Advances in Non-Thermal Processing of Meat and Monitoring Meat Protein Gels Through Vibrational Spectroscopy
Abstract
:1. Introduction
2. Role of Meat Proteins in Nutrition and Meat Processing
3. Thermal Processing of Meat and Its Impact on MP and MPG’s Structure
4. Non-Thermal Processing of Meat and Its Impact on MP and MPG’s Structure
4.1. Effect of HPP on MP and MPG’s Structure
4.2. Effect of PEF on MP and MPG’s Structure
4.3. Effect of Ultrasound on MP and MPG’s Structure
Method | Protein Source | Parameters | Effects | References |
---|---|---|---|---|
HPP | Whitebait | 100, 200, 300, 400 MPa, 10 min, 25 °C | Improved emulsification with molecular stretching increased the gel strength (4.8 fold) and myofibrillar protein gel’s digestibility (1.8 fold). α-helix changed into β-sheet with increased elastic and viscous modulus and a decrease in the sulfhydryl groups with increased hydrophobicity of protein and dense microstructure. | [64] |
HPP | Pork | 150 MPa | Uniform, homogenous, low viscosity, small-sized stable protein particles with emulsifying properties, increased hydrophobicity due to protein unfolding, and high dispersion stability. Fragmentation of high molecular weight proteins (myosin) occurs. | [65] |
HPP | Pork | 150 MPa | High-pressure homogenization-modified soy 11S globulin enhanced cooking yield, whiteness, hardness, texture, cohesiveness, shear stress, viscosity, storage, and loss modulus of myofibrillar protein. Improved water holding capacity, gel, and rheological properties of protein with the addition of soy 11S globulin. | [66] |
HPP | Pork | 200, 300, 400 MPa, 4 °C, 5 min | 300, 400 MPa: improved drip loss with no free water with an increased fraction trapped in the myofibrillar network with no effect on water mobility and water holding capacity. The highly dynamic protein–water system with high competition between protein and water molecules, while myosin and actin are highly affected during storage. | [67] |
HPP | Pork | 200 MPa, 2 °C, 10 min | Soy protein (2%) increases cooking yield, gel hardness, storage modulus, sulfhydryl groups, hydrophobicity, thermal stability, water holding capacity, and immobilized water of 1% NaCl pork meat myofibrillar protein. | [37] |
HPP | Beef | 100, 200, 400, 600 MPa, 4 °C, 10 min | 200 MPa improved cooking loss, and 400–600 MPa improved protein structure as heavy chain dissociates, reduces the density of low molecular weight bands and increases insoluble proteins due to protein aggregation. Enhanced water holding capacity, increased hardness and breaking stress of meatballs, increased elastic modulus with decreased aerobic bacteria count. No color change after cooking, improved water content. | [68] |
HPP | Beef | 0.1, 100, 200, 300 MPa, 21 °C 3 min | Conformational changes at 300 MPa in myosin and actin. 200, 300 MPa: reduced actomyosin content and enhance protein digestibility and degradation through the activity of cathepsin B. | [69] |
HPP | Chicken | 100, 150, 200, 250, 300 MPa, 10 min | 200 MPa gives maximum water holding capacity, gel strength, solubility, and decreased aggregation potential of protein, increases display of Tyr and Trp residues and solubility of actin and myosin due to unfolding of the tertiary structure of the protein. 300 MPa induces disulfide cross-linking of myosin, hydrophobicity, and improved gel properties of reduced sodium myofibrillar protein. | [70] |
HPP | Crab | 100, 300, 500 MPa, 20 min | 100 MPa partially denatures protein and forms flexible networks and stable, flexible protein structures. 500 MPa reduces myosin denaturation, suggesting protein unfolding, reduces α-helix structure, develops β-sheet portion and increases ionic, hydrogen, and hydrophobic bonds. | [3] |
PEF | Chicken | 0–28 kV/cm, 80–1000 Hz | Improved the solubility of myofibrillar proteins, increased rheological properties, protein aggregation, surface hydrophobicity, and sulfhydryl groups, stable tertiary structure, and increased α-helix content. | [71] |
PEF | Pork | 3.8 mT, 50 Hz, 3 h, 4 °C | High pH increases the WHC and electrostatic repulsion of myofibrillar proteins and decreases free water content. α-helix unfolding led to stability, tryptophan and tyrosine residues exposed from inside and contributed to hydrogen bonding, thus increasing hydrophobic interactions, uniform network, and reduced phosphate levels, which improves tenderness and texture of meat. | [53] |
PEF | Beef | 99 kJ/kg, 24 h, 60 °C | Increased release of ninhydrin amino nitrogen and proteolysis led to improved protein digestion due to muscle disruption. Increased penetration of digestive juices due to pores in the membrane, thus facilitating the digestion and improved protein digestibility of the meat. | [72] |
PEF | Beef | 0.63–0.78 kV/cm, 88.73–112 kJ/kg, 50 Hz, 60 °C, 24 h | No effect on cooking loss increases tenderness and water holding capacity, releases the rigid myofibril structure, and aggregation of sarcoplasmic proteins that rupture fat globules, ultimately resulting in juicier ribs. | [73] |
PEF | Beef | 0.85 kV/cm, 110.96 kJ/kg, 50 Hz, 60 °C, 24 h | Less cooking loss and hardness, with increased soluble collagen and tenderness. | [74] |
PEF | Duck | 2 kV/cm, 50 Hz, 12 °C | It reduces the loss of myofibrillar protein gel by 40%, with increased WHC and surface hydrophobicity, like fresh samples. Myosin actin activities were also like those of fresh duck meat, with reduced protein denaturation during thawing, maintaining gelation and emulsification. | [75] |
Ultrasound | Chicken | 450 W, 20 kHz | Enhanced immobilized water and β-fold content of gels, more dense, porous, and uniform gels, enhanced texture, preheating increases myosin assembly and exposes hydrophobic groups. | [76] |
Ultrasound | Chicken | 750 W, 20 kHz, 2 to 4 s | 1% NaCl decreases particle size, suggesting enhanced protein interaction; HIU increased water holding capacity and altered the α-helical structure to the random coil and β-sheet at 1 and 2% NaCl, respectively. β-sheet increases hydrogen bond facilitated protein–protein interactions. | [77] |
Ultrasound | Chicken | 165 W, 30 kHz, 30 s | UF165 reduces the loss of the elastic modulus, improves gel strength and WHC due to reduced mobility, forms an intact and homogenous myofibrillar protein gel network, and maintains primary, tertiary, and secondary protein structures and gel whiteness. Fast-freezing. | [78] |
Ultrasound | Chicken | 200 W, 40 kHz | Ultrasound-based slightly acidic electrolyzed water (EUT) can improve the rheological properties, gel quality, and water holding capacity and effectively maintain the gel whiteness. | [79] |
Ultrasound | Pork | 240 W, 20 kHz, 6 min | Enhanced fat myofibrillar protein gel properties, decreased porous gel networks, and particle size of fats. The changes in hardness, springiness, and WHC of mixed gels under different MP and fat ratios as affected by HIU are shown in Figure 1. HIU decreases the hardness of the gels at a protein/fat ratio higher than 1:5, while springiness and water holding capacity increase at a ratio < 1:10, improving texture. | [80] |
Ultrasound | Pork | 250 W, 20 kHz, 0 to 12 min | While improving the quality of the low-salt gel while damaging the medium and high-salt gels, prolonged ultrasound treatment causes myosin degradation by increasing its solubility. Improved texture and WHC of gel. | [63] |
Ultrasound | Silver carp (Hypophthalmichthys molitrix) | 400 W, 25 kHz, 5, 10, and 15 min | Myofibrillar protein expands via the cavitation effect, which facilitates interaction between protein and water, ultimately decreases thiol, α-helix and the random coil content and increases β-sheet and solubility. Decreased gel pores with improved gel strength and WHC. | [81] |
Ultrasound | Litopenaeus vannamei | 25–29, 74–80, 123–130 W/cm2, 20 kHz, 60 min | Oxidation and aggregation of myofibrillar protein by increased carbonyl and free radical contents improved gelling emulsification, rheological properties, and viscoelasticity. Decreased sulfhydryl content, with increased surface hydrophobicity, fluorescence intensity, and secondary structure of protein. | [82] |
Ultrasound | Litopenaeus vannamei | 400 W, 20 kHz, 15 min | It increased the surface hydrophobicity, gel strength, WHC, emulsifying capacity, and stability of frozen shrimp’s myofibrillar protein. The cavitation effect changes the α-helix protein structure to β-sheet and β-turn. Protein unfolding increased the sulfhydryl groups. | [8] |
4.4. Effect of CAP on MP and MPG’s Structure
4.5. Effect of MAP on MP and MPG’s Structure
4.6. Effect of Irradiation on MP and MPG’s Structure
5. Advances in Vibrational Spectroscopy
5.1. Raman Spectroscopy
5.2. Infrared Spectroscopy
5.3. Hyperspectral Imaging
6. Application of Vibrational Spectroscopy in MPG Analysis
6.1. Characteristics and Factors Affecting MP and MPGs
6.2. Raman Spectroscopy in MP and MPG Analysis
6.3. Infrared Spectroscopy in MP and MPG Analysis
6.4. Hyperspectral Imaging in MP and MPG Analysis
7. Limitations and Challenges
8. Future Prospects and Instrumentation Directions
- Enhancing real-time and accurate detection: To achieve reliable real-time analysis, advancements in Raman spectroscopy are crucial. Incorporating chemometric methods can effectively address issues like signal overlapping and spectral misinterpretation. Employing advanced mathematical algorithms such as PCA, Partial Least Square (PLS), and SVM can optimize data extraction, leading to more precise quality assessments.
