Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = coexisting fungi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 6176 KiB  
Case Report
Concurrent Leydig and Sertoli Cell Tumors Associated with Testicular Mycosis in a Dog: A Case Report and Literature Review
by Mirosław Kuberka, Przemysław Prządka and Stanisław Dzimira
Pathogens 2025, 14(8), 752; https://doi.org/10.3390/pathogens14080752 (registering DOI) - 31 Jul 2025
Viewed by 168
Abstract
Mycosis is caused by, among other factors, filamentous fungi, ubiquitous molds belonging to Aspergillus spp. which are often opportunistic pathogens. Over 100 species of Aspergillus have been described. The most common species responsible for diseases in humans and animals are Aspergillus fumigatus and [...] Read more.
Mycosis is caused by, among other factors, filamentous fungi, ubiquitous molds belonging to Aspergillus spp. which are often opportunistic pathogens. Over 100 species of Aspergillus have been described. The most common species responsible for diseases in humans and animals are Aspergillus fumigatus and Aspergillus niger, with Aspergillus flavus and Aspergillus clavatus being somewhat rarer. Aspergillus causes a range of diseases, from localized colonization and hypersensitivity reactions, through chronic necrotizing infections, to rapidly progressing angioinvasion and dissemination, leading to death. Testicular mycosis is extremely rarely described in both humans and animals. No studies in the literature report a simultaneous occurrence of testicular tumors and fungal infection of the organ, so the aim of this paper was to describe, for the first time, a case of two independent testicular tumors coexisting with testicular mycosis. A histopathological examination was performed on the left testicle of a male dog, specifically a mixed-breed dog resembling a husky weighing 22 kg and with an age of 8 years. Bilateral orchidectomy was performed for medical reasons due to the altered outline of the left testicle, leading to scrotal deformation. The dog did not show any clinical signs of illness, and the testicles were not painful. The right testicle, according to the operating veterinarian, showed no macroscopic changes, so histopathological verification was not performed. Microscopic imaging of the changes clearly indicated the coexistence of a tumor process involving Leydig cells (Leydigoma, interstitial cell tumor, ICT), Sertoli cells (Sertolioma), and fungal infection of the testis. The case suggests the possibility of the coexistence of tumor processes, which may have impaired local immune response of the tissue, with an infectious, in this case fungal, inflammatory process. Based on the literature, this paper is the first report on the occurrence of two independent histotype testicular tumors and their associated mycosis. Full article
(This article belongs to the Special Issue Rare Fungal Infection Studies)
Show Figures

Figure 1

19 pages, 7706 KiB  
Article
Genomic Insights into Vaccinium spp. Endophytes B. halotolerans and B. velezensis and Their Antimicrobial Potential
by Ingrida Mažeikienė, Birutė Frercks, Monika Kurgonaitė, Neringa Rasiukevičiūtė and Irena Mačionienė
Int. J. Mol. Sci. 2025, 26(14), 6677; https://doi.org/10.3390/ijms26146677 - 11 Jul 2025
Viewed by 252
Abstract
Plant microbiota contributes to nutrient absorption, and the production of hormones and vitamins, and plays a crucial role in responding to environmental stress. We hypothesized that Vaccinium spp. harbour a unique microbiota that enables them to coexist in extreme environments such as saline, [...] Read more.
Plant microbiota contributes to nutrient absorption, and the production of hormones and vitamins, and plays a crucial role in responding to environmental stress. We hypothesized that Vaccinium spp. harbour a unique microbiota that enables them to coexist in extreme environments such as saline, nutrient-poor, and waterlogged conditions. Upon examining Bacillus spp. endophytes isolated from blueberries, cranberries and lingonberries in vitro, we identified B. halotolerans (Bil-LT1_1, Bil-LT1_2) and B. velezensis (Cran-LT1_8, Ling-NOR4_15) strains that inhibit the growth of five pathogenic fungi and five foodborne bacteria. Whole-genome sequencing provided insights into genome organization and plasticity, helping identify mobile elements and genes potentially acquired through horizontal gene transfer. Functional annotation identified genes associated with plant colonization, stress tolerance, biocontrol activity, and plant growth promotion. Comparative genomic analyses revealed key biosynthetic gene clusters (BGCs) responsible for producing antifungal metabolites, including lipopeptides and polyketides. Genes supporting plant nutrition, growth, and environmental adaptation were present also in these strains. Notably, isolated endophytes exhibited particularly high levels of genomic plasticity, likely due to horizontal gene transfer involving gene ontology (GO) pathways related to survival in polymicrobial and foreign environments. Full article
(This article belongs to the Special Issue Microbial Omics: Decoding Microbial Life)
Show Figures

