Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (135)

Search Parameters:
Keywords = cold-press extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4295 KiB  
Article
Acrocomia aculeata Oil-Loaded Nanoemulsion: A Promising Candidate for Cancer and Diabetes Management
by Ariadna Lafourcade Prada, Jesus Rafael Rodríguez Amado, Renata Trentin Perdomo, Giovanna Bicudo Gomes, Danielle Ayr Tavares de Almeida, Leandro Fontoura Cavalheiro, Arquimedes Gasparotto Junior, Serafim Florentino Neto and Marco Antonio Utrera Martines
Pharmaceuticals 2025, 18(8), 1094; https://doi.org/10.3390/ph18081094 - 24 Jul 2025
Viewed by 299
Abstract
Background: Diabetes and cancer are two of the most life-threatening disorders affecting individuals of all ages worldwide. This study aimed to develop a novel Acrocomia aculeata (bocaiuva) fruit pulp oil-loaded nanoemulsion and evaluate its inhibitory effects on α-glucosidase and pancreatic lipase, as well [...] Read more.
Background: Diabetes and cancer are two of the most life-threatening disorders affecting individuals of all ages worldwide. This study aimed to develop a novel Acrocomia aculeata (bocaiuva) fruit pulp oil-loaded nanoemulsion and evaluate its inhibitory effects on α-glucosidase and pancreatic lipase, as well as its antiglycant activity and cytotoxicity against cancer cells. Additionally, this study assessed the impact of both the oil and the nanoemulsion on blood cells. Methods: The pulp oil was extracted by cold pressing. The oil’s physicochemical properties were determined according to the AOAC and the Brazilian Pharmacopeia. The lipid profile was performed by GC-MS. The nanoemulsion was prepared by the phase inversion method using ultrasonic stirring for particle size reduction and for homogenization. Response Surface Methodology was used for optimizing nanoemulsion preparation. Enzyme inhibition tests were conducted using assay kits. Cytotoxicity in cancer cells was evaluated using the Sulforhodamine B assay. Results: Comprehensive physicochemical and chemical characterization of bocaiuva oil was performed, identifying oleic acid (71.25%) as the main component. The oil contains 23.04% saturated fatty acids, 73.79% monounsaturated acids, and 3.0% polyunsaturated fatty acids. The nanoemulsion (particle size 173.6 nm; zeta potential −14.10 mV) inhibited α-glucosidase (IC50: 43.21 µg/mL) and pancreatic lipase (IC50: 41.99 µg/mL), and revealed a potent antiglycation effect (oxidative IC50: 18.36 µg/mL; non-oxidative pathway IC50: 16.33 µg/mL). The nanoemulsion demonstrated good cytotoxicity and selectivity against prostate cancer cells (IC50: 19.13 µg/mL) and breast cancer cells (IC50: 27.22 µg/mL), without inducing hemolysis, platelet aggregation, or anticoagulant effects. Conclusions: In this study, a comprehensive physical and chemical characterization of bocaiuva fruit pulp oil was conducted for the first time as a preliminary step toward its future standardization as an active ingredient in cosmetic and pharmaceutical formulations. The resulting nanoemulsion represents a novel alternative for managing diabetes and cancer. Although the nanoemulsion exhibited lower cytotoxicity compared to doxorubicin, it remains promising due to its composition of essential fatty acids, phenols, and carotenoids, which offer multiple health benefits. Further studies are needed to validate its efficacy and safety in clinical applications. Full article
(This article belongs to the Special Issue Nanotechnology in Biomedical Applications)
Show Figures