- Integration of visual techniques: Combining spectroscopic methods with visual analysis offers significant potential for advancing food quality and safety assessments. Techniques like SERS [187], RCI [188], and spectral imaging [189] could be integrated to enhance tissue and microstructural assessment. This approach would not only improve monitoring of meat quality but also enhance insights into factors like animal health and nutritional status, ensuring safer meat products.
- Development of cost-effective, high-performance systems: There is a pressing need to develop efficient, real-time, and in situ detection systems that are both cost-effective and high-performing. By leveraging advancements in modern optics, computer technologies, and chemometric algorithms, spectroscopy can soon provide comprehensive and accurate evaluations of meat quality, thereby elevating the standards of protein quality and safety in the meat industry.
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gastaldello, A.; Giampieri, F.; De Giuseppe, R.; Grosso, G.; Baroni, L.; Battino, M. The Rise of Processed Meat Alternatives: A Narrative Review of the Manufacturing, Composition, Nutritional Profile and Health Effects of Newer Sources of Protein, and Their Place in Healthier Diets. Trends Food Sci. Technol. 2022, 127, 263–271. [Google Scholar] [CrossRef]
- Kutsanedzie, F.Y.H.; Guo, Z.; Chen, Q. Advances in Nondestructive Methods for Meat Quality and Safety Monitoring. Food Rev. Int. 2019, 35, 536–562. [Google Scholar] [CrossRef]
- Velazquez, G.; Méndez-Montealvo, M.G.; Welti-Chanes, J.; Ramírez, J.A.; Martínez-Maldonado, M.A. Effect of High Pressure Processing and Heat Treatment on the Gelation Properties of Blue Crab Meat Proteins. LWT 2021, 146, 111389. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Zhou, P.; Zhang, X.; Wang, J. Effects of High Pressure Modification on Conformation and Gelation Properties of Myofibrillar Protein. Food Chem. 2017, 217, 678–686. [Google Scholar] [CrossRef]
- Zhou, C.; Okonkwo, C.E.; Inyinbor, A.A.; Yagoub, A.E.A.; Olaniran, A.F. Ultrasound, Infrared and Its Assisted Technology, a Promising Tool in Physical Food Processing: A Review of Recent Developments. Crit. Rev. Food Sci. Nutr. 2023, 63, 1587–1611. [Google Scholar] [CrossRef]
- Boateng, I.D.; Yang, X.-M. Thermal and Non-Thermal Processing Affect Maillard Reaction Products, Flavor, and Phytochemical Profiles of Ginkgo Biloba Seed. Food Biosci. 2021, 41, 101044. [Google Scholar] [CrossRef]
- Baldi, G.; D’Elia, F.; Soglia, F.; Tappi, S.; Petracci, M.; Rocculi, P. Exploring the Effect of Pulsed Electric Fields on the Technological Properties of Chicken Meat. Foods 2021, 10, 241. [Google Scholar] [CrossRef]
- Li, J.; Dai, Z.; Chen, Z.; Hao, Y.; Wang, S.; Mao, X. Improved Gelling and Emulsifying Properties of Myofibrillar Protein from Frozen Shrimp (Litopenaeus vannamei) by High-Intensity Ultrasound. Food Hydrocoll. 2023, 135, 108188. [Google Scholar] [CrossRef]
- Nasiru, M.M.; Frimpong, E.B.; Muhammad, U.; Qian, J.; Mustapha, A.T.; Yan, W.; Zhuang, H.; Zhang, J. Dielectric Barrier Discharge Cold Atmospheric Plasma: Influence of Processing Parameters on Microbial Inactivation in Meat and Meat Products. Comp. Rev. Food Sci. Food Safe 2021, 20, 2626–2659. [Google Scholar] [CrossRef]
- Zareef, M.; Chen, Q.; Hassan, M.M.; Arslan, M.; Hashim, M.M.; Ahmad, W.; Kutsanedzie, F.Y.H.; Agyekum, A.A. An Overview on the Applications of Typical Non-Linear Algorithms Coupled with NIR Spectroscopy in Food Analysis. Food Eng. Rev. 2020, 12, 173–190. [Google Scholar] [CrossRef]
- Berthomieu, C.; Hienerwadel, R. Fourier Transform Infrared (FTIR) Spectroscopy. Photosynth. Res. 2009, 101, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Nunekpeku, X.; Zhang, W.; Gao, J.; Adade, S.Y.-S.S.; Li, H.; Chen, Q. Gel Strength Prediction in Ultrasonicated Chicken Mince: Fusing near-Infrared and Raman Spectroscopy Coupled with Deep Learning LSTM Algorithm. Food Control 2025, 168, 110916. [Google Scholar] [CrossRef]
- Qu, C.; Li, Y.; Du, S.; Geng, Y.; Su, M.; Liu, H. Raman Spectroscopy for Rapid Fingerprint Analysis of Meat Quality and Security: Principles, Progress and Prospects. Food Res. Int. 2022, 161, 111805. [Google Scholar] [CrossRef]
- Xiaobo, Z.; Jiewen, Z.; Povey, M.J.W.; Holmes, M.; Hanpin, M. Variables Selection Methods in Near-Infrared Spectroscopy. Anal. Chim. Acta 2010, 667, 14–32. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W.; Nunekpeku, X.; Sheng, W.; Chen, Q. Investigating the Change Mechanism and Quantitative Analysis of Minced Pork Gel Quality with Different Starches Using Raman Spectroscopy. Food Hydrocoll. 2025, 159, 110634. [Google Scholar] [CrossRef]
- Wu, X.; Liang, X.; Wang, Y.; Wu, B.; Sun, J. Non-Destructive Techniques for the Analysis and Evaluation of Meat Quality and Safety: A Review. Foods 2022, 11, 3713. [Google Scholar] [CrossRef]
- Lee, S.; Jo, K.; Choi, Y.-S.; Jung, S. Tracking Bioactive Peptides and Their Origin Proteins during the in Vitro Digestion of Meat and Meat Products. Food Chem. 2024, 454, 139845. [Google Scholar] [CrossRef]
- Fang, T.; Han, M.; Wang, Y.; Xiang, X.; Chen, L.; Yang, H.; Kang, Z.; Huang, F.; Fan, X.; Han, M.; et al. Effects of Heating Rates on the Self-assembly Behavior and Gelling Properties of Beef Myosin. J. Sci. Food Agric. 2023, 103, 2473–2482. [Google Scholar] [CrossRef]
- Warren, D.; Soule, L.; Taylor, K.; Skinner, R.C.; Ku, K.M.; Matak, K.; Benedito, V.A.; Tou, J.C. Protein Quality and Safety Evaluation of Sarcoplasmic Protein Derived from Silver Carp (Hypophthalmichthys molitrix) Using a Rat Model. J. Food Sci. 2020, 85, 2544–2553. [Google Scholar] [CrossRef]
- Bao, Y.; Ertbjerg, P.; Estévez, M.; Yuan, L.; Gao, R. Freezing of Meat and Aquatic Food: Underlying Mechanisms and Implications on Protein Oxidation. Comp. Rev. Food Sci. Food Safe 2021, 20, 5548–5569. [Google Scholar] [CrossRef]
- Rong, Y.; Zareef, M.; Liu, L.; Din, Z.U.; Chen, Q.; Ouyang, Q. Application of Portable Vis-NIR Spectroscopy for Rapid Detection of Myoglobin in Frozen Pork. Meat Sci. 2023, 201, 109170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, T.; Wang, Y.; Liu, J.; Shi, W.; Hu, H.; Meng, Y.; Meng, X.; He, R. Influence of Multi-Frequency Ultrasound Treatment on Conformational Characteristics of Beef Myofibrillar Proteins with Different Degrees of Doneness. Foods 2023, 12, 2926. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Shi, T.; Sun, Q.; Li, X.; McClements, D.J.; Yuan, L. Effects of L-Arginine and l-Histidine on Heat-Induced Aggregation of Fish Myosin: Bighead Carp (Aristichthys nobilis). Food Chem. 2019, 295, 320–326. [Google Scholar] [CrossRef]
- Gao, R.; Feng, X.; Li, W.; Yuan, L.; Ge, J.; Lu, D.; Chen, B.; Yu, G. Changes in Properties of White Shrimp (Litopenaeus vannamei) Protein during Thermal Denaturation. Food Sci. Biotechnol. 2016, 25, 21–26. [Google Scholar] [CrossRef]
- Gao, R.; Wang, Y.; Mu, J.; Shi, T.; Yuan, L. Effect of L-Histidine on the Heat-Induced Aggregation of Bighead Carp (Aristichthys nobilis) Myosin in Low/High Ionic Strength Solution. Food Hydrocoll. 2018, 75, 174–181. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, D.; Tu, J.; Zhong, Y.; Zhang, D.; Wang, Z.; Tao, X. Mechanisms of Change in Gel Water-Holding Capacity of Myofibrillar Proteins Affected by Lipid Oxidation: The Role of Protein Unfolding and Cross-Linking. Food Chem. 2021, 344, 128587. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, G.; Wang, J.; Wang, Y.; Jin, G.; Teng, W.; Geng, F.; Cao, J. Myofibrillar Protein Denaturation/Oxidation in Freezing-Thawing Impair the Heat-Induced Gelation: Mechanisms and Control Technologies. Trends Food Sci. Technol. 2023, 138, 655–670. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Bekhit, A.E.A.; Kumar, S.; Bhat, H.F. Thermal Processing Implications on the Digestibility of Meat, Fish and Seafood Proteins. Comp. Rev. Food Sci. Food Safe 2021, 20, 4511–4548. [Google Scholar] [CrossRef]
