UAS Imagery-Based Mapping of Coarse Wood Debris in a Natural Deciduous Forest in Central Germany (Hainich National Park)
Abstract
:1. Introduction
1.1. Role and Mapping of Dead Wood
- Ground-based campaigns suffer from challenging carrier phase differential global navigation satellite system (CDGNSS) conditions. Thus, the subdecimeter positioning accuracy needed to survey CWD (especially when campaign data are used as reference for remote sensing-based inferences) can hardly be achieved. Alternatively, positioning based on tachymetry could be carried out. However, this would entail a great deal of effort in forest environments.
- The use of remote-sensing methods is limited as CWD objects are too small to be detected via satellite-borne data. Also, the forest canopy and potentially the undergrowth prevent the visibility of the CWD objects. Consequently, previous research has mainly focused on the use of active systems such airborne light detection and ranging (LiDAR) [7,8,9,12,14,15,16] or terrestrial laser scanning (TLS) [8,11,17,18].
1.2. Previous Studies on Dead Wood Mapping
1.2.1. Area-Based Dead Wood Mapping Using Airborne Light Detection and Ranging (LiDAR) Data
1.2.2. Object-Based Dead Wood Mapping Using Airborne LiDAR Data
1.2.3. Object-Based Dead Wood Mapping Using Terrestrial Laser Scanning (TLS) Data
1.2.4. Object-Based Dead Wood Mapping Using Optical Data
1.3. Unmanned Aerial Systems (UAS) Imagery and Structure from Motion (SfM) for Small-Scale Mapping Tasks: Potential and Principles
1.4. Scope and Remainder of This Publication
2. Materials
2.1. The Supersite ‘Huss’ Within the Hanich National Park (HNP)
2.2. Field Work: UAS Mission and Check Point Surveying
2.3. Light Detection and Ranging (LiDAR) Data
3. Methods
3.1. UAS Data Processing
3.1.1. Delineation of SfM Point Cloud
3.1.2. Generation of Canopy-Free Orthomosaic
3.2. Collection of Reference Data for Accuracy Assessment
3.3. Automized Dead Wood Detection Using a Raster Data-Based Object-Based Image Analysis (OBIA) Approach
3.4. Accuracy Analysis
4. Results
4.1. Coarse Wood Debris (CWD) Map
4.2. Accuracy Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Puletti, N.; Giannetti, F.; Chirici, G.; Canullo, R. Deadwood distribution in European forests. J. Maps 2017, 13, 733–736. [Google Scholar] [CrossRef]
- Ifadis, I.M.; Demertzi, A.A. Mapping Based on Dead Wood Availability. Locating Biodiversity Hotspots in Managed Forests. In Proceedings of the 14th International Multidisciplinary Scientific Geoconference (SGEM), Albena, Bulgaria, 17–26 June 2014; pp. 391–398. [Google Scholar]
- Bauerle, H.; Nothdurft, A.; Kandler, G.; Bauhus, J. Monitoring habitat trees and coarse woody debris based on sampling schemes. Allg. Forst Jagdztg. 2009, 180, 249–260. [Google Scholar]
- Holzwarth, F.; Kahl, A.; Bauhus, J.; Wirth, C. Many ways to die—Partitioning tree mortality dynamics in a near-natural mixed deciduous forest. J. Ecol. 2013, 101, 220–230. [Google Scholar] [CrossRef]
- Mataji, A.; Sagheb-Talebi, K.; Eshaghi-Rad, J. Deadwood assessment in different developmental stages of beech (Fagus orientalis Lipsky) stands in Caspian forest ecosystems. Int. J. Environ. Sci. Technol. 2014, 11, 1215–1222. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, L. The importance of dead woody material in forests. Forstwiss. Cent. 1991, 110, 106–113. [Google Scholar] [CrossRef]
- Nystrom, M.; Holmgren, J.; Fransson, J.E.S.; Olsson, H. Detection of windthrown trees using airborne laser scanning. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 21–29. [Google Scholar] [CrossRef]
