Supercritical CO2 Extraction vs. Hexane Extraction and Cold Pressing: Comparative Analysis of Seed Oils from Six Plant Species
Abstract
:1. Introduction
2. Results and Discussion
2.1. Oil Yield
2.2. Fatty Acid Composition
2.3. Unsaponifiable Matter—Yield and Composition
2.4. Unsaponifiable Matter—Antioxidant Activity
3. Materials and Methods
3.1. Chemicals
3.2. Plant Materials and Oil Preparation
3.3. Oil Extraction
3.3.1. Ultrasound-Assisted Extraction
3.3.2. Cold Pressing
3.3.3. Supercritical CO2 Extraction
3.3.4. Re-Extraction
3.4. Saponification
3.5. Preparation of Silylated Unsaponifiable Matter
3.6. Preparation of Fatty Acid Methyl Esters (FAMEs)
3.7. GC–MS Conditions
3.8. GC–MS General Measurement Procedures
3.9. Antioxidant Activity Assay
3.10. Evaluation of Processes and Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Carvalho, C.C.C.R.; Caramujo, M.J. The various roles of fatty acids. Molecules 2018, 23, 2583. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Ahsan, H. Lipid-based formulations in cosmeceuticals and biopharmaceuticals. Biomed. Dermatol. 2020, 4, 12. [Google Scholar] [CrossRef]
- Yang, J.; Wen, C.; Duan, Y.; Deng, Q.; Peng, D.; Zhang, H.; Ma, H. The composition, extraction, analysis, bioactivities, bioavailability and applications in food system of flaxseed (Linum usitatissimum L.) oil: A review. Trends Food Sci. Technol. 2021, 118, 252–260. [Google Scholar] [CrossRef]
- FDA. Food Additive Status List FDA; U.S Food Drug Administration: Silver Spring, MD, USA, 2021; pp. 1–95.
- Directive-2009/32-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/eli/dir/2009/32/oj (accessed on 10 July 2024).
- ARS. Edible Oil Extraction Solvents: FDA Regulatory Considerations; U.S. Department of Agriculture: Washington, DC, USA, 2020.
- Castejón, N.; Luna, P.; Señoráns, F.J. Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents. Food Chem. 2018, 244, 75–82. [Google Scholar] [CrossRef]
- Roj, E. Supercritical Fluid Applications; New Chemical Syntheses Institute: Pulawy, Poland, 2017; ISBN 9788386499960.
- CFR. CFR-Code of Federal Regulations Title 21; CFR: New York, NY, USA, 2024. [Google Scholar]
- Hadolin, M.; Skerget, M.; Knez, Z.; Bauman, D. High pressure extraction of vitamin E-rich oil from Silybum marianum. Food Chem. 2001, 74, 355–364. [Google Scholar] [CrossRef]
- Janeš, D.; Kočevar Glavač, N. Modern Cosmetics, Ingredients of Natural Origin, A Scientific View; Širimo dobro besedo d.o.o.: Velenje, Slovenia, 2018; Volume 1. [Google Scholar]
- Fontanel, D. Unsaponifiable Matter in Plant Seed Oils; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9783642357107. [Google Scholar]
- Poljšak, N.; Kreft, S.; Kočevar Glavač, N. Vegetable butters and oils in skin wound healing: Scientific evidence for new opportunities in dermatology. Phyther. Res. 2020, 34, 254–269. [Google Scholar] [CrossRef]