Figure 1

12 pages, 2664 KiB  
Article
Heavy Metal Immobilization by Phosphate-Solubilizing Fungus and Phosphogypsum Under the Co-Existence of Pb(II) and Cd(II)
by Xu Li, Zhenyu Chao, Haoxuan Li, Jiakai Ji, Xin Sun, Yingxi Chen, Zhengda Li, Zhen Li, Chuanhao Li, Jun Yao and Lan Xiang
Agronomy 2025, 15(7), 1632; https://doi.org/10.3390/agronomy15071632 - 4 Jul 2025
Viewed by 322
Abstract
Globally, phosphogypsum (PG) is the primary by-product of the phosphorus industry. Aspergillus niger (A. niger), one of the most powerful types of phosphate-solubilizing fungi (PSF), can secrete organic acids to dissolve the phosphates in PG. This study investigated heavy metal (HM) [...] Read more.
Globally, phosphogypsum (PG) is the primary by-product of the phosphorus industry. Aspergillus niger (A. niger), one of the most powerful types of phosphate-solubilizing fungi (PSF), can secrete organic acids to dissolve the phosphates in PG. This study investigated heavy metal (HM) remediation by PG and A. niger under the co-existence of Pb and Cd. It demonstrated that 1 mmol/L Pb2+ stimulated the bioactivity of A. niger during incubation, based on the CO2 emission rate. PG successfully functioned as P source for the fungus, and promoted the growth of the fungal cells. Meanwhile, it also provided sulfates to immobilize Pb in the solution. The subsequently generated anglesite was confirmed using SEM imaging. The immobilization rate of Pb reached over 95%. Under co-existence, Pb2+ and 0.01 mmol/L Cd2+ maximized the stimulating effect of A. niger. However, the biotoxicity of Pb2+ and elevated Cd2+ (0.1 mmol/L) counterbalanced the stimulating effect. Finally, 1 mmol/L Cd2+ dramatically reduced the fungal activity. In addition, organic matters from the debris of A. niger could still bind Pb2+ and Cd2+ according to the significantly lowered water-soluble Pb and Cd concentrations. In all treatments with the addition of Cd2+, the relatively high biotoxicity of Cd2+ induced A. niger to absorb more Pb2+ to minimize the sorption of Cd2+ based on the XRD results. The functional group analysis of ATR-IR also confirmed the phenomenon. This pathway maintained the stability of Pb2+ immobilization using the fungus and PG. This study, hence, shed light on the application of A. niger and solid waste PG to remediate the pollution of Pb and Cd. Full article
Show Figures