- Marchi, N.; Pirotti, F.; Lingua, E. Airborne and terrestrial laser scanning data for the assessment of standing and lying deadwood: Current situation and new perspectives. Remote Sens. 2018, 10, 1356. [Google Scholar] [CrossRef] [Green Version]
- Pesonen, A.; Leino, O.; Maltamo, M.; Kangas, A. Comparison of field sampling methods for assessing coarse woody debris and use of airborne laser scanning as auxiliary information. For. Ecol. Manag. 2009, 257, 1532–1541. [Google Scholar] [CrossRef]
- Tanhuanpaa, T.; Kankare, V.; Vastaranta, M.; Saarinen, N.; Holopainen, M. Monitoring downed coarse woody debris through appearance of canopy gaps in urban boreal forests with bitemporal ALS data. Urban For. Urban Green. 2015, 14, 835–843. [Google Scholar] [CrossRef]
- Yrttimaa, T.; Saarinen, N.; Luoma, V.; Tanhuanpaa, T.; Kankare, V.; Liang, X.L.; Hyyppa, J.; Holopainen, M.; Vastaranta, M. Detecting and characterizing downed dead wood using terrestrial laser scanning. ISPRS J. Photogramm. Remote Sens. 2019, 151, 76–90. [Google Scholar] [CrossRef]
- Polewski, P.; Yao, W.; Heurich, M.; Krzystek, P.; Stilla, U. Detection of fallen trees in ALS point clouds using a normalized cut approach trained by simulation. ISPRS J. Photogramm. Remote Sens. 2015, 105, 252–271. [Google Scholar] [CrossRef]
- Lindberg, E.; Hollaus, M.; Mücke, W.; Fransson, J.E.S.; Pfeifer, N. Detection of Lying Tree Stems from Airborne Laser Scanning Data Using a Line Template Matching Algorithm. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Antalya, Turkey, 11–13 November 2013. [Google Scholar]
- Leiterer, R.; Mucke, W.; Morsdorf, F.; Hollaus, M.; Pfeifer, N.; Schaepman, M.E. Operational forest structure monitoring using airborne laser scanning. Photogramm. Fernerkund. Geoinf. 2013, 173–184. [Google Scholar] [CrossRef]
- Mucke, W.; Deak, B.; Schroiff, A.; Hollaus, M.; Pfeifer, N. Detection of fallen trees in forested areas using small footprint airborne laser scanning data. Can. J. Remote Sens. 2013, 39, S32–S40. [Google Scholar] [CrossRef]
- Blanchard, S.D.; Jakubowski, M.K.; Kelly, M. Object-based image analysis of downed logs in disturbed forested landscapes using lidar. Remote Sens. 2011, 3, 2420–2439. [Google Scholar] [CrossRef] [Green Version]
- Aicardi, I.; Dabove, P.; Lingua, A.M.; Piras, M. Integration between TLS and UAV photogrammetry techniques for forestry applications. iForest Biogeosci. For. 2017, 10, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Polewski, P.; Yao, W.; Heurich, M.; Krzystek, P.; Stilla, U. A voting-based statistical cylinder detection framework applied to fallen tree mapping in terrestrial laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 2017, 129, 118–130. [Google Scholar] [CrossRef]
- Sherrill, K.R.; Lefsky, M.A.; Bradford, J.B.; Ryan, M.G. Forest structure estimation and pattern exploration from discrete-return lidar in subalpine forests of the central Rockies. Can. J. For. Res. 2008, 38, 2081–2096. [Google Scholar] [CrossRef] [Green Version]
- Hauglin, M.; Gobakken, T.; Lien, V.; Bollandsas, O.M.; Naesset, E. Estimating potential logging residues in a boreal forest by airborne laser scanning. Biomass Bioenergy 2012, 36, 356–365. [Google Scholar] [CrossRef]
- Andersen, H.E.; McGaughey, R.J.; Reutebuch, S.E. Estimating forest canopy fuel parameters using LIDAR data. Remote Sens. Environ. 2005, 94, 441–449. [Google Scholar] [CrossRef]
- Bright, B.C.; Hudak, A.T.; McGaughey, R.; Andersen, H.E.; Negron, J. Predicting live and dead tree basal area of bark beetle affected forests from discrete-return lidar. Can. J. Remote Sens. 2013, 39, S99–S111. [Google Scholar] [CrossRef]
