Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = coarse dead wood debris (CWD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1521 KiB  
Article
Carbon and Nitrogen Content and CO2 Efflux from Coarse Woody Debris of Norway Spruce, Black Alder, and Silver Birch
by Dovilė Čiuldienė, Egidijus Vigricas, Greta Galdikaitė, Vidas Stakėnas, Kęstutis Armolaitis and Iveta Varnagirytė-Kabašinskienė
Forests 2025, 16(2), 293; https://doi.org/10.3390/f16020293 - 8 Feb 2025
Viewed by 667
Abstract
Coarse woody debris (CWD) is an essential component in forest ecosystems, playing a significant role in enhancing biodiversity, soil formation, and nutrient cycling through decomposition processes. CWD also contributes to greenhouse gas fluxes, particularly through CO2 emissions. This study investigated the physical [...] Read more.
Coarse woody debris (CWD) is an essential component in forest ecosystems, playing a significant role in enhancing biodiversity, soil formation, and nutrient cycling through decomposition processes. CWD also contributes to greenhouse gas fluxes, particularly through CO2 emissions. This study investigated the physical and chemical properties of CWD and the CO2 effluxes from CWD of different decay classes. For this study, a range of CWD—from recently dead to highly decomposed wood—of native tree species such as silver birch (Betula pendula Roth), black alder (Alnus glutinosa (L.) Gaertn.), and Norway spruce (Picea abies (L.) H. Karst.) in hemiboreal forests were investigated. The findings showed that CWD properties significantly differed among tree species and CWD decay classes. Significant variations in wood density and total nitrogen (N) were observed in the early stages of CWD decay, with the highest values found for the deciduous tree species. The concentration of organic carbon (C) increased throughout the decomposition. The lowest CO2 efflux from CWD was found for spruce CWD from all decay classes and it was the highest for black alder and silver birch, especially for the 3rd and 4th decay classes. CO2 efflux was mainly influenced by the degree of decomposition, which was represented by the CWD decay class, followed by wood density and C content. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

19 pages, 6386 KiB  
Article
Microtopographic Variation in Biomass and Diversity of Living and Dead Wood in a Forest in Dongling Mountains, China
by Fang Ma, Shunzhong Wang, Weiguo Sang, Shuang Zhang and Keming Ma
Forests 2023, 14(10), 2111; https://doi.org/10.3390/f14102111 - 22 Oct 2023
Viewed by 1841
Abstract
Habitat heterogeneity caused by topographic variations at the local scale is the environmental basis for the establishment and evolution of biodiversity and biomass patterns. The similarities and distinctions between the effects of microtopographic variables on living wood (LWD) and dead wood (CWD) remain [...] Read more.
Habitat heterogeneity caused by topographic variations at the local scale is the environmental basis for the establishment and evolution of biodiversity and biomass patterns. The similarities and distinctions between the effects of microtopographic variables on living wood (LWD) and dead wood (CWD) remain unknown. In the present study, the response mechanisms of biomass and species diversity patterns of living wood (LWD) and coarse woody debris (CWD) to microtopographic parameters were quantified in a warm temperate secondary forest located in Dongling Mountain, China. This quantification was achieved using a generalized additive model on a completely mapped 20-hectare permanent plot. The evaluation of biomass and species diversity of woody plants was carried out by utilizing the total basal area of all individuals and the species richness within each 20 m × 20 m quadrat as a standard. The results indicate that there are notable disparities in the influence of microtopographic elements on the LWD and CWD. In the case of LWD, microtopography accounts for 22.90% of the variation in total basal area, with convexity making a greater relative contribution than elevation, slope, and aspect. Additionally, microtopography explains 46.20% of the variation in species richness, with aspect making a greater relative contribution than elevation, convexity, and slope. Nevertheless, the influence of microtopography on CWD may only account for a deviation of 10.20% in the total basal area and 4.95% in the species richness; aspect and slope have been identified as the primary drivers in this regard. The inclusion of microtopographic factors in the model resulted in a 23.10% increase in the explanatory deviations of LWD biomass and an 8.70% increase in the explanatory deviations of CWD biomass. The findings suggest that topographic considerations have a greater impact on the biomass distribution of LWD compared to that of CWD. Conversely, the biomass of CWD is more influenced by the species richness. The presence of microtopography plays a vital role in determining the spatial distribution of species and biomass at local scales, reflecting the multiple response mechanisms and growth strategies of vegetation in response to redistribution in water, soil, and light. Full article
(This article belongs to the Special Issue Biodiversity and Ecosystem Functioning in Forests)
Show Figures