- Poljšak, N.; Kočevar Glavač, N. Vegetable Butters and Oils as Therapeutically and Cosmetically Active Ingredients for Dermal Use: A Review of Clinical Studies. Front. Pharmacol. 2022, 13, 868461. [Google Scholar] [CrossRef] [PubMed]
- Micera, M.; Botto, A.; Geddo, F.; Antoniotti, S.; Bertea, C.M.; Levi, R.; Gallo, M.P.; Querio, G. Squalene: More than a step toward sterols. Antioxidants 2020, 9, 688. [Google Scholar] [CrossRef]
- Cabral, C.E.; Klein, M.R.S.T. Phytosterols in the treatment of hypercholesterolemia and prevention of cardiovascular diseases. Arq. Bras. Cardiol. 2017, 109, 475–482. [Google Scholar] [CrossRef]
- Alvarez-Henao, M.V.; Cardona, L.; Hincapié, S.; Londoño-Londoño, J.; Jimenez-Cartagena, C. Supercritical fluid extraction of phytosterols from sugarcane bagasse: Evaluation of extraction parameters. J. Supercrit. Fluids 2022, 179, 105427. [Google Scholar] [CrossRef]
- Uddin, M.S.; Ferdosh, S.; Haque Akanda, M.J.; Ghafoor, K.; Rukshana, A.H.; Ali, M.E.; Kamaruzzaman, B.Y.; Fauzi, M.B.; Hadijah, S.; Shaarani, S.; et al. Techniques for the extraction of phytosterols and their benefits in human health: A review. Sep. Sci. Technol. 2018, 53, 2206–2223. [Google Scholar]
- Uddin, M.S.; Sarker, M.Z.I.; Ferdosh, S.; Akanda, M.J.H.; Easmin, M.S.; Bt Shamsudin, S.H.; Yunus, K. Bin Phytosterols and their extraction from various plant matrices using supercritical carbon dioxide: A review. J. Sci. Food Agric. 2015, 95, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Goel, S.K.; Rao, G.S.; Pandya, K.P. Hepatotoxic effects elicited by n-hexane or n- heptane. J. Appl. Toxicol. 1988, 8, 81–84. [Google Scholar] [CrossRef]
- Goel, S.K.; Rao, G.S.; Pandya, K.P. Toxicity of n-Hexane And n-Heptane: Some Biochemical Changes in Liver and Serum. Toxicol. Lett. 1982, 14, 169–174. [Google Scholar] [CrossRef]
- Takeuchi, Y. N-Hexame Polyneuropathy in Japan: A Review of n-Hexane Poisoning and its Preventive Measures. Environ. Res. 1993, 62, 76–80. [Google Scholar] [CrossRef]
- Jorgensen, N.K.; Cohr, K.H. n-Hexane and its toxicologic effects. A review. Scand. J. Work. Environ. Health 1981, 7, 157–168. [Google Scholar] [CrossRef] [PubMed]
- The USA Government. Clean Air Act Title I-Air Pollution Prevention and Control, Parts A through D US EPA. Available online: https://www.epa.gov/clean-air-act-overview/clean-air-act-title-i-air-pollution-prevention-and-control-parts-through-d (accessed on 10 July 2024).
- ECHA. Substance Information-ECHA; ECHA: Helsinki, Finland, 2023. [Google Scholar]
- Dhara, O.; Rani, K.N.P.; Chakrabarti, P.P. Supercritical Carbon Dioxide Extraction of Vegetable Oils: Retrospective and Prospects. Eur. J. Lipid Sci. Technol. 2022, 124, 2200006. [Google Scholar] [CrossRef]
- Pradhan, R.C.; Meda, V.; Rout, P.K.; Naik, S.; Dalai, A.K. Supercritical CO2 extraction of fatty oil from flaxseed and comparison with screw press expression and solvent extraction processes. J. Food Eng. 2010, 98, 393–397. [Google Scholar] [CrossRef]
