensibility of these materials do not match that of native tissue. This [...] Read more.
Current auricular cartilage replacements for pediatric microtia fail to address the need for long-term integration and neocartilage formation. While collagen hydrogels have been successful in fostering neocartilage formation, the toughness and extensibility of these materials do not match that of native tissue. This study used the N-terminal functionalization of collagen with alginate oligomers to improve toughness and extensibility through metal–ion complexation. Alginate conjugation was confirmed via FTIR spectroscopy. The retention of native collagen fibrillar structure, thermal gelation, and helical conformation in functionalized gels was confirmed via scanning electron microscopy, oscillatory shear rheology, and circular dichroism spectroscopy, respectively. Alginate–calcium complexation enabled a more than two-fold increase in modulus and work density in functionalized collagen with the addition of 50 mM CaCl2, whereas unmodified collagen decreased in both modulus and work density with increasing calcium concentration. Additionally, the extensibility of alginate-functionalized collagen was increased at 25 and 50 mM CaCl2. Following 2-week culture with auricular chondrocytes, alginate-functionalization had no effect on the cytocompatibility of collagen gels, with no effects on cell density, and increased glycosaminoglycan deposition. Custom MATLAB video analysis was then used to quantify fracture toughness, which was more than 5-fold higher following culture in functionalized collagen and almost three-fold higher in unmodified collagen. Full article
(This article belongs to the Special Issue Cartilage and Bone Tissue Engineering for Craniofacial Reconstruction)
Show Figures

Graphical abstract

23 pages, 11998 KiB  
Article
Creation of Chemically Tri-Layered Collagen Crosslinked Membranes and Their Comparison with Ionically Tri-Layered Chitosan Crosslinked Membranes to Study Human Skin Properties
by Larry Galán-Navea, Rocío Guerle-Cavero, Albert Balfagón-Costa and Beatriz Artalejo-Ortega
Int. J. Mol. Sci. 2023, 24(17), 13443; https://doi.org/10.3390/ijms241713443 - 30 Aug 2023
Cited by 1 | Viewed by 1746
Abstract
In 2009, a new European regulation came into force that forbade the use of animals in the cosmetics industry. As a result, new alternatives were sought, taking into account the new ethical considerations. The main objective of this article is to continue a [...] Read more.
In 2009, a new European regulation came into force that forbade the use of animals in the cosmetics industry. As a result, new alternatives were sought, taking into account the new ethical considerations. The main objective of this article is to continue a line of research that aims to build a physical model of skin from a biomaterial scaffold composed of collagen, chitosan or a combination to investigate whether they offer similar behavior to human skin. Collagen, the major component in the dermis, was crosslinked with glutaraldehyde (GTA) to develop three formulations for studying some properties of the skin through rheological tests like swelling index, elasticity or water loss. In addition, this article makes a comparison with the results obtained in the previous article where the membranes were made of chitosan and tripolyphosphate (TPP). The results obtained highlight that the tri-layered membranes scaffold better than the mono-layered ones to increase the elastic modulus (G′) and the permeability. Furthermore, they offer a protective effect against water loss compared to mono-layered membranes. As regards chitosan membranes, these have a higher G′ modulus than collagen membranes when the degree of deacetylation (DDA) is 85%. However, collagen membranes are more elastic when the DDA of chitosan is 76%, and their linear viscoelastic limit (LVL) doubles that of chitosan membranes, both for the degree of acetylation of 76 and 85%. Full article
(This article belongs to the Special Issue Advances and Applications of Polysaccharides)
Show Figures

