Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = cold gelation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4143 KiB  
Article
Time-Delayed Cold Gelation of Low-Ester Pectin and Gluten with CaCO3 to Facilitate Manufacture of Raw-Fermented Vegan Sausage Analogs
by Maurice Koenig, Kai Ahlborn, Kurt Herrmann, Myriam Loeffler and Jochen Weiss
Appl. Sci. 2025, 15(15), 8510; https://doi.org/10.3390/app15158510 (registering DOI) - 31 Jul 2025
Viewed by 177
Abstract
To advance the development of protein-rich plant-based foods, a novel binder system for vegan sausage alternatives without the requirement of heat application was investigated. This enables long-term ripening of plant-based analogs similar to traditional fermented meat or dairy products, allowing for refined flavor [...] Read more.
To advance the development of protein-rich plant-based foods, a novel binder system for vegan sausage alternatives without the requirement of heat application was investigated. This enables long-term ripening of plant-based analogs similar to traditional fermented meat or dairy products, allowing for refined flavor and texture development. This was achieved by using a poorly water-soluble calcium source (calcium carbonate) to introduce calcium ions into a low-ester pectin—gluten matrix susceptible to crosslinking via divalent ions. The gelling reaction of pectin–gluten dispersions with Ca2+ ions was time-delayed due to the gradual production of lactic acid during fermentation. Firm, sliceable matrices were formed, in which particulate substances such as texturized proteins and solid vegetable fat could be integrated, hence forming an unheated raw-fermented plant-based salami-type sausage model matrix which remained safe for consumption over 21 days of ripening. Gluten as well as pectin had a significant influence on the functional properties of the matrices, especially water holding capacity (increasing with higher pectin or gluten content), hardness (increasing with higher pectin or gluten content), tensile strength (increasing with higher pectin or gluten content) and cohesiveness (decreasing with higher pectin or gluten content). A combination of three simultaneously occurring effects was observed, modulating the properties of the matrices, namely, (a) an increase in gel strength due to increased pectin concentration forming more brittle gels, (b) an increase in gel strength with increasing gluten content forming more elastic gels and (c) interactions of low-ester pectin with the gluten network, with pectin addition causing increased aggregation of gluten, leading to strengthened networks. Full article
(This article belongs to the Special Issue Processing and Application of Functional Food Ingredients)
Show Figures

Figure 1

18 pages, 2803 KiB  
Article
Single-Gelator Structuring of Hemp Oil Using Agarose: Comparative Assembly, Electronic Nose Profiling, and Functional Performance of Hydroleogels Versus Oleogels in Shortbread Cookies
by Oliwia Paroń and Joanna Harasym
Polymers 2025, 17(14), 1988; https://doi.org/10.3390/polym17141988 - 20 Jul 2025
Viewed by 331
Abstract
This study demonstrates an innovative single-gelator approach using agarose (1% and 2% w/w) to structure cold-pressed hemp oil into functional fat replacers for shortbread cookies, achieving a 40% reduction in saturated fatty acids compared to butter. Comprehensive characterization revealed that hydroleogels exhibited [...] Read more.
This study demonstrates an innovative single-gelator approach using agarose (1% and 2% w/w) to structure cold-pressed hemp oil into functional fat replacers for shortbread cookies, achieving a 40% reduction in saturated fatty acids compared to butter. Comprehensive characterization revealed that hydroleogels exhibited superior crispiness (45.67 ± 3.86 N for 2% agarose hydroleogel—HOG 2%) but problematic water activity (0.39–0.61), approaching microbial growth thresholds. Conversely, oleogels showed lower crispiness (2.27–3.43 N) but optimal moisture control (aw = 0.12–0.16) and superior color stability during 10-day storage. Electronic nose analysis using 10 metal oxide sensors revealed that oleogel systems preserved characteristic aroma profiles significantly better than hydroleogels, with 2% agarose oleogel (OG 2%) showing 34% less aroma decay than pure hemp oil. The 2% agarose oleogel demonstrated optimal performance with minimal baking loss (5.87 ± 0.20%), excellent structural integrity, and stable volatile compound retention over storage. Morphological analysis showed that hemp oil cookies achieved the highest specific volume (2.22 ± 0.07 cm3/g), while structured systems ranged from 1.12 to 1.31 cm3/g. This work establishes agarose as a versatile single gelator for hemp oil structuring and validates electronic nose technology for the objective quality assessment of fat-replaced bakery products, advancing healthier food design through molecular approaches. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