Figure 1

21 pages, 831 KiB  
Review
Beyond Single-Pathogen Models: Understanding Mixed Infections Involving Phytoplasmas and Other Plant Pathogens
by Shao-Shuai Yu and Wei Wei
Plants 2025, 14(13), 2049; https://doi.org/10.3390/plants14132049 - 4 Jul 2025
Viewed by 542
Abstract
Phytoplasmas are wall-less, phloem-restricted bacteria responsible for numerous significant plant diseases worldwide. An increasing body of evidence indicates that phytoplasmas can coexist with other pathogens in mixed infections, including various 16Sr group phytoplasmas, ‘Candidatus Liberibacter’ species, viruses, spiroplasmas, fungi, and other difficult-to-culture phloem-limited [...] Read more.
Phytoplasmas are wall-less, phloem-restricted bacteria responsible for numerous significant plant diseases worldwide. An increasing body of evidence indicates that phytoplasmas can coexist with other pathogens in mixed infections, including various 16Sr group phytoplasmas, ‘Candidatus Liberibacter’ species, viruses, spiroplasmas, fungi, and other difficult-to-culture phloem-limited bacteria. These interactions challenge established views regarding the causes, detection, and management of plant diseases. This review consolidates existing knowledge on the diversity and epidemiology of phytoplasma-related mixed infections, with a particular emphasis on documented co-infections across various host plants and regions, especially in tropical and subtropical areas. Mixed infections affect disease severity, symptom expression, vector behavior, and pathogen dissemination, highlighting the limitations of pathogen-specific diagnostic and control strategies. The necessity for tools to detect multiple pathogens, enhanced understanding of pathogen–pathogen and host–pathogen interactions, and comprehensive surveillance systems is emphasized. Ultimately, breeding for resistance must consider the complexities of natural co-infections to ensure effective protection of crops. Addressing the challenges presented by phytoplasma-related mixed infections is crucial for developing resilient and sustainable plant health strategies in the face of increasing ecological and agricultural pressures. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

11 pages, 775 KiB  
Review
Cooperation Between Aflatoxin-Induced p53 Aberrations and Hepatitis B Virus in Hepatocellular Carcinoma
by Carolina Moreno-León and Francisco Aguayo
J. Xenobiot. 2025, 15(4), 96; https://doi.org/10.3390/jox15040096 - 20 Jun 2025
Viewed by 590
Abstract
Hepatocellular carcinoma (HCC) imposes a significant burden on global public health. Exposure to aflatoxins, potent mycotoxins produced by Aspergillus fungi contaminating staple foods, and chronic hepatitis B virus (HBV) infection are major etiological factors, especially where they co-exist. This review examines the critical [...] Read more.
Hepatocellular carcinoma (HCC) imposes a significant burden on global public health. Exposure to aflatoxins, potent mycotoxins produced by Aspergillus fungi contaminating staple foods, and chronic hepatitis B virus (HBV) infection are major etiological factors, especially where they co-exist. This review examines the critical role of the p53 tumor suppressor pathway as a primary target and convergence point for the carcinogenic actions of aflatoxins and HBV. Aflatoxin B1 (AFB1), a Group 1 carcinogen, exerts significant genotoxicity, characteristically inducing a specific hotspot mutation (R249S) in the TP53 gene via DNA adduct formation, thereby compromising p53’s critical tumor suppressor functions. This R249S mutation is considered a molecular fingerprint of aflatoxin exposure. Concurrently, the HBV X protein (HBx) functionally inactivates wild-type p53 through direct binding and by promoting its degradation. The synergistic disruption of the p53 pathway, driven by AFB1-induced mutation and amplified by HBV-mediated functional inhibition, significantly enhances the risk of HCC development. This review addresses how aflatoxin exposure alters key aspects of p53 and how this damage interacts with HBV-mediated p53 suppression, providing crucial insights into hepatocarcinogenesis. The knowledge synthesized here underscores the importance of mitigating aflatoxin exposure alongside HBV control for effective HCC prevention and treatment strategies. Full article
Show Figures

Figure 1

20 pages, 4240 KiB  
Article
Influence of Plant Organs and Functional Traits on the Structure of Bacterial and Fungal Communities in Three Acer Species
by Jiaxing Guo, Lei Wang, Guangze Jin and Zhili Liu
Forests 2025, 16(6), 875; https://doi.org/10.3390/f16060875 - 22 May 2025
Viewed by 412
Abstract
Plants and the microorganisms living on their surfaces are an inseparable community that interacts with plant functional traits and influences plant growth, but the differences in microorganisms between plant organs and their relationship with plant functional traits have not been deeply explored. In [...] Read more.
Plants and the microorganisms living on their surfaces are an inseparable community that interacts with plant functional traits and influences plant growth, but the differences in microorganisms between plant organs and their relationship with plant functional traits have not been deeply explored. In this study, we used high-throughput sequencing to investigate the variation of microorganisms across different plant organs (leaves, twigs, trunks, and roots) of three species (Acer pictum subsp. mono, Acer tegmentosum, and Acer ukurunduense) in the Xiaoxing’an Mountains in Northeastern China and explored the relationship between microorganisms and plant functional traits. The results indicate that rhizosphere microorganisms have a high diversity. Plant organs explained 52.1% and 32.3% of the variations in bacterial and fungal community structures, respectively. The core microbiome consists of the phyla Proteobacteria and Actinobacteria in bacteria and the phyla Ascomycota and Basidiomycota in fungi. Plant functional traits such as specific leaf area and non-structural carbohydrates, as well as soil total carbon and total phosphorus content, were significantly correlated with microbial community composition. The results highlight that host plant organ characteristics are key drivers of variation in plant-associated microbial communities. By elucidating the regulatory role of host traits in microbiome assembly, our findings provide new mechanistic insights into plant–microbe interactions and ecological coexistence strategies. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