- Wang, R.-X.; Li, Y.-Q.; Sun, G.-J.; Wang, C.-Y.; Liang, Y.; Hua, D.-L.; Chen, L.; Mo, H.-Z. Effect of Transglutaminase on Structure and Gelation Properties of Mung Bean Protein Gel. Food Biophys. 2023, 18, 421–432. [Google Scholar] [CrossRef]
- Monto, A.R.; Li, M.; Wang, X.; Wijaya, G.Y.A.; Shi, T.; Xiong, Z.; Yuan, L.; Jin, W.; Li, J.; Gao, R. Recent Developments in Maintaining Gel Properties of Surimi Products under Reduced Salt Conditions and Use of Additives. Crit. Rev. Food Sci. Nutr. 2022, 62, 8518–8533. [Google Scholar] [CrossRef]
- Chang, J.; Liu, R.; Zheng, B.; Gao, X.; Li, B.; Zhang, Y.; Wang, T.; Wang, H. Amelioration of Myofibrillar Protein Emulsion Gel Properties by Mildly Oxidized Sunflower Oil. Food Chem. 2025, 467, 142253. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Wang, L.; Gao, P.; Yu, P.; Yang, F.; Yu, D.; Chen, H.; Xia, W. Study on the Effect and Mechanism of Chicken Breast on the Gel Properties of Silver Carp (Hypophthalmichtys molitrix) Surimi. J. Sci. Food Agric. 2024, 104, 1132–1142. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Q.; Guo, L.; Ho, H.; Wang, B.; Sun, J.; Xu, X.; Huang, M. Effects of Ultrafine Comminution Treatment on Gelling Properties of Myofibrillar Proteins from Chicken Breast. Food Hydrocoll. 2019, 97, 105199. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Zeng, X.; Han, Z.; Brennan, C.S. Non-thermal Technologies and Its Current and Future Application in the Food Industry: A Review. Int. J. Food Sci. Technol. 2019, 54, 1–13. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Zhang, L.; Qin, Z.; Wang, T. Review of Recent Advances in Intelligent and Antibacterial Packaging for Meat Quality and Safety. Foods 2025, 14, 1157. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, Z.; Wu, D.; Fei, X.; Ei-Seedi, H.R.; Wang, C. High-Pressure Homogenization Influences the Functional Properties of Protein from Oyster (Crassostrea gigas). LWT 2021, 151, 112107. [Google Scholar] [CrossRef]
- Li, Y.; Kang, Z.; Sukmanov, V.; Ma, H. Effects of Soy Protein Isolate on Gel Properties and Water Holding Capacity of Low-Salt Pork Myofibrillar Protein under High Pressure Processing. Meat Sci. 2021, 176, 108471. [Google Scholar] [CrossRef]
- Sun, L.; Lv, J.; Liu, Y.; Zang, M.; Li, P.; Wang, D.; Zhu, Y.; Xu, W. Effects of Combined Carnosine and Ultra-High Pressure on the Inhibition of Fishy off-Odor of Snakehead Fillets and the Possible Mechanism. Food Chem. 2022, 395, 133615. [Google Scholar] [CrossRef]
- Xiong, Z.; Shi, T.; Jin, W.; Bao, Y.; Monto, A.R.; Yuan, L.; Gao, R. Gel Performance of Surimi Induced by Various Thermal Technologies: A Review. Crit. Rev. Food Sci. Nutr. 2024, 64, 3075–3090. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, M.; Bhandari, B.; Sun, J.; Gao, Z. Infusion of CO2 in a Solid Food: A Novel Method to Enhance the Low-Frequency Ultrasound Effect on Immersion Freezing Process. Innov. Food Sci. Emerg. Technol. 2016, 35, 194–203. [Google Scholar] [CrossRef]
- Zhang, R.; Ding, F.; Zhang, Y.; Zhou, C.; Zhang, W.; Shi, J.; Zou, X.; Xiao, J. Freezing Characteristics and Relative Permittivity of Rice Flour Gel in Pulsed Electric Field Assisted Freezing. Food Chem. 2022, 373, 131449. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Rao, L.; Zhao, L.; Wu, X.; Wang, Y.; Liao, X. High Pressure Processing Combined with Selected Hurdles: Enhancement in the Inactivation of Vegetative Microorganisms. Comp. Rev. Food Sci. Food Safe 2021, 20, 1800–1828. [Google Scholar] [CrossRef] [PubMed]
- Bhat, Z.F.; Morton, J.D.; Bekhit, A.E.-D.A.; Kumar, S.; Bhat, H.F. Emerging Processing Technologies for Improved Digestibility of Muscle Proteins. Trends Food Sci. Technol. 2021, 110, 226–239. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, Z.; Mintah, B.K.; Xu, H.; Dabbour, M.; Cheng, Y.; Dai, C.; He, R.; Ma, H. Effects of Nonthermal Physical Processing Technologies on Functional, Structural Properties and Digestibility of Food Protein: A Review. J. Food Process Eng. 2022, 45, e14010. [Google Scholar] [CrossRef]
- Li, J.; Shi, J.; Huang, X.; Zou, X.; Li, Z.; Zhang, D.; Zhang, W.; Xu, Y. Effects of Pulsed Electric Field on Freeze-Thaw Quality of Atlantic Salmon. Innov. Food Sci. Emerg. Technol. 2020, 65, 102454. [Google Scholar] [CrossRef]
- Guo, L.; Azam, S.M.R.; Guo, Y.; Liu, D.; Ma, H. Germicidal Efficacy of the Pulsed Magnetic Field against Pathogens and Spoilage Microorganisms in Food Processing: An Overview. Food Control 2022, 136, 108496. [Google Scholar] [CrossRef]
- Barba, F.J.; Parniakov, O.; Pereira, S.A.; Wiktor, A.; Grimi, N.; Boussetta, N.; Saraiva, J.A.; Raso, J.; Martin-Belloso, O.; Witrowa-Rajchert, D.; et al. Current Applications and New Opportunities for the Use of Pulsed Electric Fields in Food Science and Industry. Food Res. Int. 2015, 77, 773–798. [Google Scholar] [CrossRef]
- Al-Hilphy, A.R.; Al-Asadi, M.H.; Al-Hmedawy, N.K.; Khalil, A.A.; Roobab, U.; Ranjha, M.M.A.N.; Manzoor, M.F. Effects of Electrical Field Stimulation on the Physicochemical and Sensory Attributes of Aged Chicken Meat. J. Food Process Eng. 2022, 45, e14032. [Google Scholar] [CrossRef]
- Hong, J.; An, D.; Liu, C.; Li, L.; Han, Z.; Guan, E.; Xu, B.; Zheng, X.; Bian, K. Rheological, Textural, and Digestible Properties of Fresh Noodles: Influence of Starch Esterified by Conventional and Pulsed Electric Field-assisted Dual Technique with Full Range of Amylose Content. J. Food Process Preserv. 2020, 44, e14567. [Google Scholar] [CrossRef]
- Li, Z.; Yang, H.; Fang, W.; Huang, X.; Shi, J.; Zou, X. Effects of Variety and Pulsed Electric Field on the Quality of Fresh-Cut Apples. Agriculture 2023, 13, 929. [Google Scholar] [CrossRef]
- Wang, B.; Khir, R.; Pan, Z.; Wood, D.; Mahoney, N.E.; El-Mashad, H.; Wu, B.; Ma, H.; Liu, X. Simultaneous Decontamination and Drying of Rough Rice Using Combined Pulsed Light and Holding Treatment: Simultaneous Decontamination and Drying of Rough Rice. J. Sci. Food Agric. 2016, 96, 2874–2881. [Google Scholar] [CrossRef] [PubMed]
- Astráin-Redín, L.; Raso, J.; Cebrián, G.; Álvarez, I. Potential of Pulsed Electric Fields for the Preparation of Spanish Dry-Cured Sausages. Sci. Rep. 2019, 9, 16042. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Zhou, Y.; Guo, J.; Feng, X.; Wang, X.; Wang, L.; Ma, J.; Sun, W. Low Frequency Magnetic Field plus High pH Promote the Quality of Pork Myofibrillar Protein Gel: A Novel Study Combined with Low Field NMR and Raman Spectroscopy. Food Chem. 2020, 326, 126896. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zou, Y.; Wang, D.; Xiong, G.; Xu, W. Effects of Ultrasound Pretreatment on the Extent of Maillard Reaction and the Structure, Taste and Volatile Compounds of Chicken Liver Protein. Food Chem. 2020, 331, 127369. [Google Scholar] [CrossRef]
- Pan, J.; Li, C.; Liu, X.; He, L.; Zhang, M.; Huang, S.; Huang, S.; Liu, Y.; Zhang, Y.; Jin, G. A Multivariate Insight into the Organoleptic Properties of Porcine Muscle by Ultrasound-Assisted Brining: Protein Oxidation, Water State and Microstructure. LWT 2022, 159, 113136. [Google Scholar] [CrossRef]
- Wang, H.; Gao, Z.; Guo, X.; Gao, S.; Wu, D.; Liu, Z.; Wu, P.; Xu, Z.; Zou, X.; Meng, X. Changes in Textural Quality and Water Retention of Spiced Beef under Ultrasound-Assisted Sous-Vide Cooking and Its Possible Mechanisms. Foods 2022, 11, 2251. [Google Scholar] [CrossRef]
- Saleem, R.; Ahmad, R. Effect of Ultrasonication on Secondary Structure and Heat Induced Gelation of Chicken Myofibrils. J. Food Sci. Technol. 2016, 53, 3340–3348. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Yan, J.-K.; Ding, Y.; Rashid, M.T.; Ma, H. Effect of Sweep Frequency Ultrasound and Fixed Frequency Ultrasound Thawing on Gelling Properties of Myofibrillar Protein from Quick-Frozen Small Yellow Croaker and Its Possible Mechanisms. LWT 2021, 150, 111922. [Google Scholar] [CrossRef]