42 pages, 14497 KiB  
Review
Advances in Non-Thermal Processing of Meat and Monitoring Meat Protein Gels Through Vibrational Spectroscopy
by Huanhuan Li, Chenhui Li, Muhammad Shoaib, Wei Zhang and Arul Murugesan
Foods 2025, 14(11), 1929; https://doi.org/10.3390/foods14111929 - 29 May 2025
Cited by 2 | Viewed by 934
Abstract
Meat is a vital source of high-quality proteins, amino acids, vitamins, and minerals essential for human health. Growing demand for healthier lifestyles and technological advancements has heightened the focus on meat products, whose quality depends on meat protein properties, such as texture, water [...] Read more.
Meat is a vital source of high-quality proteins, amino acids, vitamins, and minerals essential for human health. Growing demand for healthier lifestyles and technological advancements has heightened the focus on meat products, whose quality depends on meat protein properties, such as texture, water holding capacity (WHC), and structural integrity. Non-thermal processing technologies are gaining attention for enhancing the gelation properties of meat protein gels (MPGs) by optimizing solubilization, denaturation, and aggregation while preserving nutritional and sensory qualities and avoiding the drawbacks of thermal treatments. This review focuses on advanced non-thermal processing techniques, including high-pressure processing (HPP), pulsed electric fields (PEFs), ultrasound, and cold plasma, and their impact on MPGs. It also examines vibrational spectroscopy methods, such as Fourier Transform Infrared (FTIR) and Raman spectroscopy, for non-invasive analysis of MPGs. The integration of these approaches with hyperspectral imaging and machine learning is also explored as a tool to improve quality control and assessment. Full article
Show Figures

Figure 1

18 pages, 7147 KiB  
Article
Ethanolic Extrusion of Indica Rice Flour for Rice Noodle Production
by Miaomiao Fu, Xing Zhou, Hong (Sabrina) Tian, Yanxin Chen and Zhengyu Jin
Foods 2025, 14(9), 1453; https://doi.org/10.3390/foods14091453 - 23 Apr 2025
Viewed by 457
Abstract
Due to the absence of gluten, rice noodles require complex processing to achieve a desirable texture. This study developed ethanolic-extruded indica rice flour (EERF) as a novel gluten substitute to simplify rice noodle production. EERF exhibited a distinct V-type crystalline structure (7.89% crystallinity) [...] Read more.
Due to the absence of gluten, rice noodles require complex processing to achieve a desirable texture. This study developed ethanolic-extruded indica rice flour (EERF) as a novel gluten substitute to simplify rice noodle production. EERF exhibited a distinct V-type crystalline structure (7.89% crystallinity) and high cold-paste viscosity (1043 cP), enabling its use as a binder in rice dough. When blended with native indica rice flour (IRF) at 10–20%, the EERF-IRF premix formed a cohesive dough with water via cold gelation, imparting viscoelasticity and tensile resistance. Optimal formulation (15% EERF for the premix and 37% water for making the dough) yielded fresh rice noodles with reduced cooking loss (5.57%) and a reduced breakage rate (14.44%), alongside enhanced sensory scores. This approach offers a clean-label, industrially scalable solution for producing rice noodles with simplified processing and improved quality. Full article
Show Figures