12 pages, 697 KiB  
Review
Co-Occurrence of Helicobacter pylori and Candida spp. Infections in the Pathogenesis of Gastrointestinal Diseases
by Joanna Braksator, Anna Kofla-Dłubacz, Katarzyna Antosz-Popiołek, Hubert Szyller, Joanna Koga-Batko, Martyna Wrześniewska, Maciej Dyda and Tomasz Pytrus
Biomedicines 2025, 13(5), 1172; https://doi.org/10.3390/biomedicines13051172 - 11 May 2025
Viewed by 1162
Abstract
Helicobacter pylori and Candida spp. are widespread microorganisms found in the human gastrointestinal tract, often coexisting in the same ecological niche. H. pylori, a Gram-negative bacterium, is a well-known pathogen responsible for gastritis, peptic ulcers, and gastric cancer. In contrast, Candida fungi, [...] Read more.
Helicobacter pylori and Candida spp. are widespread microorganisms found in the human gastrointestinal tract, often coexisting in the same ecological niche. H. pylori, a Gram-negative bacterium, is a well-known pathogen responsible for gastritis, peptic ulcers, and gastric cancer. In contrast, Candida fungi, often detected in food, particularly Candida albicans, are generally considered commensal organisms, but can become opportunistic pathogens under certain conditions. Recent studies suggest a possible link between these microorganisms, highlighting a new survival strategy of H. pylori, that is, its ability to internalize in Candida vacuoles. This phenomenon, confirmed by various microscopic and molecular techniques, may provide H. pylori with protection against adverse environmental conditions, especially clinically important antibiotic therapy. The basic premise of this theory is the ability of H. pylori to penetrate vacuoles in fungal cells, which then become a reservoir of infection, allowing the infection to recur. Understanding the interaction between H. pylori and Candida may offer new insights into the pathogenesis of gastrointestinal diseases and may lead to the development of treatments targeting both organisms simultaneously. The purpose of this article is to review the literature, considering the first observations on this problem in the literature and the current state of knowledge, and to suggest a direction for further research. Full article
Show Figures