- Hrabovski, N.; Sinadinović-Fišer, S.; Nikolovski, B.; Sovilj, M.; Borota, O. Phytosterols in pumpkin seed oil extracted by organic solvents and supercritical CO2. Eur. J. Lipid Sci. Technol. 2012, 114, 1204–1211. [Google Scholar] [CrossRef]
- Nde, D.B.; Anuanwen, C.F. Optimization methods for the extraction of vegetable oils: A review. Processes 2020, 8, 209. [Google Scholar] [CrossRef]
- Hojnik, M.; Škerget, M.; Knez, Ž. Concentrating the chlorophylls in extract by pretreatment of stinging nettle leaves with nonpolar organic solvents and supercritical carbon dioxide. J. Food Process Eng. 2007, 30, 701–716. [Google Scholar] [CrossRef]
- Belayneh, H.D.; Wehling, R.L.; Cahoon, E.; Ciftci, O.N. Extraction of omega-3-rich oil from Camelina sativa seed using supercritical carbon dioxide. J. Supercrit. Fluids 2015, 104, 153–159. [Google Scholar] [CrossRef]
- Mariod, A.A.; Matthäus, B.; Ismail, M. Comparison of supercritical fluid and hexane extraction methods in extracting kenaf (hibiscus cannabinus) seed oil lipids. J. Am. Oil Chem. Soc. 2011, 88, 931–935. [Google Scholar] [CrossRef]
- Murkovic, M.; Hillebrand, A.; Winkler, J.; Leitner, E.; Pfannhauser, W. Variability of fatty acid content in pumpkin seeds (Cucurbita pepo L.). Eur. Food Res. Technol. 1996, 203, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Procida, G.; Stancher, B.; Cateni, F.; Zacchigna, M. Chemical composition and functional characterisation of commercial pumpkin seed oil. J. Sci. Food Agric. 2013, 93, 1035–1041. [Google Scholar] [CrossRef]
- Van den Berg, J.D.J.; Vermist, N.D.; Carlyle, L.; Holčapek, M.; Boon, J.J. Effects of traditional processing methods of linseed oil on the composition of its triacylglycerols. J. Sep. Sci. 2004, 27, 181–199. [Google Scholar] [CrossRef]
- Bozan, B.; Temelli, F. Supercritical CO2 extraction of flaxseed. J. Am. Oil Chem. Soc. 2002, 79, 231–235. [Google Scholar] [CrossRef]
- Poljšak, N.; Kočevar Glavač, N. Tilia sp. Seed Oil-Composition, Antioxidant Activity and Potential Use. Appl. Sci. 2021, 11, 4932. [Google Scholar] [CrossRef]
- Dowd, M.K.; Farve, M.C. Fatty acid composition of Tilia spp. seed oils. Grasas Aceites 2013, 64, 243–249. [Google Scholar] [CrossRef]
- Azcan, N.; Ozturk Kalender, B.; Kara, M. Investigation of Turkish poppy seeds and seed oils. Chem. Nat. Compd. 2004, 40, 370–372. [Google Scholar] [CrossRef]
- Krist, S.; Stuebiger, G.; Unterweger, H.; Bandion, F.; Buchbauer, G. Analysis of volatile compounds and triglycerides of seed oils extracted from different poppy varieties (Papaver somniferum L.). J. Agric. Food Chem. 2005, 53, 8310–8316. [Google Scholar] [CrossRef] [PubMed]
- Bozan, B.; Temelli, F. Chemical composition and oxidative stability of flax, safflower and poppy seed and seed oils. Bioresour. Technol. 2008, 99, 6354–6359. [Google Scholar] [CrossRef]
- Bozan, B.; Temelli, F. Extraction of poppy seed oil using supercritical CO2. J. Food Sci. 2003, 68, 422–426. [Google Scholar] [CrossRef]