Figure 1

18 pages, 3779 KiB  
Article
Influence of Heat- and Cold-Stressed Raw Milk on the Stability of UHT Milk
by Nan Li, Zhigang Yang, Zhiyu Yuan, Zizhu Zhen, Xinna Xie, Danqing Zhu, Gang Lu, Feng Zhao, Bo Qu, Bingli Qi, Yujun Jiang, Qianyu Zhao and Chaoxin Man
Foods 2025, 14(1), 3; https://doi.org/10.3390/foods14010003 - 24 Dec 2024
Viewed by 1302
Abstract
This study investigated the variations and alterations in the concentrations of plasmin system components in raw and UHT (ultra-high-temperature) milk under cold stress (WCT ≤ −25 °C), heat stress (THI ≥ 80), and normal (THI < 70 and WCT ≥ −10 °C) circumstances. [...] Read more.
This study investigated the variations and alterations in the concentrations of plasmin system components in raw and UHT (ultra-high-temperature) milk under cold stress (WCT ≤ −25 °C), heat stress (THI ≥ 80), and normal (THI < 70 and WCT ≥ −10 °C) circumstances. The findings indicated elevated amounts of plasmin system components in cold-stressed raw milk. While storing UHT milk at 25 °C, the concentrations and activity of plasmin in the milk exhibited an initial increase followed by a decrease, peaking around the 30th day. The maximum plasmin level and activity in cold-stressed milk were 607.86 μg/L and 15.99 U/L, respectively, with the beginning of gelation occurring around day 60. The higher activity of plasmin in cold-stressed milk led to the poorer stability and sensory assessment of the milk. However, heat-stressed milk is not such a problem for UHT milk as cold-stressed milk. The findings indicate shortcomings in the quality of cold-stressed milk and its adverse effects on the stability of UHT milk, underscoring the necessity of preventing cold stress in the herd and refraining from utilizing cold-stressed milk as a raw material for UHT production. Full article
(This article belongs to the Section Dairy)
Show Figures

Graphical abstract

17 pages, 4840 KiB  
Article
Dulcitol/Starch Systems as Shape-Stabilized Phase Change Materials for Long-Term Thermal Energy Storage
by Martyna Szatkowska and Kinga Pielichowska
Polymers 2024, 16(22), 3229; https://doi.org/10.3390/polym16223229 - 20 Nov 2024
Viewed by 1403
Abstract
In recent years, there has been an increasing interest in phase change materials (PCM) based on dulcitol and other sugar alcohols. These materials have almost twice as large latent heat of fusion as other organic materials. Sugar alcohols are relatively cheap, and they [...] Read more.
In recent years, there has been an increasing interest in phase change materials (PCM) based on dulcitol and other sugar alcohols. These materials have almost twice as large latent heat of fusion as other organic materials. Sugar alcohols are relatively cheap, and they can undergo cold crystallization, which is crucial for long-term thermal energy storage. The disadvantage of dulcitol and other sugar alcohols is the solid–liquid phase transition. As a result, the state of matter of the material and its volume change, and in the case of materials modified with microparticles or nanoparticles, sedimentation of additives in liquid PCM can occur. In this study, we obtained shape-stable phase change materials (SSPCM) by co-gelation of starch and dulcitol. To characterize the samples obtained, differential scanning calorimetry (DSC), step-mode DSC, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) were used, and they were also used to test for shape stabilization. The results show that the obtained systems have great potential as shape-stabilized phase change materials. The sample dulcitol/starch with a 50:50 ratio exhibited the highest heat of cold crystallization, up to 52.90 J/g, while the heat of melting was 126.16 J/g under typical DSC measuring conditions. However, depending on the applied heating program, the heat of cold crystallization can even reach 125 J/g. The thermal stability of all compositions was higher than the phase change temperature, with only 1% mass loss occurring at temperatures above 200 °C, while the phase change occurred at a maximum of 190 °C. Full article
Show Figures