Graphical abstract

18 pages, 1321 KiB  
Article
In Silico Proteomic Profiling and Bioactive Peptide Potential of Rapeseed Meal
by Katarzyna Garbacz, Jacek Wawrzykowski, Michał Czelej and Adam Waśko
Foods 2025, 14(14), 2451; https://doi.org/10.3390/foods14142451 - 12 Jul 2025
Viewed by 366
Abstract
Rapeseed meal, a byproduct of oil extraction, is increasingly recognised as a valuable source of plant protein and health-promoting peptides. This study aimed to identify key proteins in cold-pressed rapeseed meal and assess their potential to release bioactive peptides through in silico hydrolysis [...] Read more.
Rapeseed meal, a byproduct of oil extraction, is increasingly recognised as a valuable source of plant protein and health-promoting peptides. This study aimed to identify key proteins in cold-pressed rapeseed meal and assess their potential to release bioactive peptides through in silico hydrolysis using plant-derived proteases, namely papain, bromelain, and ficin. Proteomic profiling via two-dimensional electrophoresis and MALDI-TOF/TOF mass spectrometry revealed cruciferin as the dominant protein, along with other metabolic and defence-related proteins. In silico digestion of these sequences using the BIOPEP database generated thousands of peptide fragments, of which over 50% were predicted to exhibit bioactivities, including ACE and DPP-IV inhibition, as well as antioxidant, neuroprotective, and anticancer effects. Among the evaluated enzymes, bromelain exhibited the highest efficacy, yielding the greatest quantity and diversity of bioactive peptides. Notably, peptides with antihypertensive and antidiabetic properties were consistently identified across all of the protein and enzyme variants. Although certain rare functions, such as anticancer and antibacterial activities, were observed only in specific hydrolysates, their presence underscores the broader functional potential of peptides derived from rapeseed. These findings highlight the potential of rapeseed meal as a sustainable source of functional ingredients while emphasising the necessity for experimental validation to confirm the predicted bioactivities. Full article
Show Figures

Figure 1

23 pages, 2789 KiB  
Article
Batch and Continuous Lipase-Catalyzed Production of Dietetic Structured Lipids from Milk Thistle, Grapeseed, and Apricot Kernel Oils
by Şuheda Akbaş, Natália M. Osório and Suzana Ferreira-Dias
Molecules 2025, 30(9), 1943; https://doi.org/10.3390/molecules30091943 - 27 Apr 2025
Viewed by 556
Abstract
The sustainable production of healthy structured lipids (SLs) using oils extracted from agro-industry by-products or non-conventional lipid sources is of utmost importance in the framework of a circular bioeconomy, toward a zero-waste goal. In this study, low-calorie triacylglycerols (TAGs) containing a long-chain (L) [...] Read more.
The sustainable production of healthy structured lipids (SLs) using oils extracted from agro-industry by-products or non-conventional lipid sources is of utmost importance in the framework of a circular bioeconomy, toward a zero-waste goal. In this study, low-calorie triacylglycerols (TAGs) containing a long-chain (L) fatty acid (FA) at position sn-2 and medium-chain (M) FAs at positions sn-1,3 (MLM type SL) were obtained from virgin cold-pressed milk thistle (51.55% linoleic acid; C18:2), grapeseed (66.62% C18:2), and apricot kernel (68.61% oleic acid; C18:1) oils. Lipase-catalyzed acidolysis with capric acid (C10:0) or interesterification with ethyl caprate (C10 Ethyl) in solvent-free media were performed. In batch reactions, immobilized Rhizomucor miehei lipase (Lipozyme RM) was used as a biocatalyst. For all tested oils, new TAG (SL) yields, varying from 61 to 63%, were obtained after 6 h of interesterification. Maximum new TAG yields were reached after 6, 24, and 30 h of acidolysis with grapeseed (64.7%), milk thistle (56.1%), or apricot kernel (69.7%) oils, respectively. Continuous acidolysis and interesterification of grapeseed oil were implemented in a packed-bed bioreactor, catalyzed by immobilized Thermomyces lanuginosus lipase (Lipozyme TL IM). Throughout 150 h of continuous operation, no lipase deactivation was observed, with average SL yields of 79.2% ± 4.1 by interesterification and 61.5% ± 5.91 by acidolysis. Full article
(This article belongs to the Section Bioactive Lipids)
Show Figures