- Dąbrowski, G.; Czaplicki, S.; Konopka, I. Composition and quality of poppy (Papaver somniferum L.) seed oil depending on the extraction method. LWT 2020, 134, 110167. [Google Scholar] [CrossRef]
- MatthÄus, B.; Özcan, M.M. Fatty acids and tocopherol contents of some prunus spp. kernel oils. J. Food Lipids 2009, 16, 187–199. [Google Scholar] [CrossRef]
- Dulf, F.V.; Pamfil, D.; Baciu, A.D.; Pintea, A. Fatty acid composition of lipids in pot marigold (Calendula officinalis L.) seed genotypes. Chem. Cent. J. 2013, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Jafarian Asl, P.; Niazmand, R.; Yahyavi, F. Extraction of phytosterols and tocopherols from rapeseed oil waste by supercritical CO2 plus co-solvent: A comparison with conventional solvent extraction. Heliyon 2020, 6, e03592. [Google Scholar] [CrossRef]
- Rabrenović, B.B.; Dimić, E.B.; Novaković, M.M.; Tešević, V.V.; Basić, Z.N. The most important bioactive components of cold pressed oil from different pumpkin (Cucurbita pepo L.) seeds. LWT-Food Sci. Technol. 2014, 55, 521–527. [Google Scholar] [CrossRef]
- Rezig, L.; Chouaibi, M.; Msaada, K.; Hamdi, S. Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Ind. Crops Prod. 2012, 37, 82–87. [Google Scholar] [CrossRef]
- Matthäus, B.; Özcan, M.M. Fatty acid composition, tocopherol and sterol contents in linseed (Linum usitatissimum L.) varieties. Iran. J. Chem. Chem. Eng. 2017, 36, 147–152. [Google Scholar]
- Herchi, W.; Harrabi, S.; Sebei, K.; Rochut, S.; Boukhchina, S.; Pepe, C.; Kallel, H. Phytosterols accumulation in the seeds of Linum usitatissimum L. Plant Physiol. Biochem. 2009, 47, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Siger, A.; Antkowiak, W.; Dwiecki, K.; Rokosik, E.; Rudzińska, M. Nutlets of Tilia cordata Mill. and Tilia platyphyllos Scop.–Source of bioactive compounds. Food Chem. 2021, 346, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Rudzińska, M.; Górnaś, P.; Raczyk, M.; Soliven, A. Sterols and squalene in apricot (Prunus armeniaca L.) kernel oils: The variety as a key factor. Nat. Prod. Res. 2017, 31, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Erdogan-Orhan, I.; Kartal, M. Insights into research on phytochemistry and biological activities of Prunus armeniaca L. (apricot). Food Res. Int. 2011, 44, 1238–1243. [Google Scholar] [CrossRef]
- European Pharmacopoeia (Ph. Eur.). EDQM-European Directorate for the Quality of Medicines, 10th ed.; European Pharmacopoeia: Strasbourg, France, 2021. [Google Scholar]
- Salimon, J.; Omar, T.A.; Salih, N. Comparison of Two Derivatization Methods for the Analysis of Fatty Acids and Trans Fatty Acids in Bakery Products Using Gas Chromatography. Sci. World J. 2014, 2014, 906407. [Google Scholar] [CrossRef]
- Wagemaker, T.A.L.; Campos, P.M.B.G.M.; Fernandes, A.S.; Rijo, P.; Nicolai, M.; Roberto, A.; Rosado, C.; Reis, C.; Rodrigues, L.M.; Carvalho, C.R.L.; et al. Unsaponifiable matter from oil of green coffee beans: Cosmetic properties and safety evaluation. Drug Dev. Ind. Pharm. 2016, 42, 1695–1699. [Google Scholar] [CrossRef]