Figure 1

17 pages, 5901 KiB  
Article
Ester-Modified Sodium Silicate Grout Material for Moraine Stabilization: Synthesis and Freeze-Thaw Resistance
by Chong Chen, Aixiang Wu, Shaoyong Wang, Wei Sun, Tong Gao and Longjian Bai
Materials 2024, 17(22), 5512; https://doi.org/10.3390/ma17225512 - 12 Nov 2024
Viewed by 976
Abstract
To achieve effective consolidation of fine particles in moraine and enhance the freeze-thaw resistance of the consolidated body, this study developed a novel grouting material using sodium silicate, lipid-based curing agents, and acidic catalysts. The gelation time and rheological properties of this material [...] Read more.
To achieve effective consolidation of fine particles in moraine and enhance the freeze-thaw resistance of the consolidated body, this study developed a novel grouting material using sodium silicate, lipid-based curing agents, and acidic catalysts. The gelation time and rheological properties of this material were tested. The freeze-thaw resistance was studied through changes in uniaxial compressive strength (UCS) after freeze-thaw cycles, while the consolidation mechanism was analyzed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The experimental results indicate that the material’s gelation time can be controlled between 30s and 1600s, with an initial viscosity ranging from 5.9 to 9.8 mPa·s. Predictive models for these two indicators were established, and variance analysis revealed the influence ranking for gelation time: phosphoric acid dosage had the greatest effect, followed by EGDA content, with the Baume degree of sodium silicate having the least effect. The initial viscosity positively correlated with the Baume degree of sodium silicate and exhibited exponential growth over time. EGDA addition enhanced UCS by over 450%, reaching 1.2 MPa. During freeze-thaw cycles, strength degradation of the consolidated body was reduced by 10% to 30%. Microstructural tests showed that EGDA promotes silica gel formation and creates a network structure with unreacted sodium silicate, forming a dense consolidated body with moraine fine particles, thereby enhancing freeze-thaw resistance. These findings provide design references and theoretical support for moraine grouting in cold regions. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 7639 KiB  
Article
Development and Characterization of Thermosensitive and Bioadhesive Ophthalmic Formulations Containing Flurbiprofen Solid Dispersions
by Pınar Adısanoğlu and Işık Özgüney
Gels 2024, 10(4), 267; https://doi.org/10.3390/gels10040267 - 15 Apr 2024
Cited by 5 | Viewed by 2012
Abstract
In this study, we aimed to develop thermosensitive and bioadhesive in situ gelling systems containing solid dispersions of flurbiprofen (FB-SDs) using poloxamer 407 (P407) and 188 (P188) for ophthalmic delivery. FB-SDs were prepared with the melt method using P407, characterized by solubility, stability, [...] Read more.
In this study, we aimed to develop thermosensitive and bioadhesive in situ gelling systems containing solid dispersions of flurbiprofen (FB-SDs) using poloxamer 407 (P407) and 188 (P188) for ophthalmic delivery. FB-SDs were prepared with the melt method using P407, characterized by solubility, stability, SEM, DSC, TGA, and XRD analyses. Various formulations of poloxamer mixtures and FB-SDs were prepared using the cold method and P407/P188 (15/26.5%), which gels between 32 and 35 °C, was selected to develop an ophthalmic in situ gelling system. Bioadhesive polymers Carbopol 934P (CP) or carboxymethyl cellulose (CMC) were added in three concentrations (0.2, 0.4, and 0.6% (w/w)). Gelation temperature and time, mechanical properties, flow properties, and viscosity values were determined. The in vitro release rate, release kinetics, and the release mechanism of flurbiprofen (FB) from the ophthalmic formulations were analyzed. The results showed that FB-SDs’ solubility in water increased 332-fold compared with FB. The oscillation study results indicated that increasing bioadhesive polymer concentrations decreased gelation temperature and time, and formulations containing CP gel at lower temperatures and in a shorter time. All formulations except F3 and F4 showed Newtonion flow under non-physiological conditions, while all formulations exhibited non-Newtonion pseudoplastic flow under physiological conditions. Viscosity values increased with an increase in bioadhesive polymer concertation at physiological conditions. Texture profile analysis (TPA) showed that CP-containing formulations had higher hardness, compressibility, and adhesiveness, and the gel structure of formulation F4, containing 0.6% CP, exhibited the greatest hardness, compressibility, and adhesiveness. In vitro drug release studies indicated that CP and CMC had no effect below 0.6% concentration. Kinetic evaluation favored first-order and Hixson–Crowell kinetic models. Release mechanism analysis showed that the n values of the formulations were greater than 1 except for formulation F5, suggesting that FB might be released from the ophthalmic formulations by super case II type diffusion. When all the results of this study are evaluated, the in situ gelling formulations prepared with FB-SDs that contained P407/P188 (15/26.5%) and 0.2% CP or 0.2% CMC or 0.4 CMC% (F2, F5, and F6, respectively) could be promising formulations to prolong precorneal residence time and improve ocular bioavailability of FB. Full article
(This article belongs to the Special Issue Antibacterial Gels)
Show Figures