Figure 1

20 pages, 3983 KiB  
Article
Fungal Community Succession of Populus grandidentata (Bigtooth Aspen) during Wood Decomposition
by Buck T. Castillo, Rima B. Franklin, Kevin R. Amses, Márcio F. A. Leite, Eiko E. Kuramae, Christopher M. Gough, Timothy Y. James, Lewis Faller and John Syring
Forests 2023, 14(10), 2086; https://doi.org/10.3390/f14102086 - 18 Oct 2023
Cited by 3 | Viewed by 2210
Abstract
Fungal communities are primary decomposers of detritus, including coarse woody debris (CWD). We investigated the succession of fungal decomposer communities in CWD through different stages of decay in the wide-ranging and early successional tree species Populus grandidentata (bigtooth aspen). We compared shifts in [...] Read more.
Fungal communities are primary decomposers of detritus, including coarse woody debris (CWD). We investigated the succession of fungal decomposer communities in CWD through different stages of decay in the wide-ranging and early successional tree species Populus grandidentata (bigtooth aspen). We compared shifts in fungal communities over time with concurrent changes in substrate chemistry and in bacterial community composition, the latter deriving from an earlier study of the same system. We found that fungal communities were highly dynamic during the stages of CWD decay, rapidly colonizing standing dead trees and gradually changing in composition until the late stages of decomposed wood were integrated into soil organic matter. Fungal communities were most similar to neighboring stages of decay, with fungal diversity, abundance, and enzyme activity positively related to percent nitrogen, irrespective of decay class. In contrast to other studies, we found that species diversity remained unchanged across decay classes. Differences in enzyme profiles across CWD decay stages mirrored changes in carbon recalcitrance, as B-D-xylosidase, peroxidase, and Leucyl aminopeptidase activity increased as decomposition progressed. Finally, fungal and bacterial gene abundances were stable and increased, respectively, with the extent of CWD decay, suggesting that fungal-driven decomposition was associated with shifting community composition and associated enzyme functions rather than fungal quantities. Full article
(This article belongs to the Special Issue Fungal Dynamics and Diversity in Forests)
Show Figures

Figure 1

22 pages, 5411 KiB  
Article
A Modelling System for Dead Wood Assessment in the Forests of Northern Eurasia
by Anatoly Shvidenko, Liudmila Mukhortova, Ekaterina Kapitsa, Florian Kraxner, Linda See, Anton Pyzhev, Roman Gordeev, Stanislav Fedorov, Vladimir Korotkov, Sergey Bartalev and Dmitry Schepaschenko
Forests 2023, 14(1), 45; https://doi.org/10.3390/f14010045 - 26 Dec 2022
Cited by 6 | Viewed by 2871
Abstract
Dead wood, including coarse woody debris, CWD, and fine woody debris, FWD, plays a substantial role in forest ecosystem functioning. However, the amount and dynamics of dead wood in the forests of Northern Eurasia are poorly understood. The aim of this study was [...] Read more.
Dead wood, including coarse woody debris, CWD, and fine woody debris, FWD, plays a substantial role in forest ecosystem functioning. However, the amount and dynamics of dead wood in the forests of Northern Eurasia are poorly understood. The aim of this study was to develop a spatially distributed modelling system (limited to the territories of the former Soviet Union) to assess the amount and structure of dead wood by its components (including snags, logs, stumps, and the dry branches of living trees) based on the most comprehensive database of field measurements to date. The system is intended to be used to assess the dead wood volume and the amount of dead wood in carbon units as part of the carbon budget calculation of forests at different scales. It is presented using multi-dimensional regression equations of dead wood expansion factors (DWEF)—the ratio of the dead wood component volume to the growing stock volume of the stands. The system can be also used for the accounting of dead wood stock and its dynamics in national greenhouse gas inventories and UNFCCC reporting. The system’s accuracy is satisfactory for the average level of disturbance regimes but it may require corrections for regions with accelerated disturbance regimes. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