Plant | Solvent Extraction Yield | Cold Pressing Yield (%) | CO2 Extraction Yield | ||||||
---|---|---|---|---|---|---|---|---|---|
Hexane (%) | Ethanol (%) | ||||||||
22 °C | 55 °C | 22 °C | 55 °C | C-V1 (%) | C-V2 (%) | C-V3 (%) | Total | ||
Pumpkin | 24.6 | 22.3 | 22.3 | 23.6 | 10.7 | 12.7 | 5.1 | 1.0 | 18.8 |
Flaxseed | 10.2 | 10.7 | 10.2 | 11.0 | - | 26.8 | / | / | 26.8 |
Linden | 10.8 | 11.2 | 4.0 | 9.0 | 9.7 | 16.3 | / | / | 16.3 |
Poppy | 29.0 | 28.7 | 28.3 | 28.2 | 20.0 | 19.3 | 15.4 | 1.9 | 36.6 |
Apricot | 28.1 | 31.1 | 23.4 | 24.8 | 25.0 | 13.0 | 8.8 | / | 21.8 |
Marigold | 8.6 | 7.8 | 6.8 | 7.0 | 8.3 | 7.1 | 6.7 | / | 13.7 |
Oil extraction Method | Total Saturated Fatty Acids | Total Unsaturated Fatty Acids | C14:0 Myristic Acid | C16:0 Palmitic Acid | C17:1 (Z)−10-Heptadecenoic Acid | C18:0 Stearic Acid | C18:1 Malvalic Acid | C18:2 Linoleic Acid | C18:3 A-Linolenic Acid | C18:1 Oleic Acid | C18:1 (Z)-Octadecenoic Acid | C19:1 Sterculic Acid | C19:1 (E)−10-Nonadecenoic | C18:3 8Z,10E,12Z-Linolenic Acid | C18:3 9Z,11E,13E Oktadecatrienic Acid | C20:1 Gordoic Acid | C20:0 Arachidic Acid | C22:0 Behenic Acid | C24:0 Lignoceric Acid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RT | 45.11 | 52.09 | 54.43 | 58.44 | 56.57 | 57.44 | 57.57 | 57.62 | 57.74 | 59.55 | 60.85 | 62.19 | 62.97 | 63.47 | 64.25 | 69.63 | 74.62 | |||
Pumpkin | CP | 19.2 | 80.2 | 0.1 | 9.8 | - | 8.8 | - | 35.4 | - | 43.8 | 1.0 | - | - | - | - | - | 0.4 | 0.1 | 0.1 |
C-V1 | 18.4 | 81.2 | 0.1 | 10.4 | - | 7.6 | - | 34.6 | - | 45.5 | 1.1 | - | - | - | - | - | 0.3 | - | - | |
C-V2 | 18.3 | 81.0 | 0.1 | 11.1 | - | 6.9 | - | 35.2 | - | 44.8 | 1.0 | - | - | - | - | - | 0.2 | - | - | |
C-V3 | 24.9 | 71.9 | 0.3 | 15.3 | - | 9.1 | - | 32.6 | - | 37.9 | 1.4 | - | 0.1 | - | - | - | 0.2 | - | - | |
H | 19.6 | 79.8 | 0.1 | 9.9 | - | 9.1 | - | 35.2 | - | 43.6 | 1.0 | - | - | - | - | - | 0.5 | 0.1 | 0.1 | |
Linseed | CP | 10.1 | 89.8 | - | 5.4 | - | 4.5 | - | 14.3 | 73.9 | - | 1.4 | - | - | - | - | 0.1 | 0.1 | - | - |
C-V | 9.2 | 90.6 | - | 5.5 | - | 3.7 | - | 14.0 | 75.1 | - | 1.5 | - | - | - | - | - | - | - | - | |
H | 10.5 | 89.3 | - | 5.7 | - | 4.6 | - | 14.8 | 73.0 | - | 1.4 | - | - | - | - | 0.1 | 0.1 | 0.1 | - | |
Linden | CP | 9.7 | 89.8 | 0.1 | 8.0 | 0.7 | 1.6 | 5.6 | 55.0 | - | 21.4 | 2.9 | 4.0 | - | - | - | - | 0.1 | - | - |
C-V | 9.4 | 90.0 | - | 7.7 | 0.6 | 1.6 | 5.3 | 54.2 | - | 23.1 | 2.8 | 3.8 | - | - | - | - | 0.1 | - | - | |
H | 8.8 | 91.1 | 0.1 | 7.3 | 0.6 | 1.3 | 6.0 | 54.9 | - | 21.6 | 2.5 | 4.9 | 0.5 | - | - | 0.1 | 0.1 | - | - | |
Poppy | CP | 11.4 | 88.6 | - | 8.6 | - | 2.7 | - | 68.4 | - | 18.6 | 1.5 | - | - | - | - | - | 0.1 | - | - |
C-V1 | 10.3 | 89.1 | - | 7.5 | - | 2.7 | - | 68.5 | - | 19.1 | 1.5 | - | - | - | - | - | 0.1 | - | - | |
C-V2 | 10.8 | 88.7 | - | 8.4 | - | 2.4 | - | 68.9 | - | 18.3 | 1.5 | - | - | - | - | - | 0.1 | - | - | |
C-V3 | 17.0 | 78.6 | 1.1 | 12.4 | - | 3.5 | - | 54.1 | - | 22.1 | 2.3 | - | 0.1 | - | - | - | - | - | - | |