Figure 1

16 pages, 3945 KiB  
Article
Deletion of the Class 1 Histone Deacetylase PsHos2 Induces Secondary Metabolic Perturbations in the Sea Cucumber-Associated Penicillium sclerotiorum
by Peipei Zhao, Jiaying Lin, Qingqing Zhang, Tanghui Zhang, Guoliang Zhu, Chengwei Liu, Qinghua Wu, Jianzhao Qi, Minglei Li, Lixin Zhang and Xuekui Xia
Fermentation 2025, 11(4), 230; https://doi.org/10.3390/fermentation11040230 - 21 Apr 2025
Viewed by 623
Abstract
The long-term coexistence of sea cucumber-associated microorganisms with their host enables them to jointly withstand the unique marine ecological environment, and possess great potential for producing various natural products. However, under conventional laboratory conditions, most biosynthetic gene clusters (BGCs) in these microorganisms remain [...] Read more.
The long-term coexistence of sea cucumber-associated microorganisms with their host enables them to jointly withstand the unique marine ecological environment, and possess great potential for producing various natural products. However, under conventional laboratory conditions, most biosynthetic gene clusters (BGCs) in these microorganisms remain silent, necessitating the establishment of effective activation strategies for exploring bioactive secondary metabolites (SMs). Histone acetylation status regulates chromatin structure and plays a crucial role in cellular physiology and fungal secondary metabolism. Penicillium sclerotiorum SD-36 was isolated from sea cucumbers in our previous study. Genome sequencing results indicate that this strain harbors as many as 52 BGCs, suggesting it holds a wealth of genetic resources essential for synthesizing diverse SMs. Here, we describe the impact of a class 1 histone deacetylase (HDAC), PsHos2, on secondary metabolism of sea cucumber-associated Penicillium sclerotiorum SD-36. The colony morphology and SM profile of ΔPsHos2 exhibited significant changes, with the emergence of multiple new compound peaks. Six compounds, including five azaphilones, which are characterized by a pyranoquinone core structure, were isolated from ΔPsHos2, and seventeen unreported potential azaphilone-related nodes were obtained using molecular networking based on LC-MS/MS. Transcriptome analysis revealed that PsHos2 influenced the expression of 44 BGC core genes. Specifically, seven genes within cluster 86.1, the putative BGC for azaphilones, were upregulated, including two polyketide synthase (PKS) genes. The results indicate that regulation based on class 1 HDACs is an important strategy for enhancing SM synthesis in sea cucumber-associated fungi and expanding the resources of marine natural products. Full article
(This article belongs to the Special Issue New Research on Fungal Secondary Metabolites, 3rd Edition)
Show Figures

Figure 1

20 pages, 4179 KiB  
Article
Microbiological and Mycotoxicological Quality of Common Wheat in Romania in the Extremely Dry 2023–2024 Agricultural Year
by Valeria Gagiu, Elena Mirela Cucu, Alina Alexandra Dobre, Gina Pusa Pirvu, Oana Alexandra Oprea, Cristian Mihai Pomohaci, Elena Mateescu, Nastasia Belc and Doru Ioan Marin
Toxins 2025, 17(4), 154; https://doi.org/10.3390/toxins17040154 - 22 Mar 2025
Viewed by 3641
Abstract
This study examines the microbiological and mycotoxicological quality of common wheat in Romania in the extremely dry 2023–2024 agricultural year. Common wheat grown in the West Plain, Southern Hilly Area, Transylvania, and northern Moldavia (45–48° N, 21–27° E) had higher moisture content, water [...] Read more.
This study examines the microbiological and mycotoxicological quality of common wheat in Romania in the extremely dry 2023–2024 agricultural year. Common wheat grown in the West Plain, Southern Hilly Area, Transylvania, and northern Moldavia (45–48° N, 21–27° E) had higher moisture content, water activity, Fusarium-damaged kernels, and deoxynivalenol levels. This was due to moderate temperatures, abundant precipitation, and soil water reserves in May, followed by moderate drought from June to August. Conversely, common wheat from the Oltenia Plain, the Southern Plain, and southern Moldavia (43–46° N, 23–28° E) had the lowest contamination levels, attributed to extreme temperatures and drought during June–August. Common wheat from Dobrogea (45° N, 28° E) showed the highest total fungi contamination, which was influenced by precipitation at harvest. Although microbiological and mycotoxicological contamination was low, it negatively affected the physico-chemical and sensory–colorimetric parameters of common wheat, particularly in the West Plain, Oltenia Plain, and Dobrogea. Consequently, there could be significant economic losses for farmers, storekeepers, millers, and bakers, as well as a decline in the quality of finished foods. Moreover, the coexistence of deoxynivalenol and total aflatoxins in common wheat grown in the northwest of the country indicates the spread of contamination due to dry conditions and climate change. Full article
(This article belongs to the Collection Impact of Climate Change on Fungal Population and Mycotoxins)
Show Figures