Figure 1

23 pages, 3771 KiB  
Article
Use of Pea Proteins in High-Moisture Meat Analogs: Physicochemical Properties of Raw Formulations and Their Texturization Using Extrusion
by Blake J. Plattner, Shan Hong, Yonghui Li, Martin J. Talavera, Hulya Dogan, Brian S. Plattner and Sajid Alavi
Foods 2024, 13(8), 1195; https://doi.org/10.3390/foods13081195 - 14 Apr 2024
Cited by 7 | Viewed by 3488
Abstract
A new form of plant-based meat, known as ‘high-moisture meat analogs’ (HMMAs), is captivating the market because of its ability to mimic fresh, animal muscle meat. Utilizing pea protein in the formulation of HMMAs provides unique labeling opportunities, as peas are both “non-GMO” [...] Read more.
A new form of plant-based meat, known as ‘high-moisture meat analogs’ (HMMAs), is captivating the market because of its ability to mimic fresh, animal muscle meat. Utilizing pea protein in the formulation of HMMAs provides unique labeling opportunities, as peas are both “non-GMO” and low allergen. However, many of the commercial pea protein isolate (PPI) types differ in functionality, causing variation in product quality. Additionally, PPI inclusion has a major impact on final product texture. To understand the collective impact of these variables, two studies were completed. The first study compared four PPI types while the second study assessed differences in PPI inclusion amount (30–60%). Both studies were performed on a Wenger TX-52 extruder, equipped with a long-barrel cooling die. Rapid-visco analysis (RVA) and sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) indicated differences in protein solubility among the different PPI types. In general, lower protein solubility led to better product quality, based on visual evaluation. Cutting strength and texture profile analysis showed increasing PPI inclusion from 30–60% led to significantly higher product hardness (14,160–16,885 g) and toughness (36,690–46,195 g. s). PPI4 led to lower product toughness (26,110 and 33,725 g. s), compared to the other PPIs (44,620–60,965 g. s). Heat gelling capacity of PPI4 was also highest among PPI types, by way of least gelation concentration (LGC) and RVA. When compared against animal meat, using more PPI (50–60%) better mimicked the overall texture and firmness of beef steak and pork chops, while less PPI better represented a softer product like chicken breast. In summary, protein content and also functionality such as cold water solubility and heat gelation dictated texturization and final product quality. High cold water solubility and poor heat gelation properties led to excessive protein cross linking and thicker yet less laminated shell or surface layer. This led to lower cutting firmness and toughness, and less than desirable product texture as compared to animal meat benchmarks. On the other hand, pea proteins with less cold water solubility and higher propensity for heat gelation led to products with more laminated surface layer, and higher cutting test and texture profile analysis response. These relationships will be useful for plant-based meat manufacturers to better tailor their products and choice of ingredients. Full article
(This article belongs to the Special Issue Functionality and Food Applications of Plant Proteins (Volume II))
Show Figures

Figure 1

19 pages, 2656 KiB  
Article
Effect of Molecules’ Physicochemical Properties on Whey Protein/Alginate Hydrogel Rheology, Microstructure and Release Profile
by A. Delanne-Cuménal, E. Lainé, V. Hoffart, V. Verney, G. Garrait and E. Beyssac
Pharmaceutics 2024, 16(2), 258; https://doi.org/10.3390/pharmaceutics16020258 - 9 Feb 2024
Cited by 4 | Viewed by 2062
Abstract
The encapsulation of molecules with different physicochemical properties (theophylline, blue dextran, salicylic acid and insulin) in whey protein (WP) and alginate (ALG) microparticles (MP) for oral administration was studied. MP based on WP/ALG were prepared by a cold gelation technique and coated with [...] Read more.
The encapsulation of molecules with different physicochemical properties (theophylline, blue dextran, salicylic acid and insulin) in whey protein (WP) and alginate (ALG) microparticles (MP) for oral administration was studied. MP based on WP/ALG were prepared by a cold gelation technique and coated with WP solution after reticulation. Molecules influenced polymer solution viscosity and elasticity, resulting in differences regarding encapsulation efficiency (from 23 to 100%), MP structure and swelling (>10%) and in terms of pH tested. Molecule release was due to diffusion and/or erosion of MP and was very dependent on the substance encapsulated. All the loaded MP were successfully coated, but variation in coating thickness (from 68 to 146 µm) and function of the molecules encapsulated resulted in differences in molecule release (5 to 80% in 1 h). Gel rheology modification, due to interactions between WP, ALG, calcium and other substances, was responsible for the highlighted differences. Measuring rheologic parameters before extrusion and reticulation appeared to be one of the most important aspects to study in order to successfully develop a vector with optimal biopharmaceutical properties. Our vector seems to be more appropriate for anionic high-molecular-weight substances, leading to high viscosity and elasticity and to MP enabling gastroresistance and controlled release of molecules at intestinal pH. Full article
Show Figures