H | 11.6 | 88.3 | - | 8.8 | - | 2.8 | - | 68.1 | - | 18.6 | 1.5 | - | - | - | - | - | 0.1 | - | - | |
Apricot | CP | 5.7 | 94.3 | - | 4.2 | 0.1 | 1.4 | - | 22.2 | - | 69.5 | 2.1 | - | - | - | - | - | 0.1 | - | - |
C-V1 | 5.4 | 94.1 | - | 4.1 | 0.1 | 1.2 | - | 22.5 | - | 69.1 | 2.0 | - | - | - | - | 0.1 | 0.1 | - | - | |
C-V2 | 5.6 | 93.7 | - | 4.5 | 0.1 | 1.1 | - | 22.8 | - | 68.3 | 2.0 | - | - | - | - | - | 0.1 | - | - | |
H | 5.3 | 94.6 | - | 3.9 | 0.1 | 1.4 | - | 20.0 | - | 72.3 | 2.0 | - | - | - | - | - | - | - | - | |
Marigold | CP | 4.6 | 95.0 | - | 2.8 | - | 1.5 | - | 28.7 | - | 6.1 | 0.6 | - | - | 58.1 | 0.8 | 0.4 | 0.4 | - | - |
C-V1 | 4.3 | 94.7 | - | 2.3 | - | 1.6 | - | 25.8 | - | 4.3 | 0.6 | - | - | 62.2 | 1.2 | 0.3 | 0.4 | - | - | |
C-V2 | 4.8 | 93.9 | - | 2.8 | - | 1.7 | - | 27.6 | - | 5.2 | 0.6 | - | - | 58.9 | 0.8 | 0.3 | 0.4 | 0.1 | - | |
H | 5.9 | 90.7 | - | 3.3 | - | 2.0 | - | 26.9 | - | 4.9 | 0.6 | - | - | 56.3 | 1.4 | 0.4 | 0.4 | 0.1 | 0.1 |
Pumpkin | Linseed | Linden | Poppy | Apricot | Marigold | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Oil extraction method | CP | C-V1 | C-V2 | C-V3 | CP | C-V | CP | C-V | CP | C-V1 | C-V2 | C-V3 | CP | C-V1 | C-V2 | CP | C-V1 | C-V2 | |
% total unsaponified matter | 1.1 | 1.2 | 1.5 | 4.0 | 1.4 | 1.7 | 1.4 | 2.0 | 0.7 | 0.7 | 0.9 | 1.3 | 0.7 | 0.8 | 1.5 | 1.7 | 2.2 | 2.2 | |
RSD (unsaponified matter extraction) | 13.4 | 0.1 | 27.9 | 0.9 | 0.6 | 25.9 | 19.5 | 0.1 | 19.9 | 20.5 | 14.5 | 9.5 | 16.3 | 0.3 | 10.7 | 8.5 | 2.4 | 1.2 | |
compound | RT | relative percentage of area (%) | |||||||||||||||||
squalene | 19.40 | 50.6 | 29.5 | 65.1 | 76.9 | - | 0.2 | 2.2 | 2.2 | 0.2 | - | 0.2 | 0.9 | 2.3 | 0.5 | 4.9 | 0.6 | - | 0.6 |
γ-tocopherol | 23.37 | 2.8 | 2.7 | 1.5 | 1.9 | 1.4 | 0.3 | 1.9 | 2.4 | - | - | - | - | 1.0 | 0.2 | 0.4 | 7.5 | 4.1 | 18.8 |
cholesterol | 28.23 | - | 4.6 | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.2 | - | 1.3 |
desmosterol | 32.12 | - | - | - | - | - | - | - | - | 0.9 | - | 0.9 | 0.6 | - | - | - | - | - | - |
campesterol | 32.48 | - | - | - | - | 11.9 | 13.9 | 4.8 | 4.4 | 12.7 | 15.3 | 10.8 | 17.0 | 2.2 | 0.9 | 1.7 | 5.7 | 5.1 | 6.1 |
stigmasterol | 33.64 | - | - | - | - | 3.7 | 2.7 | 2.8 | 2.6 | 1.6 | 1.8 | 1.7 | 1.6 | - | - | - | 11.8 | 11.7 | 14.0 |
β-sitosterol | 36.76 | 23.7 | 19.6 | 19.6 | 12.3 | 32.9 | 20.1 | 67.3 | 81.4 | 54.3 | 41.7 | 40.9 | 54.1 | 83.7 | 90.1 | 62.1 | 34.7 | 50.9 | 33.4 |
lanosterol | 38.22 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 2.8 | - | - | |
cycoartenol | 39.33 | 12.3 | 4.2 | 8.3 | 5.3 | - | - | 1.4 | - | - | - | - | - | - | - | - | - | - | - |
cholest-7-en-3-ol | 40.44 | 4.0 | 4.6 | - | - | - | - | 1.1 | - | - | 1.6 | 1.7 | 1.9 | - | - | - | 4.7 | 11.4 | 4.8 |
9,19-cyclolanost-24-en-3-ol | 40.69 | - | - | - | - | 26.1 | 22.1 | - | - | - | - | - | - | - | - | - | - | - | - |