Figure 1

23 pages, 2986 KiB  
Article
Optimization and Impact of Ultrasound-Assisted Extraction on Pomegranate Seed Oil Quality: A Comparative Study of Bioactive Potential and Oxidation Parameters
by Marta Siol, Iga Piasecka, Diana Mańko-Jurkowska, Agata Górska and Joanna Bryś
Molecules 2025, 30(8), 1837; https://doi.org/10.3390/molecules30081837 - 19 Apr 2025
Cited by 1 | Viewed by 588
Abstract
Pomegranate seed oil (PSO), a by-product of juice production, is rich in bioactive compounds, especially punicic acid, and has significant potential for health and industrial applications. The present study aimed to optimize an ultrasound-assisted extraction (UAE) of PSO and compare its effectiveness with [...] Read more.
Pomegranate seed oil (PSO), a by-product of juice production, is rich in bioactive compounds, especially punicic acid, and has significant potential for health and industrial applications. The present study aimed to optimize an ultrasound-assisted extraction (UAE) of PSO and compare its effectiveness with conventional methods such as cold pressing and Soxhlet extraction. A Box–Behnken design was used to determine the optimal UAE parameters (amplitude 46%, 12 min, L/S ratio 19 mL/g), yielding 12.67% oil with the highest oxidative stability (τmax = 5.44 min). Compared to Soxhlet and cold-pressed methods, UAE gave the highest yield, but slightly lower levels of total polyphenols and antioxidant activity. Cold-pressed oil retained the most bioactive compounds, but showed reduced oxidative stability and higher susceptibility to degradation. Soxhlet extraction provided moderate antioxidant capacity and the highest punicic acid content, but exceeded the recommended limits for acid value. Overall, the UAE offers an effective balance between yield, quality, and sustainability, with minimal thermal degradation and reduced solvent consumption. The results confirm that UAE is a promising alternative for high-quality PSO extraction, although cold pressing remains superior in preserving sensitive bioactive components. Ultimately, this study underscores that the extraction method plays a decisive role in determining the functional quality and oxidative stability of PSO, with UAE standing out as the most efficient and environmentally favorable approach. Full article
Show Figures

Figure 1

14 pages, 1028 KiB  
Article
How Does Extended Maceration Affect Tannin and Color of Red Wines from Cold-Hardy Grape Cultivars?
by Aude A. Watrelot and Nicolas Delchier
Foods 2025, 14(7), 1187; https://doi.org/10.3390/foods14071187 - 28 Mar 2025
Cited by 1 | Viewed by 698
Abstract
Red wines produced with interspecific grape cultivars tend to have low tannin concentration and are therefore unbalanced. Extended maceration (EM) is a common winemaking technique which can promote the extraction of tannins from grape skins and seeds. The goal of this study was [...] Read more.
Red wines produced with interspecific grape cultivars tend to have low tannin concentration and are therefore unbalanced. Extended maceration (EM) is a common winemaking technique which can promote the extraction of tannins from grape skins and seeds. The goal of this study was to evaluate the effect of EM on the tannin concentration, color intensity and other chemical properties of red wines made from cold-hardy grape cultivars. The wines were made from two cold-hardy interspecific grape cultivars (Marquette, and Petite Pearl) for either 7 days (control) or 21 days (EM) before pressing. Chemical analysis of the wines was conducted to determine their tannin concentration and color parameters at different stages of the process and after 14 months of aging. EM resulted in an improvement in the iron-reactive phenolic content of Marquette red wines (from 582 to 969 mg/L at bottling in control and EM wines, respectively), but no significant improvement in tannin content. The hue of Petite Pearl wines increased following EM only at pressing, and color intensity of those wines decreased at pressing and bottling by 43% and 52%, respectively. This study was the first one conducted on non-Vitis vinifera grapes which showed a lack of impact of EM on the phenolics and tannin concentration in the red wines made in 2022. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

25 pages, 4031 KiB  
Article
Flaxseed Oilcake: An Ingredient with High Nutritional Value in the Realization of Innovative Food Products
by Ancuța Petraru, Sonia Amariei and Lăcrimioara Senila
Foods 2025, 14(7), 1087; https://doi.org/10.3390/foods14071087 - 21 Mar 2025
Viewed by 939
Abstract
The by-products of the oil cold pressing of flaxseed are deemed to be safe, edible products. They have been shown to possess high nutritional value (compared with the seeds, they are richer in proteins and minerals) and adequate functional parameters (i.e., a high [...] Read more.
The by-products of the oil cold pressing of flaxseed are deemed to be safe, edible products. They have been shown to possess high nutritional value (compared with the seeds, they are richer in proteins and minerals) and adequate functional parameters (i.e., a high water-holding capacity and emulsion stability). In oilcakes, we found a portion of oil that was richer in unsaturated fatty acids (87.90%) than flax seeds (57.40%). Mg predominates in flax seeds, while Ce is predominant in flaxseed oilcake. Regarding essential amino acids, the seeds (76.71%) were found to be richer than the oilcake (70.46%). The use of methanol, low extraction temperatures, s high ultrasonic amplitude, and longer times resulted in the highest antioxidant capacity and phenolic content for flaxseed oilcake. Our analyses showed that oilcakes can be utilized as a functional ingredient or for the extraction of bioactive compounds, which can be incorporated into food products due to their nutritional, social, and economic benefits. Full article
(This article belongs to the Special Issue Discovery and Valorization of New Food Matrices)
Show Figures