17 pages, 1919 KiB  
Article
The Structure of Saproxylic Beetle Assemblages in View of Coarse Woody Debris Resources in Pine Stands of Western Poland
by Andrzej Mazur, Radosław Witkowski, Robert Kuźmiński, Roman Jaszczak, Mieczysław Turski, Hanna Kwaśna, Piotr Łakomy, Janusz Szmyt, Krzysztof Adamowicz and Andrzej Łabędzki
Forests 2021, 12(11), 1558; https://doi.org/10.3390/f12111558 - 11 Nov 2021
Cited by 5 | Viewed by 3041
Abstract
Background: Resources of dying and dead trees, decaying fragments of stems, stumps and branches, i.e., coarse woody debris (CWD), are an important structural element of biocenoses and are drivers of biodiversity. The aim of this study was to describe assemblages of saproxylic beetles [...] Read more.
Background: Resources of dying and dead trees, decaying fragments of stems, stumps and branches, i.e., coarse woody debris (CWD), are an important structural element of biocenoses and are drivers of biodiversity. The aim of this study was to describe assemblages of saproxylic beetles in pine stands of western Poland in view of dead wood resources. We present faunistic (species identity) and quantitative (species and individual counts) data from two types of stands: 1. unmanaged pine stands, in which no trees have been extracted for over 30 years, with processes connected with tree dying and self-thinning of stands being undisturbed, 2. managed pine stands, in which routine tending operations extracting trees are performed in accordance with forest management plans and naturally dying trees are removed in the course of tending and sanitary logging; Methods: Beetles were captured in the years 2013–2014 using window flight traps. Assemblages of saproxylic beetles were assessed based on the indices of dominance, diversity (the Shannon–Weiner index), and species richness (Margalef’s index) as well as the estimated habitat fidelity index, feeding habits, and zoogeographical distribution. Similarity between the assemblages was evaluated applying cluster analysis. Dependence between dead wood resources and the diversity and species richness indices were analysed; Results: A total of 2006 individuals classified to 216 species were captured. Assemblages show considerable similarity on the local scale. Higher values of species diversity indicators were observed in unmanaged stands, in which no sanitation cuttings are performed; Conclusions: The decision to refrain from sanitation logging in pine monocultures results in increased CWD resources, which nevertheless does not lead to a marked increase in the values of biodiversity indicators. Unmanaged stands were characterised by a high share of zoophagous, mycetophagous, and saproxylic species. In contrast, managed stands were characterised by a high share of xylophagous beetles. Full article
(This article belongs to the Special Issue Diversity and Distribution of Forest Insects)
Show Figures