- Cheng, Y.; Donkor, P.O.; Ren, X.; Wu, J.; Agyemang, K.; Ayim, I.; Ma, H. Effect of Ultrasound Pretreatment with Mono-Frequency and Simultaneous Dual Frequency on the Mechanical Properties and Microstructure of Whey Protein Emulsion Gels. Food Hydrocoll. 2019, 89, 434–442. [Google Scholar] [CrossRef]
- Alarcon-Rojo, A.D.; Carrillo-Lopez, L.M.; Reyes-Villagrana, R.; Huerta-Jiménez, M.; Garcia-Galicia, I.A. Ultrasound and Meat Quality: A Review. Ultrason. Sonochem. 2019, 55, 369–382. [Google Scholar] [CrossRef]
- Ojha, K.S.; Keenan, D.F.; Bright, A.; Kerry, J.P.; Tiwari, B.K. Ultrasound Assisted Diffusion of Sodium Salt Replacer and Effect on Physicochemical Properties of Pork Meat. Int. J. Food Sci. Technol. 2016, 51, 37–45. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, X.; Lai, B.; Liu, R.; Wu, M.; Ge, Q.; Yu, H. Effects of Ultrasound-Assisted Cooking on the Physicochemical Properties and Microstructure of Pork Meatballs. Meat Sci. 2024, 208, 109382. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ma, L.; Fu, Y.; Dai, H.; Zhang, Y. The Improvement of Gel and Physicochemical Properties of Porcine Myosin under Low Salt Concentrations by Pulsed Ultrasound Treatment and Its Mechanism. Food Res. Int. 2021, 141, 110056. [Google Scholar] [CrossRef]
- Xu, M.; Ni, X.; Liu, Q.; Chen, C.; Deng, X.; Wang, X.; Yu, R. Ultra-High Pressure Improved Gelation and Digestive Properties of Tai Lake Whitebait Myofibrillar Protein. Food Chem. X 2024, 21, 101061. [Google Scholar] [CrossRef]
- Lee, M.H.; In Yong, H.; Kim, Y.J.; Choi, Y.-S. High-Pressure Induced Structural Modification of Porcine Myofibrillar Protein and Its Relation to Rheological and Emulsifying Properties. Meat Sci. 2023, 196, 109032. [Google Scholar] [CrossRef]
- Ge, Q.; Wu, Y.; Yuan, N.; Jia, Z.; Liu, R.; Lu, F.; Ma, H.; Kang, Z. Effect of High Pressure Homogenization-Modified Soy 11S Globulin on the Gel and Rheological Properties of Pork Myofibrillar Protein. Foods 2023, 12, 810. [Google Scholar] [CrossRef]
- Jia, G.; Orlien, V.; Liu, H.; Sun, A. Effect of High Pressure Processing of Pork (Longissimus dorsi) on Changes of Protein Structure and Water Loss during Frozen Storage. LWT 2021, 135, 110084. [Google Scholar] [CrossRef]
- Okur, G.; Tavman, S.; Tsutsuura, S.; Nishiumi, T. Effect of High Pressure Processing on Traditional Turkish Meatballs Properties and Microbiological Safety during Frozen Storage. LWT 2023, 185, 115110. [Google Scholar] [CrossRef]
- Lee, S.; Jo, K.; Jeong, S.-K.-C.; Choi, Y.-S.; Jung, S. High-Pressure Processing of Beef Increased the in Vitro Protein Digestibility in an Infant Digestion Model. Meat Sci. 2023, 205, 109318. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Wang, X.; Ma, F.; Xu, B.; Li, P.; Chen, C. Origin of High-Pressure Induced Changes in the Properties of Reduced-Sodium Chicken Myofibrillar Protein Gels Containing CaCl2: Physicochemical and Molecular Modification Perspectives. Food Chem. 2020, 319, 126535. [Google Scholar] [CrossRef]
- Dong, M.; Xu, Y.; Zhang, Y.; Han, M.; Wang, P.; Xu, X.; Zhou, G. Physicochemical and Structural Properties of Myofibrillar Proteins Isolated from Pale, Soft, Exudative (PSE)-like Chicken Breast Meat: Effects of Pulsed Electric Field (PEF). Innov. Food Sci. Emerg. Technol. 2020, 59, 102277. [Google Scholar] [CrossRef]
- Chian, F.M.; Kaur, L.; Oey, I.; Astruc, T.; Hodgkinson, S.; Boland, M. Effects of Pulsed Electric Field Processing and Sous Vide Cooking on Muscle Structure and In Vitro Protein Digestibility of Beef Brisket. Foods 2021, 10, 512. [Google Scholar] [CrossRef] [PubMed]
- Karki, R.; Oey, I.; Bremer, P.; Silcock, P. Understanding the Effect of Meat Electrical Conductivity on Pulsed Electric Field (PEF) Process Parameters and the Ability of PEF to Enhance the Quality and Shorten Sous Vide Processing for Beef Short Ribs. Food Res. Int. 2023, 163, 112251. [Google Scholar] [CrossRef]
- Karki, R.; Oey, I.; Bremer, P.; Leong, S.Y.; Silcock, P. Effect of Pulsed Electric Fields (PEF) Pre-Treatment on the Quality of Sous Vide (SV) Processed Beef Short Ribs and Optimisation of PEF and SV Process Parameters Using Multiple Polynomial Regression Model. Food Bioprocess Technol. 2023, 16, 216–231. [Google Scholar] [CrossRef]
- Chang, C.-K.; Lung, C.-T.; Gavahian, M.; Yudhistira, B.; Chen, M.-H.; Santoso, S.P.; Hsieh, C.-W. Effect of Pulsed Electric Field-Assisted Thawing on the Gelling Properties of Pekin Duck Meat Myofibrillar Protein. J. Food Eng. 2023, 350, 111482. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.; Zhang, Y.; Sun, J.; Qiao, C. Preheating and High-Intensity Ultrasound Synergistically Affect the Physicochemical, Structural, and Gelling Properties of Chicken Wooden Breast Myofibrillar Protein. Food Res. Int. 2022, 162, 111975. [Google Scholar] [CrossRef]
- Xing, T.; Xu, Y.; Qi, J.; Xu, X.; Zhao, X. Effect of High Intensity Ultrasound on the Gelation Properties of Wooden Breast Meat with Different NaCl Contents. Food Chem. 2021, 347, 129031. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.; Wang, H.; Xia, X.; Kong, B. Ultrasound-Assisted Immersion Freezing Reduces the Structure and Gel Property Deterioration of Myofibrillar Protein from Chicken Breast. Ultrason. Sonochem. 2020, 67, 105137. [Google Scholar] [CrossRef]
- Kong, D.; Quan, C.; Xi, Q.; Han, R.; Li, P.; Du, Q.; Yang, Y.; Sun, J.; Tamplin, M.; Wang, J. Effects of Ultrasound-Assisted Slightly Acidic Electrolyzed Water Thawing on Myofibrillar Protein Conformation and Gel Properties of Chicken Breasts. Food Chem. 2023, 404, 134738. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, J.; Lorenzo, J.M.; Zhang, W. Effects of Ultrasound Emulsification on the Properties of Pork Myofibrillar Protein-Fat Mixed Gel. Food Chem. 2021, 345, 128751. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Q.; Shi, W. Ultrasound-Assisted Processing: Changes in Gel Properties, Water-Holding Capacity, and Protein Aggregation of Low-Salt Hypophthalmichthys molitrix Surimi by Soy Protein Isolate. Ultrason. Sonochem. 2023, 92, 106258. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhang, K.-X.; Du, J.-Y.; Tan, Z.-F.; Xu, Y.-P.; Liu, X.-Y.; Zhou, D.-Y.; Li, D.-Y. High-Intensity Ultrasound Improved the Physicochemical and Gelling Properties of Litopenaeus vannamei Myofibrillar Protein. Ultrason. Sonochem. 2022, 90, 106217. [Google Scholar] [CrossRef] [PubMed]
- Umair, M.; Sultana, T.; Xun, S.; Jabbar, S.; Riaz Rajoka, M.S.; Albahi, A.; Abid, M.; Ranjha, M.M.A.N.; El-Seedi, H.R.; Xie, F.; et al. Advances in the Application of Functional Nanomaterial and Cold Plasma for the Fresh-keeping Active Packaging of Meat. Food Sci. Nutr. 2023, 11, 5753–5772. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Shi, T.; Xiong, Z.; Jin, W.; Bao, Y.; Monto, A.R.; Yuan, L.; Gao, R. Mechanism of Plasma-Activated Water Promoting the Heat-Induced Aggregation of Myofibrillar Protein from Silver Carp (Aristichthys Nobilis). Innov. Food Sci. Emerg. Technol. 2024, 91, 103555. [Google Scholar] [CrossRef]
- Qian, J.; Wang, Y.; Zhuang, H.; Yan, W.; Zhang, J.; Luo, J. Plasma Activated Water-Induced Formation of Compact Chicken Myofibrillar Protein Gel Structures with Intrinsically Antibacterial Activity. Food Chem. 2021, 351, 129278. [Google Scholar] [CrossRef]
- Qian, J.; Zhuang, H.; Nasiru, M.M.; Muhammad, U.; Zhang, J.; Yan, W. Action of Plasma-Activated Lactic Acid on the Inactivation of Inoculated Salmonella Enteritidis and Quality of Beef. Innov. Food Sci. Emerg. Technol. 2019, 57, 102196. [Google Scholar] [CrossRef]
- Jiang, W.; Wu, R.A.; Hu, X.; Zhang, R.; Ding, T.; Zhou, J. Changes in Physicochemical and Conformational Properties of Myofibrillar Proteins Isolated from Mandarin Fish (Siniperca chuatsi) Treated by Atmospheric Pressure Plasma Jet. CyTA—J. Food 2023, 21, 625–633. [Google Scholar] [CrossRef]
- Situ, H.; Li, Y.; Gao, J.; Zhang, C.; Qin, X.; Cao, W.; Chen, Z.; Lin, H. Effects of Cold Atmospheric Plasma on Endogenous Enzyme Activity and Muscle Protein Oxidation in Trachinotus Ovatus. Food Chem. 2023, 407, 135119. [Google Scholar] [CrossRef]