Figure 1

15 pages, 1416 KiB  
Article
Development of Carvedilol Nanoformulation-Loaded Poloxamer-Based In Situ Gel for the Management of Glaucoma
by Bjad K. Almutairy, El-Sayed Khafagy and Amr Selim Abu Lila
Gels 2023, 9(12), 952; https://doi.org/10.3390/gels9120952 - 4 Dec 2023
Cited by 4 | Viewed by 2142
Abstract
The objective of the current study was to fabricate a thermosensitive in situ gelling system for the ocular delivery of carvedilol-loaded spanlastics (CRV-SPLs). In situ gel formulations were prepared using poloxamer analogs by a cold method and was further laden with carvedilol-loaded spanlastics [...] Read more.
The objective of the current study was to fabricate a thermosensitive in situ gelling system for the ocular delivery of carvedilol-loaded spanlastics (CRV-SPLs). In situ gel formulations were prepared using poloxamer analogs by a cold method and was further laden with carvedilol-loaded spanlastics to boost the precorneal retention of the drug. The gelation capacity, rheological characteristics, muco-adhesion force and in vitro release of various in situ gel formulations (CS-ISGs) were studied. The optimized formula (F2) obtained at 22% w/v poloxamer 407 and 5% w/v poloxamer 188 was found to have good gelation capacity at body temperature with acceptable muco-adhesion properties, appropriate viscosity at 25 °C that would ease its ocular application, and relatively higher viscosity at 37 °C that promoted prolonged ocular residence of the formulation post eye instillation and displayed a sustained in vitro drug release pattern. Ex vivo transcorneal penetration studies through excised rabbit cornea revealed that F2 elicited a remarkable (p ˂ 0.05) improvement in CRV apparent permeation coefficient (Papp = 6.39 × 10−6 cm/s) compared to plain carvedilol-loaded in situ gel (CRV-ISG; Papp = 2.67 × 10−6 cm/s). Most importantly, in normal rabbits, the optimized formula (F2) resulted in a sustained intraocular pressure reduction and a significant enhancement in the ocular bioavailability of carvedilol, as manifested by a 2-fold increase in the AUC0–6h of CRV in the aqueous humor, compared to plain CRV-ISG formulation. To sum up, the developed thermosensitive in situ gelling system might represent a plausible carrier for ophthalmic drug delivery for better management of glaucoma. Full article
(This article belongs to the Special Issue Hydrogel-Based Novel Biomaterials: Achievements and Prospects)
Show Figures

Figure 1

15 pages, 3854 KiB  
Article
Effect and Mechanism of Soluble Starch on Bovine Serum Albumin Cold-Set Gel Induced by Microbial Transglutaminase: A Significantly Improved Carrier for Active Substances
by Haoting Shi, Changsheng Ding and Jianglan Yuan
Foods 2023, 12(23), 4313; https://doi.org/10.3390/foods12234313 - 29 Nov 2023
Cited by 2 | Viewed by 1761
Abstract
Soluble starch (SS) could significantly accelerate the process of bovine serum albumin (BSA) cold-set gelation by glucono-δ-lactone (GDL) and microbial transglutaminase (MTGase) coupling inducers, and enhance the mechanical properties. Hardness, WHC, loss modulus (G″) and storage modulus (G′) of the gel increased significantly, [...] Read more.
Soluble starch (SS) could significantly accelerate the process of bovine serum albumin (BSA) cold-set gelation by glucono-δ-lactone (GDL) and microbial transglutaminase (MTGase) coupling inducers, and enhance the mechanical properties. Hardness, WHC, loss modulus (G″) and storage modulus (G′) of the gel increased significantly, along with the addition of SS, and gelation time was also shortened from 41 min (SS free) to 9 min (containing 4.0% SS); the microstructure also became more and more dense. The results from FTIR, fluorescence quenching and circular dichroism (CD) suggested that SS could bind to BSA to form their composites, and the hydrogen bond was probably the dominant force. Moreover, the ability of SS to bind the original free water in BSA gel was relatively strong, thereby indirectly increasing the concentration of BSA and improving the texture properties of the gel. The acceleration of gelling could also be attributed to the fact that SS reduced the negative charge of BSA aggregates and further promoted the rapid formation of the gel. The embedding efficiency (EE) of quercetin in BSA-SS cold-set gel increased from 68.3% (SS free) to 87.45% (containing 4.0% SS), and a controlled-released effect was detected by simulated gastrointestinal digestion tests. The work could put forward new insights into protein gelation accelerated by polysaccharide, and provide a candidate for the structural design of new products in the food and pharmaceutical fields. Full article
Show Figures