Figure 1

11 pages, 257 KiB  
Review
Hedgehogs in Contact with Humans: Zoonotic and Reverse Zoonotic Transmission of Pathogens
by Dražen Đuričić and Maja Lukač
J. Zool. Bot. Gard. 2025, 6(1), 15; https://doi.org/10.3390/jzbg6010015 - 3 Mar 2025
Viewed by 2480
Abstract
Numerous previous studies indicate that both wild hedgehogs and those kept as pets pose a significant risk to human health. At the same time, humans can also transmit various pathogens to hedgehogs (e.g., human herpesvirus 1). The risk of human infection from hedgehogs [...] Read more.
Numerous previous studies indicate that both wild hedgehogs and those kept as pets pose a significant risk to human health. At the same time, humans can also transmit various pathogens to hedgehogs (e.g., human herpesvirus 1). The risk of human infection from hedgehogs by various bacteria, viruses, fungi, rickettsiae, and parasites, and of hedgehog infection from humans, arises from close contact with pet hedgehogs, wild hedgehogs, and/or the contaminated environment which they cohabit with humans. People can also come into close contact with hedgehogs in city parks, rescue and rehabilitation centers, gardens, suburbs, and zoos. Numerous zoos keep different species of hedgehogs, which are often used for education and interaction with visitors, especially children. In spite of certain preventive measures, periodic examinations, and disease controls being carried out, the possibility of the transmission of infectious diseases from hedgehogs to visitors and employees is not excluded. Close contact poses a risk, especially if biosecurity is not properly maintained. The anthropological effects of coexistence, habitat sharing, and frequent human intrusion into hedgehog habitats have disrupted the natural relationship between humans and animals, and have led to an increase in the prevalence of various pathogens. Although many different pathogens have been isolated in hedgehogs, there is a need to study some of them in more detail and to understand their interaction and transmission possibilities, as well as zoonotic and reverse zoonotic pathogens. Full article
23 pages, 1289 KiB  
Review
Insight into the Mechanisms and Clinical Relevance of Antifungal Heteroresistance
by Yanyu Su, Yi Li, Qiaolian Yi, Yingchun Xu, Tianshu Sun and Yingxing Li
J. Fungi 2025, 11(2), 143; https://doi.org/10.3390/jof11020143 - 13 Feb 2025
Cited by 2 | Viewed by 1387
Abstract
Antifungal resistance poses a critical global health threat, particularly in immuno-compromised patients. Beyond the traditional resistance mechanisms rooted in heritable and stable mutations, a distinct phenomenon known as heteroresistance has been identified, wherein a minority of resistant fungal cells coexist within a predominantly [...] Read more.
Antifungal resistance poses a critical global health threat, particularly in immuno-compromised patients. Beyond the traditional resistance mechanisms rooted in heritable and stable mutations, a distinct phenomenon known as heteroresistance has been identified, wherein a minority of resistant fungal cells coexist within a predominantly susceptible population. Heteroresistance may be induced by pharmacological factors or non-pharmacological agents. The reversible nature of it presents significant clinical challenges, as it can lead to undetected resistance during standard susceptibility testing. As heteroresistance allows fungal pathogens to survive antifungal treatment, this adaptive strategy often leads to treatment failure and recurring infection. Though extensively studied in bacteria, limited research has explored its occurrence in fungi. This review summarizes the current findings on antifungal heteroresistance mechanisms, highlighting the clinical implications of fungal heteroresistance and the pressing need for deeper mechanism insights. We aim to bring together the latest research advances in the field of antifungal heteroresistance, summarizing in detail its known characteristics, inducing factors, molecular mechanisms, and clinical significance, and describing the similarities and differences between heteroresistance, tolerance and persistence. Further research is needed to understand this phenomenon and develop more effective antifungal therapies to combat fungal infections. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