- Miao, W.; Nyaisaba, B.M.; Koddy, J.K.; Chen, M.; Hatab, S.; Deng, S. Effect of Cold Atmospheric Plasma on the Physicochemical and Functional Properties of Myofibrillar Protein from Alaska Pollock (Theragra chalcogramma). Int. J. Food Sci. Technol. 2020, 55, 517–525. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, C.; Cui, H.; Lin, L. Feasibility of Cold Plasma for the Control of Biofilms in Food Industry. Trends Food Sci. Technol. 2020, 99, 142–151. [Google Scholar] [CrossRef]
- Shao, S.; Ye, Z.; Sun, J.; Liu, C.; Yan, J.; Liu, T.; Li, X.; Zhang, H.; Xiao, R. A Review on the Application of Non-Thermal Plasma (NTP) in the Conversion of Biomass: Catalyst Preparation, Thermal Utilization and Catalyst Regeneration. Fuel 2022, 330, 125420. [Google Scholar] [CrossRef]
- Shishir, M.R.I.; Kamal, M.M.; Karim, N.; Saifullah, M.; Khan, S.; Zhang, K.; Marappan, G.; Aalim, H.; Hashim, S.B.H.; Zhai, X.; et al. Cold Plasma and Integrated Approaches for Fresh Produce Preservation: Mechanisms, Quality Attributes, Challenges, and Future Directions. Trends Food Sci. Technol. 2025, 159, 104988. [Google Scholar] [CrossRef]
- Atta, O.M.; Manan, S.; Shahzad, A.; Ul-Islam, M.; Ullah, M.W.; Yang, G. Biobased Materials for Active Food Packaging: A Review. Food Hydrocoll. 2022, 125, 107419. [Google Scholar] [CrossRef]
- Gurunathan, K.; Tahseen, A.; Manyam, S. Effect of Aerobic and Modified Atmosphere Packaging on Quality Characteristics of Chicken Leg Meat at Refrigerated Storage. Poult. Sci. 2022, 101, 102170. [Google Scholar] [CrossRef]
- Liu, R.; Guan, W.; Lv, W.; Kang, Z.; Wang, Q.; Jin, D.; Zhao, X.; Ge, Q.; Wu, M.; Yu, H. Oxidative Modification, Structural Conformation, and Gel Properties of Pork Paste Protein Mediated by Oxygen Concentration in Modified Atmosphere Packaging. Foods 2024, 13, 391. [Google Scholar] [CrossRef]
- Li, S.; Guo, X.; Shen, Y.; Pan, J.; Dong, X. Effects of Oxygen Concentrations in Modified Atmosphere Packaging on Pork Quality and Protein Oxidation. Meat Sci. 2022, 189, 108826. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, M.; Liu, H.; Li, Q.; Xue, D.; Nian, Y.; Zhao, D.; Shan, K.; Dai, C.; Li, C. Ultrasound Treatment Can Increase Digestibility of Myofibrillar Protein of Pork with Modified Atmosphere Packaging. Food Chem. 2022, 377, 131811. [Google Scholar] [CrossRef]
- Shen, Y.; Guo, X.; Li, X.; Wang, W.; Wang, S.; Pan, J.; Dong, X.; Li, S. Effect of Cooking Temperatures on Meat Quality, Protein Carbonylation and Protein Cross-Linking of Beef Packed in High Oxygen Atmosphere. LWT 2022, 154, 112633. [Google Scholar] [CrossRef]
- Cao, H.; Wang, X.; Liu, J.; Sun, Z.; Yu, Z.; Battino, M.; El-Seedi, H.; Guan, X. Mechanistic Insights into the Changes of Enzyme Activity in Food Processing under Microwave Irradiation. Comp. Rev. Food Sci. Food Safe 2023, 22, 2465–2487. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, W.; Ding, X.; Wu, Z.; Li, Y. Effects of Dual-Frequency Ultrasound with Different Energy Irradiation Modes on the Structural and Emulsifying Properties of Soy Protein Isolate. Food Bioprod. Process. 2020, 123, 419–426. [Google Scholar] [CrossRef]
- Bai, R.; Han, J.; Ye, X.; Yu, J.; Jiang, S.; Li, Z.; Zhang, L.; Yang, C.; Chen, Y.; Wang, S.; et al. Improvement on Gel Properties of Chicken Myofibrillar Protein with Electron Beam Irradiation: Based on Protein Structure, Gel Quality, Water State. Int. J. Biol. Macromol. 2024, 280, 135806. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Kairam, N.; Ahmad, T.; Yadav, D.N. Physico Chemical, Microstructural and Sensory Characteristics of Low-fat Meat Emulsion Containing Aloe Gel as Potential Fat Replacer. Int. J. Food Sci. Technol. 2016, 51, 309–316. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Gao, S.; Bao, Y.; Tan, Y.; Luo, Y.; Li, X.; Hong, H. Effect of Protein Oxidation in Meat and Exudates on the Water Holding Capacity in Bighead Carp (Hypophthalmichthys nobilis) Subjected to Frozen Storage. Food Chem. 2022, 370, 131079. [Google Scholar] [CrossRef]
- Yan, J.-K.; Cai, W.-D.; Wang, C.; Yu, Y.-B.; Zhang, H.-N.; Yang, Y.; Wang, W.-H. Macromolecular Behavior, Structural Characteristics and Rheological Properties of Alkali-Neutralization Curdlan at Different Concentrations. Food Hydrocoll. 2020, 105, 105785. [Google Scholar] [CrossRef]
- Shi, T.; Xiong, Z.; Jin, W.; Yuan, L.; Sun, Q.; Zhang, Y.; Li, X.; Gao, R. Suppression Mechanism of L-Arginine in the Heat-Induced Aggregation of Bighead Carp (Aristichthys nobilis) Myosin: The Significance of Ionic Linkage Effects and Hydrogen Bond Effects. Food Hydrocoll. 2020, 102, 105596. [Google Scholar] [CrossRef]
- Yan, J.-K.; Wang, C.; Qiu, W.-Y.; Chen, T.-T.; Yang, Y.; Wang, W.-H.; Zhang, H.-N. Ultrasonic Treatment at Different pH Values Affects the Macromolecular, Structural, and Rheological Characteristics of Citrus Pectin. Food Chem. 2021, 341, 128216. [Google Scholar] [CrossRef]
- Liu, Y.; Mubango, E.; Dou, P.; Bao, Y.; Tan, Y.; Luo, Y.; Li, X.; Hong, H. Insight into the Protein Oxidation Impact on the Surface Properties of Myofibrillar Proteins from Bighead Carp. Food Chem. 2023, 411, 135515. [Google Scholar] [CrossRef]
- Wu, D.; Wang, H.; Guo, X.; Zhang, Z.; Gao, Z.; Gao, S.; Liu, Z.; Rao, S.; Meng, X. Insight into the Mechanism of Enhancing Myofibrillar Protein Gel Hardness by Ultrasonic Treatment Combined with Insoluble Dietary Fiber from Oat. LWT 2023, 178, 114539. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Yang, H.; Xue, J.; Li, Y.; Wang, S.; Ge, L.; Shen, Q.; Zhang, M. Comparative Study on the Rheological Properties of Myofibrillar Proteins from Different Kinds of Meat. LWT 2022, 153, 112458. [Google Scholar] [CrossRef]
- Li, X.; Xie, W.; Bai, F.; Wang, J.; Zhou, X.; Gao, R.; Xu, X.; Zhao, Y. Influence of Thermal Processing on Flavor and Sensory Profile of Sturgeon Meat. Food Chem. 2022, 374, 131689. [Google Scholar] [CrossRef]
- Ye, T.; Chen, X.; Lu, Y.; Zhao, H.; Chen, Z.; Lin, L.; Zheng, Z.; Lu, J. Masterly Substitution of Plant Proteins Can Achieve Acceptable Sensory and Nutritional Attributes in Meat-Reduced Surimi Gel. LWT 2024, 208, 116668. [Google Scholar] [CrossRef]
- Sun, Y.; Tang, H.; Zou, X.; Meng, G.; Wu, N. Raman Spectroscopy for Food Quality Assurance and Safety Monitoring: A Review. Curr. Opin. Food Sci. 2022, 47, 100910. [Google Scholar] [CrossRef]
- Yan, H.; Neves, M.D.G.; Wise, B.M.; Moraes, I.A.; Barbin, D.F.; Siesler, H.W. The Application of Handheld Near-Infrared Spectroscopy and Raman Spectroscopic Imaging for the Identification and Quality Control of Food Products. Molecules 2023, 28, 7891. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Yang, Z.; Wang, X.; Wang, W.; Hui, T. Rapid Non-Destructive Detection Technology in the Field of Meat Tenderness: A Review. Foods 2024, 13, 1512. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, J.; Sun, D.-W. Raman Spectroscopic Techniques for Detecting Structure and Quality of Frozen Foods: Principles and Applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 2623–2639. [Google Scholar] [CrossRef]
- Butler, H.J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N.J.; Gardner, B.; Martin-Hirsch, P.L.; et al. Using Raman Spectroscopy to Characterize Biological Materials. Nat. Protoc. 2016, 11, 664–687. [Google Scholar] [CrossRef]
- Shi, H.; Zhou, T.; Wang, X.; Zou, Y.; Wang, D.; Xu, W. Effects of the Structure and Gel Properties of Myofibrillar Protein on Chicken Breast Quality Treated with Ultrasound-Assisted Potassium Alginate. Food Chem. 2021, 358, 129873. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Xu, Y.; Mi, H.; Yi, S.; Gao, R.; Li, X.; Li, J. Effects of Chickpea Protein-Stabilized Pickering Emulsion on the Structure and Gelling Properties of Hairtail Fish Myosin Gel. Food Chem. 2023, 417, 135821. [Google Scholar] [CrossRef]