Figure 1

16 pages, 2466 KiB  
Article
Surimi Production from Tropical Mackerel: A Simple Washing Strategy for Better Utilization of Dark-Fleshed Fish Resources
by Worawan Panpipat, Porntip Thongkam, Suppanyoo Boonmalee, Hasene Keskin Çavdar and Manat Chaijan
Resources 2023, 12(10), 126; https://doi.org/10.3390/resources12100126 - 23 Oct 2023
Cited by 9 | Viewed by 5419
Abstract
Mackerel (Auxis thazard), a tropical dark-fleshed fish, is currently a viable resource for the manufacture of surimi, but the optimal washing procedure for more efficient use of this particular species is required right away. Washing is the most critical stage in [...] Read more.
Mackerel (Auxis thazard), a tropical dark-fleshed fish, is currently a viable resource for the manufacture of surimi, but the optimal washing procedure for more efficient use of this particular species is required right away. Washing is the most critical stage in surimi production to ensure optimal gelation with odorless and colorless surimi. The goal of this study was to set a simple washing medium to the test for making mackerel surimi. Washing was performed three times with different media. T1 was washed with three cycles of cold carbonated water (CW). T2, T3, and T4 were washed once with cold CW containing 0.3%, 0.6%, or 0.9% NaCl, followed by two cycles of cold water. T5, T6, and T7 were produced for three cycles with CW containing 0.3%, 0.6%, or 0.9% NaCl. For comparison, unwashed mince (U) and conventional surimi washed three times in cold tap water (C) were employed. The maximum yield (62.27%) was obtained by washing with T1. When varying quantities of NaCl were mixed into the first washing medium (T2–T4), the yield decreased with increasing NaCl content (27.24–54.77%). When washing with NaCl for three cycles (T5–T7), the yield was greatly decreased (16.69–35.23%). Conventional surimi washing (C) produced a yield of roughly 40%, which was comparable to T3. Based on the results, treatments that produced lower yields than C were eliminated in order to maximize the use of fish resources and for commercial reasons. The maximum NaCl content in CW can be set at 0.6% only during the first washing cycle (T3). Because of the onset of optimal unfolding as reported by specific biochemical characteristics such as Ca2+-ATPase activity (0.2 μmol inorganic phosphate/mg protein/min), reactive sulfhydryl group (3.61 mol/108 g protein), and hydrophobicity (64.02 µg of bromophenol blue bound), T3 washing resulted in surimi with the greatest gel strength (965 g.mm) and water holding capacity (~65%), with fine network structure visualized by scanning electron microscope. It also efficiently removed lipid (~80% reduction), myoglobin (~65% reduction), non-heme iron (~94% reduction), and trichloroacetic acid-soluble peptide (~52% reduction) contents, which improves whiteness (~45% improvement), reduces lipid oxidation (TBARS value < 0.5 mg malondialdehyde equivalent/kg), and decreases the intensity of the gel’s fishy odor (~30% reduction). As a result, washing mackerel surimi (A. thazard) with CW containing 0.6% (w/v) NaCl in the first cycle, followed by two cycles of cold water washing (T3), can be a simple method for increasing gel-forming capability and oxidative stability. The mackerel surimi produced using this washing approach has a higher quality than that produced with regular washing. This straightforward method will enable the sustainable use of dark-fleshed fish for the production of surimi. Full article
(This article belongs to the Special Issue Alternative Use of Biological Resources)
Show Figures