Figure 1

19 pages, 3064 KiB  
Article
Influence of Hull and Impurity Content in High-Oleic Sunflower Seeds on Pressing Efficiency and Cold-Pressed Oil Yield
by Tanja Lužaić, Gjore Nakov, Snežana Kravić, Siniša Jocić and Ranko Romanić
Appl. Sci. 2025, 15(6), 3012; https://doi.org/10.3390/app15063012 - 11 Mar 2025
Viewed by 1001
Abstract
This study investigates the effects of hull and impurity content on the efficiency of cold-pressing high-oleic sunflower seeds using a screw press. High-oleic sunflower oil is valued for its oxidative stability and health benefits, and optimizing pressing conditions is crucial for maximizing yield [...] Read more.
This study investigates the effects of hull and impurity content on the efficiency of cold-pressing high-oleic sunflower seeds using a screw press. High-oleic sunflower oil is valued for its oxidative stability and health benefits, and optimizing pressing conditions is crucial for maximizing yield and maintaining oil quality. The identification of high-oleic sunflower oil was performed by analyzing its fatty acid composition, iodine value, and refractive index. Eleven seed samples with varying hull and impurity contents were processed to assess their impact on cake composition, pressing efficiency, and pressing oil yield. Oil yield ranged from 39.24% to 76.52%, with higher hull content contributing to increased yield due to its role in facilitating oil drainage. Multiple linear regression models were developed to predict moisture and oil content in the cake, as well as pressing efficiency, based on hull and impurity content, demonstrating strong predictive accuracy. These parameters were selected as they represent economically significant indicators, given that moisture and oil content indirectly reflect the protein content in the cake, while sunflower cake is primarily used as animal feed. Additionally, pressing efficiency indicates oil yield during pressing, which is the most critical economic parameter of the cold-pressing process. Cluster analysis identified three sample groups with distinct characteristics, revealing interactions between seed composition and pressing performance. The results highlight the significance of seed preparation in optimizing cold-pressing efficiency and provide insights for improving oil extraction processes. These findings support the industrial application of high-oleic sunflower seed pressing and contribute to the development of sustainable, high-quality oil production methods. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

16 pages, 1152 KiB  
Article
Comprehensive Evaluation of the Nutritional Quality of Stored Watermelon Seed Oils
by Marta Siol, Beata Witkowska, Diana Mańko-Jurkowska, Sina Makouie and Joanna Bryś
Appl. Sci. 2025, 15(2), 830; https://doi.org/10.3390/app15020830 - 16 Jan 2025
Cited by 2 | Viewed by 1426
Abstract
The appropriate use of food industry by-products such as watermelon seeds could reduce the problem of food waste, following the “zero waste” concept. Research in recent years suggests that these unused waste products could be a source of nutrients and bioactive compounds. Accordingly, [...] Read more.
The appropriate use of food industry by-products such as watermelon seeds could reduce the problem of food waste, following the “zero waste” concept. Research in recent years suggests that these unused waste products could be a source of nutrients and bioactive compounds. Accordingly, the present study aimed to evaluate the nutritional potential and selected quality parameters of watermelon seed oils. Four commercial oils (three unrefined cold-pressed and one refined pressed) and one self-extracted oil were considered. The oils were analyzed over three months of storage after opening/extraction to determine their fatty acid (FA) composition and distribution, hydrolytic and oxidative stability, and selected health indices. Linoleic acid was the predominant FA, ranging from 52.9% (refined oil) to 62.2% (self-extracted oil). Refined oil demonstrated superior oxidative stability, with the lowest acid value (AV) and peroxide value (PV) throughout the storage period, adhering to the Codex Alimentarius standards. Unrefined oils, particularly WO3, showed significantly higher AVs and PVs after storage, indicating greater susceptibility to hydrolytic and oxidative changes. Health indices were favorable for all oils, with self-extracted oil exhibiting the highest health-promoting index (7.07) and hypocholesterolemic/hypercholesterolemic ratio (7.18). Oxidative stability showed that self-extracted oil had significantly higher stability (76.6 min) than other tested oils, despite having the highest PUFA content. In turn, refinement has a significant effect on the AVs and PVs and the oxidative stability of oil, achieving the lowest PUFA level (53.61%). These results emphasize the potential of watermelon seed oil as a health-promoting product and emphasize the role of production and storage conditions in maintaining its quality. Full article
(This article belongs to the Special Issue Advanced Food Processing Technologies and Approaches)
Show Figures