Figure 1

26 pages, 2686 KiB  
Review
Polysaccharides and Structural Proteins as Components in Three-Dimensional Scaffolds for Breast Cancer Tissue Models: A Review
by Eva Pasquier, Jennifer Rosendahl, Amalie Solberg, Anders Ståhlberg, Joakim Håkansson and Gary Chinga-Carrasco
Bioengineering 2023, 10(6), 682; https://doi.org/10.3390/bioengineering10060682 - 3 Jun 2023
Cited by 8 | Viewed by 3104
Abstract
Breast cancer is the most common cancer among women, and even though treatments are available, efficiency varies with the patients. In vitro 2D models are commonly used to develop new treatments. However, 2D models overestimate drug efficiency, which increases the failure rate in [...] Read more.
Breast cancer is the most common cancer among women, and even though treatments are available, efficiency varies with the patients. In vitro 2D models are commonly used to develop new treatments. However, 2D models overestimate drug efficiency, which increases the failure rate in later phase III clinical trials. New model systems that allow extensive and efficient drug screening are thus required. Three-dimensional printed hydrogels containing active components for cancer cell growth are interesting candidates for the preparation of next generation cancer cell models. Macromolecules, obtained from marine- and land-based resources, can form biopolymers (polysaccharides such as alginate, chitosan, hyaluronic acid, and cellulose) and bioactive components (structural proteins such as collagen, gelatin, and silk fibroin) in hydrogels with adequate physical properties in terms of porosity, rheology, and mechanical strength. Hence, in this study attention is given to biofabrication methods and to the modification with biological macromolecules to become bioactive and, thus, optimize 3D printed structures that better mimic the cancer cell microenvironment. Ink formulations combining polysaccharides for tuning the mechanical properties and bioactive polymers for controlling cell adhesion is key to optimizing the growth of the cancer cells. Full article
(This article belongs to the Special Issue Bio-Applications of Soft Materials)
Show Figures

Figure 1

8 pages, 1144 KiB  
Communication
Characteristics of the Intestine Extracts and Their Effect on the Crude Collagen Fibers of the Body Wall from Sea Cucumber Apostichopus japonicus
by Shi-Qi Xu, Zheng-Yu Zhang, Bin Nie, Yi-Nan Du, Yue Tang and Hai-Tao Wu
Biology 2023, 12(5), 705; https://doi.org/10.3390/biology12050705 - 12 May 2023
Cited by 2 | Viewed by 2221
Abstract
Sea cucumbers Apostichopus japonicus will vomit their intestines during certain stimulations, and the collagen of the body wall will then be degraded. To define the effect of the sea cucumber intestine extracts on the body wall, the intestinal extracts and crude collagen fibers [...] Read more.
Sea cucumbers Apostichopus japonicus will vomit their intestines during certain stimulations, and the collagen of the body wall will then be degraded. To define the effect of the sea cucumber intestine extracts on the body wall, the intestinal extracts and crude collagen fibers (CCF) of sea cucumber A. japonicus were prepared. According to the gelatin zymography, the type of endogenous enzymes in intestinal extracts were mainly serine endopeptidases with optimal activities at pH 9.0 and 40 °C. According to the rheology results, the viscosity of 3% CCF decreased from 32.7 Pa·s to 5.3 Pa·s by adding intestine extracts. The serine protease inhibitor phenylmethanesulfonyl fluoride inhibited the activity of intestinal extracts and increased the viscosity of collagen fibers to 25.7 Pa·s. The results proved that serine protease in the intestinal extracts participated in the process of body wall softening in sea cucumbers. Full article
(This article belongs to the Special Issue Current Advances in Echinoderm Research)
Show Figures