38 pages, 2610 KiB  
Systematic Review
Human Herpesviruses, Bacteria, and Fungi in Gingivitis and Periodontitis Pediatric Subjects: A Systematic Review
by Federica Di Spirito, Massimo Pisano, Mario Caggiano, Giuseppina De Benedetto, Maria Pia Di Palo, Gianluigi Franci and Massimo Amato
Children 2025, 12(1), 39; https://doi.org/10.3390/children12010039 - 29 Dec 2024
Cited by 3 | Viewed by 1432
Abstract
Objectives: This systematic review assesses and compares the presence and relative abundance of periodontal pathogens, human herpesviruses (HHVs), and fungi in subgingival and/or saliva samples from pediatric subjects (≤18 years of age) with periodontally healthy status and with gingivitis and/or periodontitis. Methods: The [...] Read more.
Objectives: This systematic review assesses and compares the presence and relative abundance of periodontal pathogens, human herpesviruses (HHVs), and fungi in subgingival and/or saliva samples from pediatric subjects (≤18 years of age) with periodontally healthy status and with gingivitis and/or periodontitis. Methods: The study protocol was conducted under the PRISMA statement and registered on PROSPERO (CRD42024593007). Data from seven studies were descriptively analyzed and qualitatively assessed through the ROBINS-1 and JBI tools. Results: Pediatric subjects with clinically healthy periodontium exhibited a balanced microbiome, with early colonizers (Streptococcus species) supporting biofilm development and late colonizers like Fusobacterium nucleatum, Treponema denticola (82.35%), and Porphyromonas gingivalis (29.7%) present at low levels, suggesting subclinical dysbiosis. Viruses such as HSV-I (100%), CMV (17.8%), and EBV-I (22.09%) coexisted in a likely latent state, maintained by effective immune responses. In pediatric periodontitis, biofilms were more diverse and pathogenic, with increased prevalence of A. actinomycetemcomitans (56.09%), P. gingivalis (55.4%), and T. forsythia (35.9%). Generalized periodontitis showed higher CMV (36.36%) and EBV-I (36.24%) prevalence than gingivitis (HSV-I 18.75%). Coinfections were frequent in periodontitis, suggesting bacterial–viral synergy in exacerbating inflammation and tissue destruction. Fungi, although not studied, may also contribute under specific conditions. Conclusions: These findings highlight the role of microbial interactions in periodontal health and disease progression. Full article
(This article belongs to the Section Pediatric Dentistry & Oral Medicine)
Show Figures

Figure 1

18 pages, 2488 KiB  
Review
Microbes in Health and Disease: Human Gut Microbiota
by Chenlin Hu and Hong Shen
Appl. Sci. 2024, 14(23), 11354; https://doi.org/10.3390/app142311354 - 5 Dec 2024
Cited by 1 | Viewed by 4310
Abstract
Humans and microbes (e.g., bacteria, fungi, and microalgae) have coexisted and coevolved toward reciprocal adaptation. As omics technologies have rapidly advanced, the relevance of microbes to human health and disease as well as other fields has been progressively unraveled. This review focuses on [...] Read more.
Humans and microbes (e.g., bacteria, fungi, and microalgae) have coexisted and coevolved toward reciprocal adaptation. As omics technologies have rapidly advanced, the relevance of microbes to human health and disease as well as other fields has been progressively unraveled. This review focuses on the human gut microbiota, which is an emerging focus of microbiological research. This review synthesizes recent advances in exploring the fundamentals and multiple functions of the human gut microbiota and its associations with human health and diseases as well as microbiota-targeted therapies. Full article
(This article belongs to the Special Issue The Role of Microbiology on Health and Disease)
Show Figures