- Shi, T.; Xiong, Z.; Liu, H.; Jin, W.; Mu, J.; Yuan, L.; Sun, Q.; McClements, D.J.; Gao, R. Ameliorative Effects of L-Arginine? On Heat-Induced Phase Separation of Aristichthys nobilis Myosin Are Associated with the Absence of Ordered Secondary Structures of Myosin. Food Res. Int. 2021, 141, 110154. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chen, H.; Lyu, F.; Lin, H.; Zhang, Q.; Ding, Y. Physicochemical Properties and Microstructure of Fish Myofibrillar Protein-Lipid Composite Gels: Effects of Fat Type and Concentration. Food Hydrocoll. 2019, 90, 433–442. [Google Scholar] [CrossRef]
- Pasquini, C. Near Infrared Spectroscopy: A Mature Analytical Technique with New Perspectives—A Review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Chen, X.; Liang, Z.; Qi, W.; Zheng, X.; Lu, D.; Chen, B. Application of NIR Spectral Standardization Based on Principal Component Score Evaluation in Wheat Flour Crude Protein Model Sharing. J. Food Qual. 2022, 2022, 9009756. [Google Scholar] [CrossRef]
- Zareef, M.; Arslan, M.; Hassan, M.M.; Ali, S.; Ouyang, Q.; Li, H.; Wu, X.; Hashim, M.M.; Javaria, S.; Chen, Q. Application of Benchtop NIR Spectroscopy Coupled with Multivariate Analysis for Rapid Prediction of Antioxidant Properties of Walnut (Juglans regia). Food Chem. 2021, 359, 129928. [Google Scholar] [CrossRef]
- Karoui, R.; Downey, G.; Blecker, C. Mid-Infrared Spectroscopy Coupled with Chemometrics: A Tool for the Analysis of Intact Food Systems and the Exploration of Their Molecular Structure−quality Relationships—A Review. Chem. Rev. 2010, 110, 6144–6168. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiao, L.; Wu, J.; Zhang, Y.; Zhu, Q.; Dong, D. Non-Destructive and in-Situ Detection of Shrimp Freshness Using Mid-Infrared Fiber-Optic Evanescent Wave Spectroscopy. Food Chem. 2023, 422, 136189. [Google Scholar] [CrossRef]
- Hassoun, A.; Ojha, S.; Tiwari, B.; Rustad, T.; Nilsen, H.; Heia, K.; Cozzolino, D.; Bekhit, A.E.-D.; Biancolillo, A.; Wold, J.P. Monitoring Thermal and Non-Thermal Treatments during Processing of Muscle Foods: A Comprehensive Review of Recent Technological Advances. Appl. Sci. 2020, 10, 6802. [Google Scholar] [CrossRef]
- Xu, M.; Sun, J.; Zhou, X.; Tang, N.; Shen, J.; Wu, X. Research on Nondestructive Identification of Grape Varieties Based on EEMD-DWT and Hyperspectral Image. J. Food Sci. 2021, 86, 2011–2023. [Google Scholar] [CrossRef]
- Yao, K.; Sun, J.; Chen, C.; Xu, M.; Zhou, X.; Cao, Y.; Tian, Y. Non-Destructive Detection of Egg Qualities Based on Hyperspectral Imaging. J. Food Eng. 2022, 325, 111024. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, X.; You, J.; Xiong, S. Rapid Determination of the Textural Properties of Silver Carp (Hypophthalmichthys molitrix) Using near-Infrared Reflectance Spectroscopy and Chemometrics. LWT 2020, 129, 109545. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, C.; Sun, J.; Cao, Y.; Yao, K.; Xu, M. A Deep Learning Method for Predicting Lead Content in Oilseed Rape Leaves Using Fluorescence Hyperspectral Imaging. Food Chem. 2023, 409, 135251. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.; Pu, Y.; Wang, J.; Tang, B.; Dai, L.; Yu, S.; Chen, R. Identification of Transgenic Agricultural Products and Foods Using NIR Spectroscopy and Hyperspectral Imaging: A Review. Processes 2023, 11, 651. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, J.; Tian, Y.; Lu, B.; Hang, Y.; Chen, Q. Hyperspectral Technique Combined with Deep Learning Algorithm for Detection of Compound Heavy Metals in Lettuce. Food Chem. 2020, 321, 126503. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Zhou, X. Nondestructive Detection and Visualization of Protein Oxidation Degree of Frozen-Thawed Pork Using Fluorescence Hyperspectral Imaging. Meat Sci. 2022, 194, 108975. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Dai, C. Multi-Task Convolutional Neural Network for Simultaneous Monitoring of Lipid and Protein Oxidative Damage in Frozen-Thawed Pork Using Hyperspectral Imaging. Meat Sci. 2023, 201, 109196. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, X.; Zhou, G. Covalent Chemical Modification of Myofibrillar Proteins to Improve Their Gelation Properties: A Systematic Review. Comp. Rev. Food Sci. Food Safe 2021, 20, 924–959. [Google Scholar] [CrossRef]
- Holman, B.W.B.; Alvarenga, T.I.R.C.; Hopkins, D.L. The Effect of Fibre Orientation, Measurement Interval and Muscle on Lamb Meat Drip Loss Values. Meat Sci. 2020, 161, 107959. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Wu, D.; Gao, S.; Jiang, S.; Tang, H.; Lv, G.; Zou, X.; Meng, X. Changes in Physicochemical Quality and Protein Properties of Porcine Longissimus lumborum during Dry Ageing. Int. J. Food Sci. Technol. 2022, 57, 5954–5965. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Teng, S.; Zhang, W.; Purslow, P.P.; Zhang, R. Changes in Collagen Properties and Cathepsin Activity of Beef M. Semitendinosus by the Application of Ultrasound during Post-Mortem Aging. Meat Sci. 2022, 185, 108718. [Google Scholar] [CrossRef]
- Sun, X.D.; Holley, R.A. Factors Influencing Gel Formation by Myofibrillar Proteins in Muscle Foods. Comp. Rev. Food Sci. Food Safe 2011, 10, 33–51. [Google Scholar] [CrossRef]
- Sang, S.; Chen, X.; Qin, Y.; Tong, L.; Ou, C. A Study on the Effects of Calcium Lactate on the Gelling Properties of Large Yellow Croaker (Pseudosciaena crocea) Surimi by Low-Field Nuclear Magnetic Resonance and Raman Spectroscopy. Foods 2022, 11, 3197. [Google Scholar] [CrossRef]
- Lan, M.; Li, L.; Peng, X.; Chen, J.; Cao, Q.; He, N.; Cai, J.; Li, B.; Zhang, X. Effects of Different Lipids on the Physicochemical Properties and Microstructure of Pale, Soft and Exudative (PSE)-like Chicken Meat Gel. LWT 2021, 145, 111284. [Google Scholar] [CrossRef]
- Mandal, P.; Tewari, B.S. Progress in Surface Enhanced Raman Scattering Molecular Sensing: A Review. Surf. Interfaces 2022, 28, 101655. [Google Scholar] [CrossRef]
- Li, H.; Sheng, W.; Adade, S.Y.-S.S.; Nunekpeku, X.; Chen, Q. Investigation of Heat-Induced Pork Batter Quality Detection and Change Mechanisms Using Raman Spectroscopy Coupled with Deep Learning Algorithms. Food Chem. 2024, 461, 140798. [Google Scholar] [CrossRef]
- Gu, Z.; Liu, S.; Duan, Z.; Kang, R.; Zhao, M.; Xia, G.; Shen, X. Effect of Citric Acid on Physicochemical Properties and Protein Structure of Low-Salt Restructured Tilapia (Oreochromis mossambicus) Meat Products. J. Sci. Food Agric. 2021, 101, 1636–1645. [Google Scholar] [CrossRef]
- Shi, T.; Yuan, L.; Mu, J.; Gao, R. The Effect of Arginine, Lysine and Histidine in the Myosin Secondary Structure by Circular Dichroism and Raman Spectroscopy. CyTA—J. Food 2019, 17, 656–660. [Google Scholar] [CrossRef]
- Martínez-Maldonado, M.A.; Velazquez, G.; Ramírez De León, J.A.; Borderías, A.J.; Moreno, H.M. Effect of High Pressure Processing on Heat-Induced Gelling Capacity of Blue Crab (Callinectes sapidus) Meat. Innov. Food Sci. Emerg. Technol. 2020, 59, 102253. [Google Scholar] [CrossRef]
- Hameed, A.; Maan, A.A.; Khan, M.K.I.; Mahmood Khan, I.; Niazi, S.; Waheed Iqbal, M.; Riaz, T.; Manzoor, M.F.; Abdalla, M. Evaporation Kinetics and Quality Attributes of Grape Juice Concentrate as Affected by Microwave and Vacuum Processing. Int. J. Food Prop. 2023, 26, 1596–1611. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Shi, G.; Xiong, G.; Shi, L.; Kang, J.; Su, J.; Ding, A.; Li, X.; Qiao, Y.; et al. Quantitative Proteomics Insights into Gel Properties Changes of Myofibrillar Protein from Procambarus clarkii under Cold Stress. Food Chem. 2022, 372, 130935. [Google Scholar] [CrossRef]
- Tang, S.; Feng, G.; Gao, R.; Ren, J.; Zhou, X.; Wang, H.; Xu, H.; Zhao, Y.; Zeng, M. Thermal Gel Degradation (Modori) in Sturgeon (Acipenseridae) Surimi Gels. J. Food Sci. 2019, 84, 3601–3607. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, J.; Chen, Q.; Zhang, Y. Nondestructive Measurement of Total Volatile Basic Nitrogen (TVB-N) in Pork Meat by Integrating near Infrared Spectroscopy, Computer Vision and Electronic Nose Techniques. Food Chem. 2014, 145, 228–236. [Google Scholar] [CrossRef]