Figure 1

13 pages, 669 KiB  
Review
Nutritional and Industrial Insights into Hemp Seed Oil: A Value-Added Product of Cannabis sativa L.
by Aggeliki Mygdalia, Ioannis Panoras, Eirini Vazanelli and Eleni Tsaliki
Seeds 2025, 4(1), 5; https://doi.org/10.3390/seeds4010005 - 15 Jan 2025
Viewed by 2283
Abstract
Industrial hemp is mainly cultivated for its fibers aimed at the production of textiles, paper, and cordage; the inflorescences for medicinal purposes; and the seeds are used by the food industry due to their high nutritional and functional matrix of protein, fiber, lipids, [...] Read more.
Industrial hemp is mainly cultivated for its fibers aimed at the production of textiles, paper, and cordage; the inflorescences for medicinal purposes; and the seeds are used by the food industry due to their high nutritional and functional matrix of protein, fiber, lipids, and microelements. Hemp seed oil (HsO) is a unique source of polyunsaturated fatty acids, with a phenomenal ω6:ω3 ratio of 2.5–3.0, significantly enhancing human health when consumed daily. HsO is mostly obtained through cold pressing due to minimal thermal treatment, and although of lower yield compared to solvent extraction, it presents higher quality lipid fractions and organoleptic characteristics such as color, taste, flavor, and density. Although HsO is a powerful source of polyunsaturated fatty acids, antioxidants, and phytosterols, its production lacks standardized quality control parameters, except for THC, which is subject to EU legislation. Therefore, it is essential to build up a quality protocol system for standardizing seed conservation, oil extraction methods, and quality parameters. This review aims to display an overall nutritional framework of the HsO and encourage further research into its use in the food value chain. Full article
Show Figures

Figure 1

16 pages, 741 KiB  
Article
The Effects of Mineral Supplementation in Rapeseed Cake Diet on Thyroid Function and Meat Quality in Broiler Chickens
by Tamás Tóth, Rita Éva Horváth, Ottó Dóka, Mihály Kovács and Hedvig Fébel
Agriculture 2024, 14(12), 2333; https://doi.org/10.3390/agriculture14122333 - 19 Dec 2024
Viewed by 959
Abstract
Rapeseed is a high-quality protein source; however, its quality primarily depends on the variety, origin, and processing method. This study aimed to examine the effectiveness of a mineral supplement (“Peelko”; 27% Ca, 3.5% Mg, 800 mg/kg Fe) in terms of whether it is [...] Read more.
Rapeseed is a high-quality protein source; however, its quality primarily depends on the variety, origin, and processing method. This study aimed to examine the effectiveness of a mineral supplement (“Peelko”; 27% Ca, 3.5% Mg, 800 mg/kg Fe) in terms of whether it is suitable for reducing the remaining antinutritional substances in cold-pressed rapeseed cake, thereby improving the nutrient content and digestibility of rapeseed. The experiment was carried out with 600 Ross-308 broilers divided into three feeding groups: the control diet contained extracted soybean meal, the R treatment included 10–15% cold-pressed rapeseed cake (in grower and finisher phases), and the R+ treatment consisted of the mineral supplement in addition to the cold-pressed rapeseed cake. R+ had a beneficial effect on the FCR in the grower and finisher feeding phases; moreover, it increased the weight of thyroid glands and the T3 and T4 hormone levels in the blood serum to a lesser extent than R when compared to C (p < 0.05). Diet-specific changes could be observed through the histological examination of thyroid glands, where the acini became larger when the unsupplemented cold-pressed rapeseed cake was fed (R group). Using the mineral supplement (R+ diet) decreased the acinus diameter compared to the R diet, with a similar value to that observed in control birds. The protein content in the breast and fat content in the thigh showed milder changes in R+ than R, compared to C (p < 0.05). The relative ratio of n-6 and n-3 fatty acids narrowed in both R and R+ meat samples compared to C (p < 0.05). R+ may have a more favorable effect on oxidation processes according to the better MDA values in fresh meat (p < 0.001) and samples after 1–2 months of storage (p < 0.05) than R when compared with C. The negative modifications in the color parameters (L*, a*, and b*) and the organoleptic properties of the meat were less significant with R+ than R, compared to the control (p < 0.05). According to the results of this study, the R+ treatment was able to reduce the antinutritional effects of rapeseed, as evident from the properties of the resulting animal products. Full article
Show Figures