Figure 1

22 pages, 20099 KiB  
Article
Allelochemicals from Moso Bamboo: Identification and Their Effects on Neighbor Species
by Anke Wang, Kaiwen Huang, Yilin Ning and Yufang Bi
Forests 2024, 15(11), 2040; https://doi.org/10.3390/f15112040 - 19 Nov 2024
Cited by 2 | Viewed by 1200
Abstract
Moso bamboo, which is essential to China’s economy, is currently facing significant threats due to declining profits. Inadequate management of moso bamboo can negatively impact the surrounding ecosystems. This study investigated allelopathy in moso bamboo forests by identifying potential allelochemicals and their effects [...] Read more.
Moso bamboo, which is essential to China’s economy, is currently facing significant threats due to declining profits. Inadequate management of moso bamboo can negatively impact the surrounding ecosystems. This study investigated allelopathy in moso bamboo forests by identifying potential allelochemicals and their effects on coexisting plants. Fresh leaves and litter from moso bamboo were collected to examine allelochemicals released through natural processes such as rainwater leaching and litter decomposition. Seven substances with potential allelopathic effects were identified using liquid chromatography–mass spectrometry (LC–MS). Four of these substances—DBP, PHBA, citric acid, and CGA—were selected for a detailed analysis of their effects on the photosynthetic and antioxidant systems of two naturally coexisting plants, Phoebe chekiangensis and Castanopsis sclerophylla. The results indicated that the four chemicals influenced P. chekiangensis and C. sclerophylla through different patterns of interference. DBP, PHBA, and citric acid negatively impacted the transfer of electrons during photosynthesis in both plants but had a lesser effect on the antioxidant system-related indicators in P. chekiangensis. In C. sclerophylla, these four chemicals led to a significant accumulation of reactive oxygen species (ROS) and increased malondialdehyde (MDA) content and catalase (CAT) activity to varying degrees. Furthermore, the relative abundance of fungi and bacteria in the soil was also affected by the DBP treatment. The identification of allelochemicals from moso bamboo, along with the investigation of their mechanisms, provides valuable insights into competitive interactions among plant species, particularly between moso bamboo and other species, along with the expansion of moso bamboo forests. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

13 pages, 6164 KiB  
Article
Characterization of Antimicrobial Properties of Copper-Doped Graphitic Nanoplatelets
by Jun-Kyu Kang, Seo Jeong Yoon, Honghyun Park, Seung-Jae Lee, Jaehoon Baek, In-Yup Jeon and So-Jung Gwak
Int. J. Mol. Sci. 2024, 25(22), 12414; https://doi.org/10.3390/ijms252212414 - 19 Nov 2024
Cited by 2 | Viewed by 1392
Abstract
Recent clinical outbreaks of infectious diseases caused by pathogenic microorganisms, such as viruses, bacteria, and fungi, along with the emergence of unwanted microorganisms in industrial settings, have significantly reduced efficiency. Graphene has recently attracted significant attention as a potential antimicrobial agent because of [...] Read more.
Recent clinical outbreaks of infectious diseases caused by pathogenic microorganisms, such as viruses, bacteria, and fungi, along with the emergence of unwanted microorganisms in industrial settings, have significantly reduced efficiency. Graphene has recently attracted significant attention as a potential antimicrobial agent because of its low toxicity, ease of production and functionalization, and high solubility in water. The presence of oxygen functional groups allows the interaction of the compound with bacteria and other biomolecules, making it an interesting candidate for antimicrobial therapy. Moreover, integrating graphene into copper coatings has been shown to enhance their antimicrobial properties. However, the implementation of copper–graphene composite coatings is currently limited by the difficulty of uniformly distributing graphene within the copper matrix. Copper (Cu)-doped graphitic nanoplatelets (CuGnPs), one option to overcome this challenge, are made via a mechanochemical reaction between solid graphite and Cu powder. The configuration of C–Cu bonds within CuGnPs can be identified using a range of analytical techniques, including transmission electron microscopy, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and time-of-flight secondary ion mass spectrometry. To evaluate the antibacterial activity of the Cu-GnPs, we employed Escherichia coli or Staphylococcus aureus. Various amounts (250, 500, 750, and 1000 μg/mL) of prepared CuGnP samples were incubated in a bacterial suspension for 3 or 6 h at 150 rpm and 37 °C for a colony-forming unit assay. Three hours and six hours of treatment of the bacteria with CuGnPs led to a significant difference in bacterial survival compared with that of the control. It was observed that CuGnPs, with copper bound to graphene oxide, more effectively inhibited the proliferation of E. coli compared with nanoplatelets containing graphene oxide alone. These findings suggest that the unique properties of CuGnPs, such as C–Cu bonds, high surface area, and the coexistence of micropores and mesopores, are valuable for exerting strong antimicrobial effects making CuGnPs effective at preventing bacterial colonization on industrial surfaces. Full article
(This article belongs to the Special Issue Recent Research of Nanomaterials in Molecular Science)
Show Figures

Figure 1

Back to TopTop