- Sumnall, M.J.; Hill, R.A.; Hinsley, S.A. Comparison of small-footprint discrete return and full waveform airborne lidar data for estimating multiple forest variables. Remote Sens. Environ. 2016, 173, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Pesonen, A.; Maltamo, M.; Eerikainen, K.; Packalen, P. Airborne laser scanning-based prediction of coarse woody debris volumes in a conservation area. For. Ecol. Manag. 2008, 255, 3288–3296. [Google Scholar] [CrossRef]
- Jiang, S.; Yao, W.; Heurich, M. Dead Wood Detection Based on Semantic Segmentation of Vhr Aerial Cir Imagery Using Optimized Fcn-Densenet. In Proceedings of the Photogrammetric Image Analysis & Munich Remote Sensing Symposium, Munich, Germany, 18–20 September 2019. [Google Scholar]
- Inoue, T.; Nagai, S.; Yamashita, S.; Fadaei, H.; Ishii, R.; Okabe, K.; Taki, H.; Honda, Y.; Kajiwara, K.; Suzuki, R. Unmanned aerial survey of fallen trees in a deciduous broadleaved forest in Eastern Japan. PLoS ONE 2014, 9, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krzystek, P.; Serebryanyk, A.; Schnorr, C.; Cervenka, J.; Heurich, M. Large-scale mapping of tree species and dead trees in sumava national park and bavarian forest national park using lidar and multispectral imagery. Remote Sens. 2020, 12, 661. [Google Scholar] [CrossRef] [Green Version]
- Pasher, J.; King, D.J. Mapping dead wood distribution in a temperate hardwood forest using high resolution airborne imagery. For. Ecol. Manag. 2009, 258, 1536–1548. [Google Scholar] [CrossRef]
- Dunford, R.; Michel, K.; Gagnage, M.; Piegay, H.; Tremelo, M.L. Potential and constraints of Unmanned Aerial Vehicle technology for the characterization of Mediterranean riparian forest. Int. J. Remote Sens. 2009, 30, 4915–4935. [Google Scholar] [CrossRef]
- Butler, R.; Schlaepfer, R. Spruce snag quantification by coupling colour infrared aerial photos and a GIS. For. Ecol. Manag. 2004, 195, 325–339. [Google Scholar] [CrossRef]
- Butler-Manning, D. Stand Structure, Gap Dynamics and Regeneration of a Semi-Natural Mixed Beech Forest on Limestone In Central Europe—A case study. Ph.D. Thesis, Albert-Ludwigs Universitat, Freiburg, Germany, 2007. [Google Scholar]
- Yang, B.; Travaglini, D.; Giannetti, F.; Kutchartt, E.; Bottalico, F.; Chirici, G. Kernel feature cross-correlation for unsupervised quantification of damage from windthrow in forests. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 17–22. [Google Scholar] [CrossRef]
- Yao, H.; Qin, R.J.; Chen, X.Y. Unmanned aerial vehicle for remote sensing applications-A review. Remote Sens. 2019, 11, 1443. [Google Scholar] [CrossRef] [Green Version]
- Kersten, J.; Rodehorst, V.; Hallermann, N.; Debus, P.; Morgenthal, G. Potentials of Autonomous UAS and Automated Image Analysis for Structural Health Monitoring. In Proceedings of the 40th IABSE Symposium, Nantes, France, 19–21 September 2018. [Google Scholar]
- Torresan, C.; Berton, A.; Carotenuto, F.; Di Gennaro, S.F.; Gioli, B.; Matese, A.; Miglietta, F.; Vagnoli, C.; Zaldei, A.; Wallace, L. Forestry applications of UAVs in Europe: A review. Int. J. Remote Sens. 2017, 38, 2427–2447. [Google Scholar] [CrossRef]
- Tscharf, A.; Rumpler, M.; Fraundorfer, F.; Mayer, G.; Bischof, H. On the use of uavs in mining and archaeology—Geo-accurate 3D reconstructions using various platforms and terrestrial views. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Taddia, Y.; Stecchi, F.; Pellegrinelli, A. Coastal mapping using DJI Phantom 4 RTK in post-processing kinematic mode. Drones 2020, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S.; d’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Network, H.U. UAViators - Humanitarian UAV Network. Available online: http://uaviators.org/ (accessed on 20 September 2020).