Figure 1

18 pages, 687 KiB  
Article
Supercritical CO2 Extraction vs. Hexane Extraction and Cold Pressing: Comparative Analysis of Seed Oils from Six Plant Species
by Katja Schoss and Nina Kočevar Glavač
Plants 2024, 13(23), 3409; https://doi.org/10.3390/plants13233409 - 4 Dec 2024
Cited by 4 | Viewed by 2075
Abstract
Supercritical fluid extraction using carbon dioxide (SFE-CO2) brings a convincing advance in the production of plant oils used in cosmetics, in fortified foods and dietary supplements, and in pharmaceuticals and medicine. The SFE-CO2-extracted, hexane-extracted, and cold-pressed plant oils of [...] Read more.
Supercritical fluid extraction using carbon dioxide (SFE-CO2) brings a convincing advance in the production of plant oils used in cosmetics, in fortified foods and dietary supplements, and in pharmaceuticals and medicine. The SFE-CO2-extracted, hexane-extracted, and cold-pressed plant oils of pumpkin (Cucurbita pepo L.), flax (Linum usitatissimum L.), linden (Tilia sp.), poppy (Papaver somniferum L.), apricot (Prunus armeniaca L.), and marigold (Calendula officinalis L.) seeds were investigated in terms of oil yield, fatty acid composition, unsaponifiable matter yield and composition, and the antioxidant activity of unsaponifiable matter. SFE-CO2 proved to be the preferred extraction method for four out of six plant materials, especially for seeds with lower oil content. However, for seeds with higher oil content, such as apricots, cold pressing is a viable alternative. A comparison of fatty acid composition did not reveal significant differences between extraction techniques. SFE-CO2 extraction improved the total phytosterol content of oils, especially pumpkin seed oil. A high variability in the antioxidant potential of the unsaponifiable matter studied was determined, with pumpkin seed oil showing the highest antioxidant activity. A correlation analysis was performed between unsaponifiable composition and antioxidant activity, and showed statistically significant correlations with squalene, cycloartenol, and an unidentified compound. This is the first comparison of the phytosterol compositions of linseed, apricot, linden, and marigold. Through continued optimization, SFE-CO2 has the potential to revolutionize the production of plant oils and provide a sustainable and efficient alternative. Full article
Show Figures

Figure 1

18 pages, 3925 KiB  
Article
Novel PCR-Based Technology for the Detection of Sunflower in Edible and Used Cooking Oils
by Tamara Kutateladze, Kakha Karchkhadze, Kakha Bitskinashvili, Boris Vishnepolsky, Tata Ninidze, David Mikeladze and Nelly Datukishvili
Foods 2024, 13(23), 3760; https://doi.org/10.3390/foods13233760 - 24 Nov 2024
Viewed by 1258
Abstract
Reliable detection of sunflower (Helianthus annuus) in edible and used cooking oil (UCO) is crucial for the sustainable production of food and biodiesel. In this study, a variety of sunflower oils (crude, cold pressed, extra virgin, refined, and UCO) were examined [...] Read more.
Reliable detection of sunflower (Helianthus annuus) in edible and used cooking oil (UCO) is crucial for the sustainable production of food and biodiesel. In this study, a variety of sunflower oils (crude, cold pressed, extra virgin, refined, and UCO) were examined using different methods of DNA extraction and PCR amplification to develop an efficient technology for the identification of sunflower in oils. DNA extraction kits such as NucleoSpin Food, DNeasy mericon Food, and Olive Oil DNA Isolation as well as modified CTAB method were found to be able to isolate amplifiable genomic DNA from highly processed oils. Novel uniplex, double, and nested PCR systems targeting the sunflower-specific helianthinin gene were developed for efficient identification of sunflower. New sunflower DNA markers were revealed by uniplex PCRs. The combination of modified CTAB and nested PCR was demonstrated as a reliable, rapid, and cost-effective technology for detecting traces of sunflower in 700 μL of highly processed oil, including refined and used cooking oil. The study will contribute to both the food industry and the energy sector as developed methods can be used for oil authenticity testing in food and biodiesel production. Full article
Show Figures