Figure 1

17 pages, 6221 KiB  
Article
Polycaprolactone Electrospun Nanofiber Membrane with Skin Graft Containing Collagen and Bandage Containing MgO Nanoparticles for Wound Healing Applications
by Sadegh Nikfarjam, Yaqeen Aldubaisi, Vivek Swami, Vinay Swami, Gang Xu, Melville B. Vaughan, Roman F. Wolf and Morshed Khandaker
Polymers 2023, 15(9), 2014; https://doi.org/10.3390/polym15092014 - 24 Apr 2023
Cited by 11 | Viewed by 3075
Abstract
The objective of this study was to create a nanofiber-based skin graft with an antimicrobial bandage that could accelerate the healing of an open wound while minimizing infection. To this end, we prepared a bi-layer construct where the top layer acts as bandage, [...] Read more.
The objective of this study was to create a nanofiber-based skin graft with an antimicrobial bandage that could accelerate the healing of an open wound while minimizing infection. To this end, we prepared a bi-layer construct where the top layer acts as bandage, and the bottom layer acts as a dermal equivalent graft. A collagen (CG) gel was combined without and with an electrospun polycaprolactone (PCL) membrane to prepare CG and CG-PCL dermal equivalent constructs. The antibacterial properties of PCL with and without an antibacterial agent (MgO nanoparticles) against Staphylococcus aureus (ATCC 6538) was also examined. Human dermal fibroblasts were cultured in each construct to make the dermal equivalent grafts. After culturing, keratinocytes were plated on top of the tissues to allow growth of an epidermis. Rheological and durability tests were conducted on in vitro dermal and skin equivalent cultures, and we found that PCL significantly affects CG-PCL graft biological and mechanical strength (rheology and durability). PCL presence in the dermal equivalent allowed sufficient tension generation to activate fibroblasts and myofibroblasts in the presence of transforming growth factor-beta. During culture of the skin equivalents, optical coherence tomography (OCT) showed layers corresponding to dermal and epidermal compartments in the presence or absence of PCL; this was confirmed after fixed specimens were histologically sectioned and stained. MgO added to PCL showed antibacterial activity against S. aureus. In vivo animal studies using a rat skin model showed that a polycaprolactone nanofiber bandage containing a type I collagen skin graft has potential for wound healing applications. Full article
(This article belongs to the Special Issue Protein-Based Biopolymers)
Show Figures

Figure 1

18 pages, 3201 KiB  
Article
Rheological Method for Determining the Molecular Weight of Collagen Gels by Using a Machine Learning Technique
by Karina C. Núñez Carrero, Cristian Velasco-Merino, María Asensio, Julia Guerrero and Juan Carlos Merino
Polymers 2022, 14(17), 3683; https://doi.org/10.3390/polym14173683 - 5 Sep 2022
Cited by 3 | Viewed by 4521
Abstract
This article presents, for the first time, the results of applying the rheological technique to measure the molecular weights (Mw) and their distributions (MwD) of highly hierarchical biomolecules, such as non-hydrolyzed collagen gels. Due to the high viscosity of the studied gels, the [...] Read more.
This article presents, for the first time, the results of applying the rheological technique to measure the molecular weights (Mw) and their distributions (MwD) of highly hierarchical biomolecules, such as non-hydrolyzed collagen gels. Due to the high viscosity of the studied gels, the effect of the concentrations on the rheological tests was investigated. In addition, because these materials are highly sensitive to denaturation and degradation under mechanical stress and temperatures close to 40 °C, when frequency sweeps were applied, a mathematical adjustment of the data by machine learning techniques (artificial intelligence tools) was designed and implemented. Using the proposed method, collagen fibers of Mw close to 600 kDa were identified. To validate the proposed method, lower Mw species were obtained and characterized by both the proposed rheological method and traditional measurement techniques, such as chromatography and electrophoresis. The results of the tests confirmed the validity of the proposed method. It is a simple technique for obtaining more microstructural information on these biomolecules and, in turn, facilitating the design of new structural biomaterials with greater added value. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