Figure 1

24 pages, 36296 KiB  
Article
UAS Imagery-Based Mapping of Coarse Wood Debris in a Natural Deciduous Forest in Central Germany (Hainich National Park)
by Christian Thiel, Marlin M. Mueller, Lea Epple, Christian Thau, Sören Hese, Michael Voltersen and Andreas Henkel
Remote Sens. 2020, 12(20), 3293; https://doi.org/10.3390/rs12203293 - 10 Oct 2020
Cited by 17 | Viewed by 4333
Abstract
Dead wood such as coarse dead wood debris (CWD) is an important component in natural forests since it increases the diversity of plants, fungi, and animals. It serves as habitat, provides nutrients and is conducive to forest regeneration, ecosystem stabilization and soil protection. [...] Read more.
Dead wood such as coarse dead wood debris (CWD) is an important component in natural forests since it increases the diversity of plants, fungi, and animals. It serves as habitat, provides nutrients and is conducive to forest regeneration, ecosystem stabilization and soil protection. In commercially operated forests, dead wood is often unwanted as it can act as an originator of calamities. Accordingly, efficient CWD monitoring approaches are needed. However, due to the small size of CWD objects satellite data-based approaches cannot be used to gather the needed information and conventional ground-based methods are expensive. Unmanned aerial systems (UAS) are becoming increasingly important in the forestry sector since structural and spectral features of forest stands can be extracted from the high geometric resolution data they produce. As such, they have great potential in supporting regular forest monitoring and inventory. Consequently, the potential of UAS imagery to map CWD is investigated in this study. The study area is located in the center of the Hainich National Park (HNP) in the federal state of Thuringia, Germany. The HNP features natural and unmanaged forest comprising deciduous tree species such as Fagus sylvatica (beech), Fraxinus excelsior (ash), Acer pseudoplatanus (sycamore maple), and Carpinus betulus (hornbeam). The flight campaign was controlled from the Hainich eddy covariance flux tower located at the Eastern edge of the test site. Red-green-blue (RGB) image data were captured in March 2019 during leaf-off conditions using off-the-shelf hardware. Agisoft Metashape Pro was used for the delineation of a three-dimensional (3D) point cloud, which formed the basis for creating a canopy-free RGB orthomosaic and mapping CWD. As heavily decomposed CWD hardly stands out from the ground due to its low height, it might not be detectable by means of 3D geometric information. For this reason, solely RGB data were used for the classification of CWD. The mapping task was accomplished using a line extraction approach developed within the object-based image analysis (OBIA) software eCognition. The achieved CWD detection accuracy can compete with results of studies utilizing high-density airborne light detection and ranging (LiDAR)-based point clouds. Out of 180 CWD objects, 135 objects were successfully delineated while 76 false alarms occurred. Although the developed OBIA approach only utilizes spectral information, it is important to understand that the 3D information extracted from our UAS data is a key requirement for successful CWD mapping as it provides the foundation for the canopy-free orthomosaic created in an earlier step. We conclude that UAS imagery is an alternative to laser data in particular if rapid update and quick response is required. We conclude that UAS imagery is an alternative to laser data for CWD mapping, especially when a rapid response and quick reaction, e.g., after a storm event, is required. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Graphical abstract

10 pages, 2077 KiB  
Article
Necromass Carbon Stock in a Secondary Atlantic Forest Fragment in Brazil
by Paulo Henrique Villanova, Carlos Moreira Miquelino Eleto Torres, Laércio Antônio Gonçalves Jacovine, Carlos Pedro Boechat Soares, Liniker Fernandes da Silva, Bruno Leão Said Schettini, Samuel José Silva Soares da Rocha and José Cola Zanuncio
Forests 2019, 10(10), 833; https://doi.org/10.3390/f10100833 - 21 Sep 2019
Cited by 9 | Viewed by 3597
Abstract
Necromass has a relevant role to play in the carbon stock of forest ecosystems, especially with the increase of tree mortality due to climate change. Despite this importance, its quantification is often neglected in tropical forests. The objective of this study was to [...] Read more.
Necromass has a relevant role to play in the carbon stock of forest ecosystems, especially with the increase of tree mortality due to climate change. Despite this importance, its quantification is often neglected in tropical forests. The objective of this study was to quantify the carbon storage in a secondary Atlantic Forest fragment in Viçosa, Minas Gerais, Brazil. Coarse Woody Debris (CWD), standing dead trees (snags), and litter were quantified in twenty 10 m x 50 m plots randomly positioned throughout the forest area (simple random sampling). Data were collected during 2015, from July to December. The CWD and snags volumes were determined by the Smalian method and by allometric equations, respectively. The necromass of these components was estimated by multiplying the volume by the apparent density at each decomposition classes. The litter necromass was estimated by the proportionality method and the average of the extrapolated estimates per hectare. The carbon stock of the three components was quantified by multiplying the necromass and the carbon wood content. The total volume of dead wood, including CWD and snag, was 23.6 ± 0.9 m3 ha−1, being produced mainly by the competition for resources, senescence, and anthropic and climatic disturbances. The total necromass was 16.3 ± 0.4 Mg ha−1. The total carbon stock in necromass was 7.3 ± 0.2 MgC ha−1. The CWD, snag and litter stocked 3.0 ± 0.1, 1.8 ± 0.1, and 2.5 ± 0.1 MgC ha−1, respectively. These results demonstrate that although necromass has a lower carbon stock compared to biomass, neglecting its quantification may lead to underestimation of the carbon balance of forest ecosystems and their potential to mitigate climate change. Full article
(This article belongs to the Special Issue Forest Carbon Inventories and Management)
Show Figures

Graphical abstract

Back to TopTop