Figure 1

17 pages, 319 KiB  
Article
Comparative Evaluation of Camelina Seed Oils Obtained by Cold-Pressing and Solvent Extraction
by Slađana Rakita, Nedeljka Spasevski, Ivan Savić, Ivana Savić Gajić, Jasmina Lazarević, Danka Dragojlović and Olivera Đuragić
Foods 2024, 13(22), 3605; https://doi.org/10.3390/foods13223605 - 11 Nov 2024
Cited by 1 | Viewed by 1629
Abstract
This study aimed to analyze the physicochemical properties and nutritional quality of oil extracted from the camelina seed genotypes NS Zlatka and NS Slatka, grown in Serbia, using both Soxhlet extraction with n-hexane and the cold-pressing technique. Extraction technique did not have [...] Read more.
This study aimed to analyze the physicochemical properties and nutritional quality of oil extracted from the camelina seed genotypes NS Zlatka and NS Slatka, grown in Serbia, using both Soxhlet extraction with n-hexane and the cold-pressing technique. Extraction technique did not have an effect on oil yield. Camelina oils exhibited satisfactory physicochemical characteristics, which were influenced by the extraction methods. The oils were rich in polyunsaturated fatty acids, with α-linolenic acid being the most abundant. They were characterized by a balanced ω-6 to ω-3 ratio (0.5), low atherogenicity index and thrombogenicity index values, and a relatively high hypocholesterolemic/hypercholesterolemic ratio. Cold-pressed oils contained significantly higher amounts of α- and γ-tocopherols and showed greater oxidative stability at moderate temperatures, as confirmed by the Schaal oven test. Despite this, their oxidative stability decreased at elevated temperatures (Rancimat test) compared to solvent-extracted oils. Conversely, solvent-extracted oils had higher levels of β-carotene and showed superior resistance to high-temperature conditions. Due to its unique characteristics, nutritional properties, and health-promoting attributes, cold-pressed camelina oil presents significant potential for application in food, nutraceutical, feed, and cosmetic industries. Full article
(This article belongs to the Special Issue Edible Oils: Composition, Processing and Nutritional Properties)
21 pages, 2483 KiB  
Article
Antioxidant Potential Evaluation at Various Stages of Black Cumin Oil Production
by Dobrochna Rabiej-Kozioł and Aleksandra Szydłowska-Czerniak
Foods 2024, 13(21), 3518; https://doi.org/10.3390/foods13213518 - 4 Nov 2024
Cited by 2 | Viewed by 1697
Abstract
Nigella sativa L. seeds and their industrial process products, oils, cake, and meal, are valuable sources of bioactive compounds with antioxidant properties. In this work, the effect of technological processes on the antioxidant capacity (AC) and total phenolic content (TPC) in the black [...] Read more.
Nigella sativa L. seeds and their industrial process products, oils, cake, and meal, are valuable sources of bioactive compounds with antioxidant properties. In this work, the effect of technological processes on the antioxidant capacity (AC) and total phenolic content (TPC) in the black cumin oils obtained by cold pressing and solvent extraction, as well as the by-products, were evaluated. The AC values of black cumin seeds (BCS), cold-pressed black cumin oil (BCCPO), black cumin oil extracted from seeds (BCEO-S), black cumin oil extracted from cake (BCEO-C), black cumin cake (BCC), and black cumin meal (BCM) were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and cupric reducing antioxidant capacity (CUPRAC) assays, whereas TPC in these samples was analyzed by the Folin–Ciocalteu (FC) method. Two applied conventional oil extraction methods, screw pressing and solvent extraction, significantly affected the AC and TPC in the obtained black cumin oils and by-products. The solvent-extracted black cumin oils revealed higher antioxidant properties (DPPH = 4041–16,500 μmol TE/100 g, CUPRAC = 1275–4827 μmol TE/100 g) than the cold-pressed black cumin oil (DPPH = 3451 μmol TE/100 g and CUPRAC = 3475 μmol TE/100 g). In addition, the oil yield (20.92–48.86%) and antioxidant properties of BCCPO (DPPH = 2933–5894 μmol TE/100 g and TPC = 135–199 mg GAE/100 g) and BCC (DPPH = 1890–2265 μmol TE/100 g and TPC = 284–341 mg GAE/100 g) closely depended on the nozzle diameters (5, 8, and 10 mm) mounted in a screw press. Although both by-products were a rich source of antioxidants, BCM had significantly lower CUPRAC (1514 μmol TE/100 g) and TPC (92 mg GAE/100 g) values than BCC (CUPRAC = 3397 μmol TE/100 g and TPC = 426 mg GAE/100 g). Nevertheless, acid hydrolysis and alkaline hydrolysis of BCM extracts significantly increased their antioxidant potential. However, the DPPH (35,629 μmol TE/100 g), CUPRAC (12,601 μmol TE/100 g), and TPC (691 mg GAE/100 g) results were higher for the BCM extract after acid hydrolysis than those for alkaline hydrolysate (DPPH = 2539 μmol TE/100 g, CUPRAC = 5959 μmol TE/100 g, and TPC = 613 mg GAE/100 g). Finally, the generated AGREEprep metrics highlighted the sustainability and the greenness of the cold pressing of oil from BCS. Full article
Show Figures