15 pages, 2915 KiB  
Article
Utilizing Fish Skin of Ikan Belida (Notopterus lopis) as a Source of Collagen: Production and Rheology Properties
by Tzen T. Heng, Jing Y. Tey, Kean S. Soon and Kwan K. Woo
Mar. Drugs 2022, 20(8), 525; https://doi.org/10.3390/md20080525 - 18 Aug 2022
Cited by 2 | Viewed by 3053
Abstract
Collagen hydrogels have been extensively applied in biomedical applications. However, their mechanical properties are insufficient for such applications. Our previous study showed improved mechanical properties when collagen was blended with alginate. The current study aims to analyze the physico-chemical properties of collagen-alginate (CA) [...] Read more.
Collagen hydrogels have been extensively applied in biomedical applications. However, their mechanical properties are insufficient for such applications. Our previous study showed improved mechanical properties when collagen was blended with alginate. The current study aims to analyze the physico-chemical properties of collagen-alginate (CA) films such as swelling, porosity, denaturation temperature (Td), and rheology properties. Collagen was prepared from discarded fish skin of Ikan Belida (Notopterus lopis) that was derived from fish ball manufacturing industries and cross-linked with alginate from brown seaweed (Sargasum polycystum) of a local species as a means to benefit the downstream production of marine industries. CA hydrogels were fabricated with ratios (v/v) of 1:1, 1:4, 3:7, 4:1, and 7:3 respectively. FTIR spectrums of CA film showed an Amide I shift of 1636.12 cm−1 to 1634.64 cm−1, indicating collagen-alginate interactions. SEM images of CA films show a porous structure that varied from pure collagen. DSC analysis shows Td was improved from 61.26 °C (collagen) to 83.11 °C (CA 3:7). CA 4:1 swelled nearly 800% after 48 h, correlated with the of hydrogels porosity. Most CA demonstrated visco-elastic solid characteristics with greater storage modulus (G′) than lost modulus (G″). Shear thinning and non-Newtonian behavior was observed in CA with 0.4% to 1.0% (w/v) CaCl2. CA hydrogels that were derived from discarded materials shows promising potential to serve as a wound dressing or ink for bio printing in the future. Full article
(This article belongs to the Section Biomaterials of Marine Origin)
Show Figures

Figure 1

14 pages, 2218 KiB  
Article
Variation in Hydrogel Formation and Network Structure for Telo-, Atelo- and Methacrylated Collagens
by Malachy Kevin Maher, Jacinta F. White, Veronica Glattauer, Zhilian Yue, Timothy C. Hughes, John A. M. Ramshaw and Gordon G. Wallace
Polymers 2022, 14(9), 1775; https://doi.org/10.3390/polym14091775 - 27 Apr 2022
Cited by 8 | Viewed by 3173
Abstract
As the most abundant protein in the extracellular matrix, collagen has become widely studied in the fields of tissue engineering and regenerative medicine. Of the various collagen types, collagen type I is the most commonly utilised in laboratory studies. In tissues, collagen type [...] Read more.
As the most abundant protein in the extracellular matrix, collagen has become widely studied in the fields of tissue engineering and regenerative medicine. Of the various collagen types, collagen type I is the most commonly utilised in laboratory studies. In tissues, collagen type I forms into fibrils that provide an extended fibrillar network. In tissue engineering and regenerative medicine, little emphasis has been placed on the nature of the network that is formed. Various factors could affect the network structure, including the method used to extract collagen from native tissue, since this may remove the telopeptides, and the nature and extent of any chemical modifications and crosslinking moieties. The structure of any fibril network affects cellular proliferation and differentiation, as well as the overall modulus of hydrogels. In this study, the network-forming properties of two distinct forms of collagen (telo- and atelo-collagen) and their methacrylated derivatives were compared. The presence of the telopeptides facilitated fibril formation in the unmodified samples, but this benefit was substantially reduced by subsequent methacrylation, leading to a loss in the native self-assembly potential. Furthermore, the impact of the methacrylation of the collagen, which enables rapid crosslinking and makes it suitable for use in 3D printing, was investigated. The crosslinking of the methacrylated samples (both telo- and atelo-) was seen to improve the fibril-like network compared to the non-crosslinked samples. This contrasted with the samples of methacrylated gelatin, which showed little, if any, fibrillar or ordered network structure, regardless of whether they were crosslinked. Full article
Show Figures