- Li, Q.; Wu, X.; Zheng, J.; Wu, B.; Jian, H.; Sun, C.; Tang, Y. Determination of Pork Meat Storage Time Using Near-Infrared Spectroscopy Combined with Fuzzy Clustering Algorithms. Foods 2022, 11, 2101. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Nunekpeku, X.; Zhang, W.; Adade, S.Y.-S.S.; Ahmad, W.; Sheng, W.; Chen, Q. Quantitative Prediction of Minced Chicken Gel Strength under Ultrasonic Treatment by NIR Spectroscopy Coupled with Nonlinear Chemometric Tools Evaluated Using APaRPs. Food Chem. 2025, 463, 141373. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Xie, Y.; Yu, H.; Guo, Y.; Yao, W. Non-Destructive Prediction of Colour and Water-Related Properties of Frozen/Thawed Beef Meat by Raman Spectroscopy Coupled Multivariate Calibration. Food Chem. 2023, 413, 135513. [Google Scholar] [CrossRef]
- Vilkova, D.; Sangaré, M.; Egorov, M.; Karoui, R. Mid-Infrared Spectroscopy Enabled Rapid Differentiation between Fresh and Frozen–Thawed Sevruga (Acipenser stellatus) Samples Presenting Different Raw Quality. Eur. Food Res. Technol. 2023, 249, 2299–2310. [Google Scholar] [CrossRef]
- Yang, H.; Hopkins, D.L.; Zhang, Y.; Zhu, L.; Dong, P.; Wang, X.; Mao, Y.; Luo, X.; Fowler, S.M. Preliminary Investigation of the Use of Raman Spectroscopy to Predict Beef Spoilage in Different Types of Packaging. Meat Sci. 2020, 165, 108136. [Google Scholar] [CrossRef]
- Liu, Q.; Dong, P.; Fengou, L.-C.; Nychas, G.-J.; Fowler, S.M.; Mao, Y.; Luo, X.; Zhang, Y. Preliminary Investigation into the Prediction of Indicators of Beef Spoilage Using Raman and Fourier Transform Infrared Spectroscopy. Meat Sci. 2023, 200, 109168. [Google Scholar] [CrossRef]
- Leng, T.; Li, F.; Chen, Y.; Tang, L.; Xie, J.; Yu, Q. Fast Quantification of Total Volatile Basic Nitrogen (TVB-N) Content in Beef and Pork by near-Infrared Spectroscopy: Comparison of SVR and PLS Model. Meat Sci. 2021, 180, 108559. [Google Scholar] [CrossRef]
- León-Ecay, S.; López-Maestresalas, A.; Murillo-Arbizu, M.T.; Beriain, M.J.; Mendizabal, J.A.; Arazuri, S.; Jarén, C.; Bass, P.D.; Colle, M.J.; García, D.; et al. Classification of Beef Longissimus thoracis Muscle Tenderness Using Hyperspectral Imaging and Chemometrics. Foods 2022, 11, 3105. [Google Scholar] [CrossRef]
- Ruiz, M.; Beriain, M.J.; Beruete, M.; Insausti, K.; Lorenzo, J.M.; Sarriés, M.V. Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study. Foods 2020, 9, 583. [Google Scholar] [CrossRef]
- Coria, M.S.; Castaño Ledesma, M.S.; Gómez Rojas, J.R.; Grigioni, G.; Palma, G.A.; Borsarelli, C.D. Prediction of Tenderness in Bovine Longissimus thoracis et Lumborum Muscles Using Raman Spectroscopy. Anim. Biosci. 2023, 36, 1435–1444. [Google Scholar] [CrossRef]
- Kucha, C.T.; Liu, L.; Ngadi, M.; Gariépy, C. Prediction and Visualization of Fat Content in Polythene-Packed Meat Using near-Infrared Hyperspectral Imaging and Chemometrics. J. Food Compos. Anal. 2022, 111, 104633. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W.; Xie, Y.; Ozaki, Y. Non-Destructive Prediction of Texture of Frozen/Thaw Raw Beef by Raman Spectroscopy. J. Food Eng. 2020, 266, 109693. [Google Scholar] [CrossRef]
- Hoffman, L.; Ingle, P.; Hemant Khole, A.; Zhang, S.; Yang, Z.; Beya, M.; Bureš, D.; Cozzolino, D. Discrimination of Lamb (Ovis aries), Emu (Dromaius novaehollandiae), Camel (Camelus dromedarius) and Beef (Bos taurus) Binary Mixtures Using a Portable near Infrared Instrument Combined with Chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 294, 122506. [Google Scholar] [CrossRef]
- Wachirattanapongmetee, K.; Katekaew, S.; Weerapreeyakul, N.; Thawornchinsombut, S. Differentiation of Protein Types Extracted from Tilapia Byproducts by FTIR Spectroscopy Combined with Chemometric Analysis and Their Antioxidant Protein Hydrolysates. Food Chem. 2024, 437, 137862. [Google Scholar] [CrossRef]
- Aheto, J.H.; Huang, X.; Tian, X.; Lv, R.; Dai, C.; Bonah, E.; Chang, X. Evaluation of Lipid Oxidation and Volatile Compounds of Traditional Dry-cured Pork Belly: The Hyperspectral Imaging and Multi-gas-sensory Approaches. J. Food Process Eng. 2020, 43, e13092. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Dai, C. Generalized and Hetero Two-Dimensional Correlation Analysis of Hyperspectral Imaging Combined with Three-Dimensional Convolutional Neural Network for Evaluating Lipid Oxidation in Pork. Food Control 2023, 153, 109940. [Google Scholar] [CrossRef]
- Aheto, J.H.; Huang, X.; Tian, X.; Ren, Y.; Bonah, E.; Alenyorege, E.A.; Lv, R.; Dai, C. Combination of Spectra and Image Information of Hyperspectral Imaging Data for Fast Prediction of Lipid Oxidation Attributes in Pork Meat. J. Food Process Eng. 2019, 42, e13225. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Shi, L.; Dai, C. An Effective Method Fusing Electronic Nose and Fluorescence Hyperspectral Imaging for the Detection of Pork Freshness. Food Biosci. 2024, 59, 103880. [Google Scholar] [CrossRef]
- Tian, X.; Aheto, J.H.; Huang, X.; Zheng, K.; Dai, C.; Wang, C.; Bai, J. An Evaluation of Biochemical, Structural and Volatile Changes of Dry-cured Pork Using a Combined Ion Mobility Spectrometry, Hyperspectral and Confocal Imaging Approach. J. Sci. Food Agric. 2021, 101, 5972–5983. [Google Scholar] [CrossRef]
- Li, H.; Kutsanedzie, F.; Zhao, J.; Chen, Q. Quantifying Total Viable Count in Pork Meat Using Combined Hyperspectral Imaging and Artificial Olfaction Techniques. Food Anal. Methods 2016, 9, 3015–3024. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Hu, X.; Li, Z.; Huang, X.; Liang, J.; Zhang, X.; Zhang, D.; Zou, X.; Shi, J. Quantitative Characterization of the Diffusion Behavior of Sucrose in Marinated Beef by HSI and FEA. Meat Sci. 2023, 195, 109002. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Chen, W.; Zhang, H.; Liu, R.; Li, C. Discrimination among Fresh, Frozen–Stored and Frozen–Thawed Beef Cuts by Hyperspectral Imaging. Foods 2024, 13, 973. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Qiu, C.; Guo, Y.; Zhang, C.; Guo, X.; Bouhile, Y.; Ma, H. Ultrasonic-Assisted Flowing Water Thawing of Frozen Beef with Different Frequency Modes: Effects on Thawing Efficiency, Quality Characteristics and Microstructure. Food Res. Int. 2022, 157, 111484. [Google Scholar] [CrossRef]
- Li, Y.; Pan, T.; Li, H.; Chen, S. Non-Invasive Quality Analysis of Thawed Tuna Using near Infrared Spectroscopy with Baseline Correction. J. Food Process Eng. 2020, 43, e13445. [Google Scholar] [CrossRef]
- Khan, I.A.; Khan, A.; Zou, Y.; Zongshuai, Z.; Xu, W.; Wang, D.; Huang, M. Heterocyclic Amines in Cooked Meat Products, Shortcomings during Evaluation, Factors Influencing Formation, Risk Assessment and Mitigation Strategies. Meat Sci. 2022, 184, 108693. [Google Scholar] [CrossRef]
- Bonah, E.; Huang, X.; Aheto, J.H.; Osae, R. Application of Hyperspectral Imaging as a Nondestructive Technique for Foodborne Pathogen Detection and Characterization. Foodborne Pathog. Dis. 2019, 16, 712–722. [Google Scholar] [CrossRef]
- Aheto, J.H.; Huang, X.; Xiaoyu, T.; Bonah, E.; Ren, Y.; Alenyorege, E.A.; Chunxia, D. Investigation into Crystal Size Effect on Sodium Chloride Uptake and Water Activity of Pork Meat Using Hyperspectral Imaging. J. Food Process Preserv. 2019, 43, e14197. [Google Scholar] [CrossRef]
- Tian, X.; Aheto, J.H.; Dai, C.; Ren, Y.; Bai, J. Monitoring Microstructural Changes and Moisture Distribution of Dry-cured Pork: A Combined Confocal Laser Scanning Microscopy and Hyperspectral Imaging Study. J. Sci. Food Agric. 2021, 101, 2727–2735. [Google Scholar] [CrossRef]
- Wu, X.; Fu, H.; Tian, X.; Wu, B.; Sun, J. Prediction of Pork Storage Time Using Fourier Transform near Infrared Spectroscopy and adaboost-ULDA. J. Food Process Eng. 2017, 40, e12566. [Google Scholar] [CrossRef]