Figure 1

19 pages, 6916 KiB  
Article
Thermo-Responsive Sol-Gel-Based Nano-Carriers Containing Terbinafine HCl: Formulation, In Vitro and Ex Vivo Characterization, and Antifungal Activity
by Maryam Bajwa, Naila Tabassam, Huma Hameed, Ali Irfan, Muhammad Zaman, Mahtab Ahmad Khan, Gamal A. Shazly, Tooba Mehboob, Tehseen Riaz and Yousef A. Bin Jardan
Gels 2023, 9(10), 830; https://doi.org/10.3390/gels9100830 - 20 Oct 2023
Cited by 9 | Viewed by 2466
Abstract
The current research aims to create a sol-gel-based nanocarrier containing terbinafine formulated for transdermal delivery of the drug into the skin. Sol-gel-based nanocarriers were prepared via the cold method using poloxamer-188, poloxamer-407, and distilled water. The prepared formulation was examined for pH, gelation [...] Read more.
The current research aims to create a sol-gel-based nanocarrier containing terbinafine formulated for transdermal delivery of the drug into the skin. Sol-gel-based nanocarriers were prepared via the cold method using poloxamer-188, poloxamer-407, and distilled water. The prepared formulation was examined for pH, gelation temperature, Fourier transform infrared spectrophotometer (FTIR) analysis, thermal stability analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), particle size analysis, zeta potential, and anti-microbial activity. The in-vitro drug release study of F1 was found to be 94%, which showed greater drug release as compared to F2 and F3. The pH of the formulation was found to be within the range applicable to the skin. The gelation temperature was detected at 28 °C. The SEM images of formulations have spotted various particles well-segregated from each other. Analysis of formulations showed a mean globule size diameter of 428 nm, zeta potential values of 0.04 mV, refractive index (1.329), and viscosity (5.94 cP). FTIR analysis confirmed various functional groups’ presence in the prepared formulation. Thermal analysis has confirmed the stability of the drug within the prepared formulation. The growth of inhibition was found to be 79.2% in 60 min, which revealed that the prepared formulation has shown good permeation from the membrane. Hence, the sol-gel-based nanocarrier formulation of terbinafine was successfully developed and evaluated. Full article
(This article belongs to the Special Issue Advances in Responsive Hydrogels)
Show Figures

Figure 1

20 pages, 5023 KiB  
Article
Lamotrigine-Loaded Poloxamer-Based Thermo-Responsive Sol–Gel: Formulation, In Vitro Assessment, Ex Vivo Permeation, and Toxicology Study
by Maria Riaz, Muhammad Zaman, Huma Hameed, Hafiz Shoaib Sarwar, Mahtab Ahmad Khan, Ali Irfan, Gamal A. Shazly, Ana Cláudia Paiva-Santos and Yousef A. Bin Jardan
Gels 2023, 9(10), 817; https://doi.org/10.3390/gels9100817 - 14 Oct 2023
Cited by 13 | Viewed by 3181
Abstract
The present study aimed to prepare, characterize, and evaluate a thermo-responsive sol–gel for intranasal delivery of lamotrigine (LTG), which was designed for sustained drug delivery to treat epilepsy. LTG sol–gel was prepared using the cold method by changing the concentrations of poloxamer 407 [...] Read more.
The present study aimed to prepare, characterize, and evaluate a thermo-responsive sol–gel for intranasal delivery of lamotrigine (LTG), which was designed for sustained drug delivery to treat epilepsy. LTG sol–gel was prepared using the cold method by changing the concentrations of poloxamer 407 and poloxamer 188, which were used as thermo-reversible polymers. The optimized formulations of sol–gel were analyzed for clarity, pH, viscosity, gelation temperature, gelation time, spreadability, drug content, in vitro drug release studies, ex vivo permeation studies, and in vivo toxicological studies. FTIR, XRD, and DSC were performed to determine the thermal stability of the drug and polymers. The prepared formulations had a clear appearance in sol form; they were liquid at room temperature and became gel at temperatures between 31 °C and 36 °C. The pH was within the range of the nasal pH, between 6.2 and 6.4. The drug content was found to be between 92% and 94%. In vitro drug release studies indicated that the formulations released up to 92% of the drug within 24 h. The FTIR, DSC, and XRD analyses showed no interaction between the drug and the polymer. A short-term stability study indicated that the formulation was stable at room temperature and at 4–8 °C. There was a slight increase in viscosity at room temperature, which may be due to the evaporation of the vehicle. A histological study indicated that there were no signs of toxicity seen in vital organs, such as the brain, kidney, liver, heart, and spleen. It can be concluded from the above results that the prepared intranasal sol–gel for the delivery of LTG is safe for direct nose-to-brain delivery to overcome the first-pass effect and thus enhance bioavailability. It can be considered an effective alternative to conventional drug delivery for the treatment of epilepsy. Full article
(This article belongs to the Special Issue Advances in Responsive Hydrogels)
Show Figures

Graphical abstract

Back to TopTop