- Schonberger, J.L.; Frahm, J.M. Structure-from-Motion Revisited. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016; pp. 4104–4113. [Google Scholar]
- Förstner, W. A framework for Low Level Feature Extraction. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 383–394. [Google Scholar]
- Zhuo, X.Y.; Koch, T.; Kurz, F.; Fraundorfer, F.; Reinartz, P. Automatic UAV image geo-registration by matching UAV images to georeferenced image data. Remote Sens. 2017, 9, 376. [Google Scholar] [CrossRef] [Green Version]
- Nister, D. An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 756–770. [Google Scholar] [CrossRef] [PubMed]
- Chum, O.; Matas, J.; Obdrzalek, S. Enhancing Ransac by Generalized Model Optimization. In Proceedings of the Asian Conference on Computer Vision, Jeju, Korea, 27–30 January 2004; pp. 812–817. [Google Scholar]
- Triggs, B.; Mclauchlan, P.; Hartley, R.i.; Fitzgibbon, A. Bundle Adjustment–A Modern Synthesis. In Proceedings of the International Workshop on Vision Algorithms, Corfu, Greece, 21–22 September 1999; pp. 298–372. [Google Scholar]
- Tippetts, B.; Lee, D.-J.; Lillywhite, K.; Archibald, J. Review of stereo vision algorithms and their suitability for resource-limited systems. J. Real Time Image Process. 2013, 11, 5–25. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, D.; Burningham, H. Comparison of pre- and self-calibrated camera calibration models for UAS-derived nadir imagery for a SfM application. Prog. Phys. Geogr. Earth Environ. 2018, 43, 215–235. [Google Scholar] [CrossRef] [Green Version]
- DJI. DJI Phantom 4 RTK User Manual v1.4; DJI: Shenzhen, China, 2018. [Google Scholar]
- Thiel, C.; Müller, M.M.; Berger, C.; Cremer, F.; Dubois, C.; Hese, S.; Baade, J.; Klan, F.; Pathe, C. Monitoring selective logging in a pine-dominated forest in central germany with repeated drone flights utilizing a low cost RTK quadcopter. Drones 2020, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Forlani, G.; Dall’Asta, E.; Diotri, F.; di Cella, U.M.; Roncella, R.; Santise, M. Quality assessment of DSMs produced from UAV flights georeferenced with on-board RTK positioning. Remote Sens. 2018, 10, 311. [Google Scholar] [CrossRef] [Green Version]
- Beneke, C.; Butler-Manning, D. Coarse Woody Debris (CWD) in the Weberstedter Holz, a Near Natural Beech Forest in Central Germany; Forest & Lancsape Denmark: Copenhagen, Denmark, 2003. [Google Scholar]
- Guse, T. Regeneration und Etablierungvon Sechs Mitteleuropäischen Laubbaumarten in Einem „Naturnahen“ Kalkbuchenwald im Nationalpark Hainich/Thüringen; University Jena: Jena, Germany, 2009. [Google Scholar]
- Seele, C. The Influence of Deer Browsing on Natural Forest Regeneration; University Jena: Jena, Germany, 2011. [Google Scholar]
- Ratcliffe, S.; Holzwarth, F.; Nadrowski, K.; Levick, S.; Wirth, C. Tree neighbourhood matters—Tree species composition drives diversity-productivity patterns in a near-natural beech forest. For. Ecol. Manag. 2015, 335, 225–234. [Google Scholar] [CrossRef]
- Fritzlar, D.; Henkel, A.; Hornschuh, M.; Kleidon-Hildebrandt, A.; Kohlhepp, B.; Lehmann, R.; Lorenzen, K.; Mund, M.; Profft, I.; Siebicke, L.; et al. Exkursionsführer—Wissenschaft im Hainich; Nationalparkverwaltung Hainich, ThüringenForst: Bad Langensalza, Germany, 2016; p. 63. [Google Scholar]
- PPM. 10xx GNSS Sensor. Available online: http://www.ppmgmbh.com/ppm_design/10xx-GNSS-Sensor.html (accessed on 5 November 2019).
- Geoinformation, L.f.B.u. Geodaten in Thueringen. Available online: www.geoportal-th.de (accessed on 20 September 2020).
- Conrady, A.E. Lens-systems, decentered. Mon. Not. R. Astron. Soc. 1919, 79, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Isenburg, M. LASTools. Available online: https://rapidlasso.com (accessed on 20 September 2020).