Graphical abstract

11 pages, 2199 KiB  
Article
Sustainable Panels from Cocoa (Theobroma cacao) Wood Wastes Bonded with Cassava starch and Urea–Formaldehyde
by Prosper Mensah, Rafael Rodolfo de Melo, Francis Kofi Bih, Stephen Jobson Mitchual, Alexandre Santos Pimenta, Talita Dantas Pedrosa and Edgley Alves de Oliveira Paula
J. Compos. Sci. 2024, 8(11), 444; https://doi.org/10.3390/jcs8110444 - 1 Nov 2024
Viewed by 1447
Abstract
The demand for innovative products from renewable sources has motivated research development to create new sustainable materials. Cassava starch (CS) has been widely used for bonding and composing different types of products. Particleboards produced from cocoa (Theobroma cacao), wood wastes, and [...] Read more.
The demand for innovative products from renewable sources has motivated research development to create new sustainable materials. Cassava starch (CS) has been widely used for bonding and composing different types of products. Particleboards produced from cocoa (Theobroma cacao), wood wastes, and CS adhesives can be an environmentally correct and economically profitable alternative to replacing traditional commercial panels. This study aimed to manufacture particleboards made with wood waste extracted from the stem of Theobroma cacao. The panels were bonded with different proportions of CS and urea–formaldehyde (UF) adhesives, and their physical–mechanical properties were determined. To manufacture the panels, cocoa wood wastes were mixed with the adhesive in ratios of 90:10, 70:30, and 50%:50% (CS/UF). Two control treatments were bonded with 100% of both adhesives. The resulting particleboards were employed as a reference to compare properties. The manufacturing process was carried out by cold pressing. Apparent density, water absorption, thickness swelling, and static bending strength were found for all panels. The data obtained were subjected to Levene’s homogeneity test, Shapiro–Wilk’s normality test, analysis of variance (ANOVA), and Tukey’s mean test. The results showed that the highest density value was 497.0 kg m−3, corresponding to the treatment composed of cocoa wood wastes bonded with 100% CS adhesive. The water absorption and thickness swelling results after a 24 h immersion showed that the panel formed using cocoa wood wastes and 100% UF had the lowest values, 22.1 and 11.2%. The highest bending strength value was 13.1 MPa for the experimental treatment composed of cocoa wood residue and 100% UF. However, this result did not differ statistically from the treatment (50–50). Therefore, cocoa wood waste combined with adhesive CS may be a sustainable alternative for producing particleboards. Full article
Show Figures

Figure 1

Back to TopTop