unknown component (m/z: 343 (100) 75 (57) 55 (52) 73 (46)) | 41.40 | 6.6 | 11.3 | 5.5 | 3.6 | - | - | - | - | 7.9 | - | 5.7 | - | - | - | - | - | - | - |
24-methylene-9,19-cyclolanostan-3-ol | 44.45 | - | - | - | - | 6.3 | 1.7 | - | - | - | - | 0.5 | - | - | - | - | - | - | - |
Pumpkin | Linseed | Linden | Poppy | Apricot | Marigold | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Oil Extraction Method | CP | C-V1 | C-V2 | C-V3 | CP | C-V | CP | C-V | CP | C-V1 | C-V2 | C-V3 | CP | C-V1 | C-V2 | CP | C-V1 | C-V2 | |
Compound | RT | mg/g | |||||||||||||||||
Squalene | 19.40 | 0.07 | 0.05 | 0.07 | 0.13 | - | 0.50 | 0.04 | 0.04 | 0.51 | - | 0.38 | 0.44 | 0.04 | 0.03 | 0.04 | 0.39 | - | 0.22 |
Cholesterol | 28.23 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.13 | - | 0.17 |
Campesterol | 32.48 | - | - | - | - | 2.44 | 2.18 | 2.05 | 1.48 | 1.93 | 1.34 | 3.35 | 2.87 | 0.71 | 0.26 | 0.84 | 0.85 | 0.38 | 1.21 |
Stigmasterol | 33.64 | - | - | - | - | 1.39 | 0.78 | 2.31 | 1.65 | 0.42 | 0.27 | 1.10 | 0.59 | - | - | - | 3.42 | 1.33 | 1.71 |
β-sitosterol | 36.76 | 2.77 | 2.83 | 2.58 | 2.65 | 2.90 | 2.68 | 4.20 | 4.08 | 2.98 | 2.71 | 3.73 | 3.12 | 4.02 | 3.67 | 4.28 | 2.81 | 2.69 | 3.07 |
Common Plant Name | Latin Plant Name | Source | Seed Origin |
---|---|---|---|
Pumpkin | Cucurbita pepo L. | Medilip d. o. o. | Slovenia |
Linseed | Linum usitatissimum L. | Oil-extraction Pečarič | Hungary |
Linden | Tilia sp. | Vilmorin | France |
Poppy | Papaver somniferum L. | Oil-extraction Pečarič | Turkey |
Apricot | Prunus armeniaca L. | Oil-extraction Pečarič | Turkey |
Marigold | Calendula officinalis L | Fosters Seeds | USA |
Standard | Curves | Range (μg/mL) | R2 |
---|---|---|---|
Cholesterol | y = 625,175x − 626,279 | 0.58–5.83 | 0.996 |
Campesterol | y = 122,204x − 80,396 | 0.50–4.99 | 0.993 |
Stigmasterol | y = 60,509x + 20,006 | 0.50–5.04 | 0.989 |
β-sitosterol | y = 2 × 106x − 5 × 107 | 22.68–170.10 | 0.990 |
Squalene | y = 6 × 107x − 2 × 107 | 34.6–173.0 | 0.990 |
Squalene | y = −54,342x + 316,939 | 0.35–3.01 | 0.991 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoss, K.; Glavač, N.K. Supercritical CO2 Extraction vs. Hexane Extraction and Cold Pressing: Comparative Analysis of Seed Oils from Six Plant Species. Plants 2024, 13, 3409. https://doi.org/10.3390/plants13233409
Schoss K, Glavač NK. Supercritical CO2 Extraction vs. Hexane Extraction and Cold Pressing: Comparative Analysis of Seed Oils from Six Plant Species. Plants. 2024; 13(23):3409. https://doi.org/10.3390/plants13233409
Chicago/Turabian StyleSchoss, Katja, and Nina Kočevar Glavač. 2024. "Supercritical CO2 Extraction vs. Hexane Extraction and Cold Pressing: Comparative Analysis of Seed Oils from Six Plant Species" Plants 13, no. 23: 3409. https://doi.org/10.3390/plants13233409
APA StyleSchoss, K., & Glavač, N. K. (2024). Supercritical CO2 Extraction vs. Hexane Extraction and Cold Pressing: Comparative Analysis of Seed Oils from Six Plant Species. Plants, 13(23), 3409. https://doi.org/10.3390/plants13233409