Figure 1

29 pages, 12823 KiB  
Article
Characterization of Tuna Gelatin-Based Hydrogels as a Matrix for Drug Delivery
by Carolina Hermida-Merino, David Cabaleiro, Luis Lugo, Jesus Valcarcel, Jose Antonio Vázquez, Ivan Bravo, Alessandro Longo, Georges Salloum-Abou-Jaoude, Eduardo Solano, Carlos Gracia-Fernández, Manuel M. Piñeiro and Daniel Hermida-Merino
Gels 2022, 8(4), 237; https://doi.org/10.3390/gels8040237 - 12 Apr 2022
Cited by 25 | Viewed by 5200
Abstract
The skin of yellowfin tuna is one of the fishery industry solid residues with the greatest potential to add extra value to its circular economy that remains yet unexploited. Particularly, the high collagen content of fish skin allows generating gelatin by hydrolysis, which [...] Read more.
The skin of yellowfin tuna is one of the fishery industry solid residues with the greatest potential to add extra value to its circular economy that remains yet unexploited. Particularly, the high collagen content of fish skin allows generating gelatin by hydrolysis, which is ideal for forming hydrogels due to its biocompatibility and gelling capability. Hydrogels have been used as drug carriers for local administration due to their mechanical properties and drug loading capacity. Herein, novel tuna gelatin hydrogels were designed as drug vehicles with two structurally different antitumoral model compounds such as Doxorubicin and Crocin to be administrated locally in tissues with complex human anatomies after surgical resection. The characterization by gel permeation chromatography (GPC) of purified gelatin confirmed their heterogeneity composition, exhibiting three major bands that correspond to the β and α chains along with high molecular weight species. In addition, the Fourier Transform Infrared (FT-IR) spectra of gelatin probed the secondary structure of the gelatin showing the simultaneous existence of α helix, β sheet, and random coil structures. Morphological studies at different length scales were performed by a multi-technique approach using SAXS/WAXS, AFM and cryo-SEM that revealed the porous network formed by the interaction of gelatin planar aggregates. In addition, the sol-gel transition, as well as the gelation point and the hydrogel strength, were studied using dynamic rheology and differential scanning calorimetry. Likewise, the loading and release profiles followed by UV-visible spectroscopy indicated that the novel gelatin hydrogels improve the drug release of Doxorubicin and Crocin in a sustained fashion, indicating the structure-function importance in the material composition. Full article
(This article belongs to the Collection Hydrogel in Tissue Engineering and Regenerative Medicine)
Show Figures

Figure 1

14 pages, 3781 KiB  
Article
Chitosan and Collagen-Based Materials Enriched with Curcumin (Curcuma longa): Rheological and Morphological Characterization
by Eduardo P. Milan, Mirella Romanelli V. Bertolo, Virginia C. A. Martins, Stanislau Bogusz Junior and Ana Maria G. Plepis
Polysaccharides 2022, 3(1), 236-249; https://doi.org/10.3390/polysaccharides3010013 - 17 Feb 2022
Cited by 10 | Viewed by 3788
Abstract
In this study, chitosan and collagen (Ch: Col)-based materials containing curcumin (Cur) as a bioactive compound were developed for wound-healing purposes. The effects of incorporating curcumin and increasing its concentration on both the rheological properties of the formed solutions and the morphological and [...] Read more.
In this study, chitosan and collagen (Ch: Col)-based materials containing curcumin (Cur) as a bioactive compound were developed for wound-healing purposes. The effects of incorporating curcumin and increasing its concentration on both the rheological properties of the formed solutions and the morphological and thermal properties of the three-dimensional scaffolds obtained from them were evaluated. Rheology showed that the presence of curcumin resulted in solutions with a solid-like behavior (G’ > G″), higher collagen denaturation temperatures, and higher viscosities, favoring their use as biomaterials for wound healing. A greater cross-linking effect was observed at higher curcumin concentrations, possibly between the amino groups from both polymers and the hydroxyl and keto groups from the polyphenol. Such cross-linking was responsible for the delay in the onset of degradation of the scaffolds by 5 °C, as revealed by thermogravimetric analysis. Moreover, the pore diameter distribution profile of the scaffolds changed with increasing curcumin concentration; a greater number of pores with diameters between 40 and 60 µm was observed for the scaffold with the highest curcumin content (50 mg), which would be the most suitable for the proposed application. Thus, the materials developed in this study are presented as promising biomaterials for their biological evaluation in tissue regeneration. Full article
Show Figures

Graphical abstract

Back to TopTop