- Owusu-Ansah, P.; Yu, X.; Osae, R.; Zhou, C.; Zhang, R.; Mustapha, A.T.; Li, M.; Ma, H. Optimization of Thermosonication on Bacillus cereus from Pork: Effects on Inactivation and Physicochemical Properties. J. Food Process Eng. 2020, 43, e13401. [Google Scholar] [CrossRef]
- Owusu-Ansah, P.; Yu, X.; Osae, R.; Mustapha, A.T.; Zhang, R.; Zhou, C. Inactivation of Bacillus cereus from Pork by Thermal, Non-Thermal and Single-Frequency/Multi-Frequency Thermosonication: Modelling and Effects on Physicochemical Properties. LWT 2020, 133, 109939. [Google Scholar] [CrossRef]
- Yang, S.; Sen, C.; Thompson, R.; Zhou, J.-G.; Akkus, O. An in Vitro Raman Study on Compositional Correlations of Lipids and Protein with Animal Tissue Hydration. Vib. Spectrosc. 2020, 107, 103022. [Google Scholar] [CrossRef] [PubMed]
- Tahir, H.E.; Xiaobo, Z.; Jianbo, X.; Mahunu, G.K.; Jiyong, S.; Xu, J.-L.; Sun, D.-W. Recent Progress in Rapid Analyses of Vitamins, Phenolic, and Volatile Compounds in Foods Using Vibrational Spectroscopy Combined with Chemometrics: A Review. Food Anal. Methods 2019, 12, 2361–2382. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Yan, J.; Aadil, R.M. Editorial: Innovative Non-Thermal Technologies for the Extraction and Modification of Bioactive Compounds from Food Processing By-Products. Front. Nutr. 2023, 10, 1161957. [Google Scholar] [CrossRef]
- Ye, H.; Yang, J.; Xiao, G.; Zhao, Y.; Li, Z.; Bai, W.; Zeng, X.; Dong, H. A Comprehensive Overview of Emerging Techniques and Chemometrics for Authenticity and Traceability of Animal-Derived Food. Food Chem. 2023, 402, 134216. [Google Scholar] [CrossRef]
- Li, B.; Zhong, M.; Sun, Y.; Liang, Q.; Shen, L.; Qayum, A.; Rashid, A.; Rehman, A.; Ma, H.; Ren, X. Recent Advancements in the Utilization of Ultrasonic Technology for the Curing of Processed Meat Products: A Comprehensive Review. Ultrason. Sonochem. 2024, 103, 106796. [Google Scholar] [CrossRef]
- Li, H.; Geng, W.; Zheng, Z.; Haruna, S.A.; Chen, Q. Flexible SERS Sensor Using AuNTs-Assembled PDMS Film Coupled Chemometric Algorithms for Rapid Detection of Chloramphenicol in Food. Food Chem. 2023, 418, 135998. [Google Scholar] [CrossRef]
- Holroyd, S.E.; Nickless, E. Understanding Mozzarella Cheese Microstructure with Raman Confocal Imaging. Int. Dairy. J. 2024, 152, 105893. [Google Scholar] [CrossRef]
- Dong, F.; Xu, Y.; Shi, Y.; Feng, Y.; Ma, Z.; Li, H.; Zhang, Z.; Wang, G.; Chen, Y.; Xian, J.; et al. Spectral Reconstruction from RGB Image to Hyperspectral Image: Take the Detection of Glutamic Acid Index in Beef as an Example. Food Chem. 2025, 463, 141543. [Google Scholar] [CrossRef]
Technique | Spectral Region (nm) | Mechanism | Chemical Selection | Spectral Mode | Pros | Cons |
---|---|---|---|---|---|---|
Raman | 2500 | Inelastic scattering | Change in polarization | Reflection | Structural information and qualitative analysis, low water sensitivity | Biomolecular interference, low sensitivity, and scattering |
IR | 2500–25,000 | Absorption | Change in dipole moment | Transmission, attenuated total reflectance | Structural information and qualitative analysis | Water and CO2 signal interference, not suitable for moist samples |
NIR | 1000–2500 | Absorption | Change in dipole moment | Transmission | Low sample preparation, increased sensitivity to water, and physical structure | A reference and dry samples are needed, with low specificity and spectral overlapping |
MIR | 2500–25,000 | Absorption | Change in dipole moment | Transmission | Clear peaks, high sensitivity | Water interference requires a dry sample with less penetration of light |
FTIR | MIR-NIR | Absorption/emission | - | Transmission, reflectance | Protein secondary structure, distinct peaks | Water interference, overlapping signals |
Meat Source | Technique | Chemometric Analysis | Study Findings | References |
---|---|---|---|---|
Beef | Raman | CARS-PLS | Non-destructive analysis of color, texture, and water content improved WHC. | [153] |
Fish | MIR | PCA | Change in secondary protein structure through reduced band intensity of myosin after freezing. | [154] |
Fish | NIR | PCA-CARS | Textural properties such as WHC, hardness, resilience, springiness, chewiness, and shear force were identified. | [129] |
Beef | Raman | PLSR | Raman spectra can predict the lactic acid bacteria, pH, lightness, and viable counts in packaged beef samples packed under modified atmosphere packaging. Lactic acid was detected by PO32− stretching and lactate in meat. | [155] |
Beef | Raman, FTIR | PLSR | Combining both techniques can detect the wavelengths for C-N stretching, tyrosine double bands, and S-S bending vibration, representing the meat spoilage with greater accuracy by suggesting the transition of β-fold to α-helix. | [156] |
Beef | NIR | PLS-SVR | Total volatile nitrogen content was identified with greater prediction accuracy and stability. Peaks were identified for C–H bonds, C–O bonds, and N–H bonds in proteins, as well as for fats and water. | [157] |
Beef | Hyperspectral imaging | PLS-DA | Discriminate among various meat textures by correlating collagen protein and tenderness properties. | [158] |
Foal | MIR | PLS | Accurately predict moisture, collagen, lipids, color, and sensory parameters. After applying regression treatments, the discriminant analysis yielded positive results, with a spectrum range of 2198–1118 cm−1, corresponding to various proteins. | [159] |
Bovine | Raman | PCA | Predict the hardness and stiffness in meat with accuracy; spectral peak change in the amide III band indicates changes in α-helix and β-sheet content ratios, which suggest variation in the residual composition and the protein secondary structure. The peak at 1003 cm−1 represents the phenylalanine’s symmetric vibration and its content. | [160] |
Pork | NIR hyperspectral imaging | PLSR-SVM | The identification of protein, fat (1210, 1233, and 1238 nm), and water (972 nm) peaks in the NIR fingerprint accurately predicted intramuscular fat from hyperspectral imaging in a polythene bag. | [161] |
Beef | Raman | PLS | Predict hydrophobicity of amino acid residues and secondary structural composition of proteins (α-helix and β-sheet) for identification of texture from frozen/thawed meat with variables located in 60–1060 cm−1, 1370–1490 cm−1, and 1550–1680 cm−1. Modeling of spectra predicted tenderness, chewiness, and hardness with greater accuracy. | [162] |
Lamb, camel, beef | NIR | PCA, PLS-DA | In NIR absorbance, two isosbestic points associated with protein and moisture were seen at 1028 nm (O-H, N-H) and 1224 nm (C-H) in all samples, while PC2 at 1242 nm (C-H) and 1372 nm (C-H) indicates both lipids (fatty acid profile) and protein content. | [163] |
Fish | FTIR | PCA | Protein secondary structures (sarcoplasmic, myofibrillar, and alkali-aided proteins) were identified. PCA suggested that alkali-aided proteins have β-sheet and reduced sulfhydryl content and hydrophobicity, sarcoplasmic proteins have α-helix whereas myofibrillar proteins have lipids and β-sheet | [164] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, C.; Shoaib, M.; Zhang, W.; Murugesan, A. Advances in Non-Thermal Processing of Meat and Monitoring Meat Protein Gels Through Vibrational Spectroscopy. Foods 2025, 14, 1929. https://doi.org/10.3390/foods14111929
Li H, Li C, Shoaib M, Zhang W, Murugesan A. Advances in Non-Thermal Processing of Meat and Monitoring Meat Protein Gels Through Vibrational Spectroscopy. Foods. 2025; 14(11):1929. https://doi.org/10.3390/foods14111929
Chicago/Turabian StyleLi, Huanhuan, Chenhui Li, Muhammad Shoaib, Wei Zhang, and Arul Murugesan. 2025. "Advances in Non-Thermal Processing of Meat and Monitoring Meat Protein Gels Through Vibrational Spectroscopy" Foods 14, no. 11: 1929. https://doi.org/10.3390/foods14111929
APA StyleLi, H., Li, C., Shoaib, M., Zhang, W., & Murugesan, A. (2025). Advances in Non-Thermal Processing of Meat and Monitoring Meat Protein Gels Through Vibrational Spectroscopy. Foods, 14(11), 1929. https://doi.org/10.3390/foods14111929