- Padua, L.; Vanko, J.; Hruska, J.; Adao, T.; Sousa, J.J.; Peres, E.; Morais, R. UAS, sensors, and data processing in agroforestry: A review towards practical applications. Int. J. Remote Sens. 2017, 38, 2349–2391. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Triantafyllou, A.; Bibi, S.; Sarigannidis, P.G. Data acquisition and Analysis Methods in UAV-based Applications for Precision Agriculture. In Proceedings of the 15th International Conference on Distributed Computing in Sensor Systems, Santorini, Greece, 29–31 May 2019; IEEE: New York, NY, USA, 2019; pp. 377–384. [Google Scholar]
- Zachariah, D.F.; Terry, L.P. An orientation based correction method for SfM-MVS point clouds-Implications for field geology. J. Struct. Geol. 2018, 113, 76–89. [Google Scholar] [CrossRef]
- Milas, A.S.; Cracknell, A.P.; Warner, T.A. Drones—The third generation source of remote sensing data. Int. J. Remote Sens. 2018, 39, 7125–7137. [Google Scholar] [CrossRef]
UAS Characteristics | DJI Phantom 4 Pro RTK |
---|---|
Frequencies used for RTK | GPS: L1/L2 GLONASS: L1/L2 BeiDou: B1/B2 Galileo: E1/E5a |
Positioning accuracy | Horizontal: 1 cm + 1 ppm Vertical: 2 cm + 1 ppm |
Image sensor | DJI FC6310R (Bayer), 1" CMOS 8.8 mm/24 mm (35 mm equivalent) |
No. of pixels/ pixel size | 5472 × 3648 / 2.41 µm × 2.41 µm |
Field of view | 84° |
Mechanical shutter | 8−1/2000 s |
Data format | JPEG, EXIF with 3D RTK CDGNSS location |
Parameter | Setting |
---|---|
Date Time (UTC+1) of first shot | 2019/03/24 10.36 am |
Wind speed | 0.5–1.0 ms−1 |
Clouds | overcast (8/8) |
Mission duration | 25 min (2 batteries) |
No. images | 578 |
Image overlap (front/side) | 85% / 80% |
Flight speed | 5 ms−1 |
Shutter priority | yes (1/360 s) |
Distortion correction | yes |
Gimbal angle | –90° (nadir) |
Flight altitude over tower | 100 m |
ISO sensitivity | ISO400 |
Aperture | F/5.0–F/5.6 (exposure value −0.3) |
Geometric resolution (ground) | 4.18 cm |
Area covered | 0.579 km² |
Parameter | Setting |
---|---|
Photo alignment accuracy | High (original image resolution) |
Image preselection | Generic/Reference |
Key point limit | 40,000 |
Tie point limit | 10,000 |
Adaptive camera model fitting | Off |
Camera positional accuracy | 0.02 m |
Tie point accuracy | 1 pix |
Optimize camera alignment | Yes |
Adapted camera parameters | f, cx, cy, k1, k2, k3, p1, p2 |
Dense cloud quality | Ultra high (original image resolution) |
Depth filtering | Mild |
Parameter | Results |
---|---|
No. of tie points | 104,768 |
Effective reprojection error | 0.322748 pix |
No. of points (dense cloud) entire UAS-mission area | 648,079,840 |
No. of points (dense cloud) Huss site | 409,880,892 |
No. of faces | 59,870,149 |
f | 3634.85 |
cx, cy | 13.447, 23.1126 |
k1, k2, k3 | 0.000124181, −0.0191008, 0.0163026 |
p1, p2 | 0.000613276, 0.00116124 |
Average error of camera pos. (x, y, z) in mm | 2.20, 1.32, 1.29 |
RMSE of check points (x, y, z) in cm | 2.57, 3.37, 0.51 |
Method | Function | Subfunction/Value |
---|---|---|
Extract lines for RGB layers | update line parameters | sv_line_length = 20 sv_line_width = 3 sv_border_width = 3 sv_angle = 0 |
loop: if sv_angle <= 179 then (red channel) sv_angle = 0 | line extraction ( A: sv_angle, W: sv_line_widthpx, L: sv_line_lengthpx, B: sv_border_widthpx) ‘lv_red’ => ‘Rlines’ | |
loop: if sv_angle <= 179 then (green channel) sv_angle = 0 | line extraction ( A: sv_angle, W: sv_line_widthpx, L: sv_line_lengthpx, B: sv_border_widthpx) ‘lv_green’ => ‘Glines’ | |
loop: if sv_angle <= 179 then (blue channel) sv_angle = 0 | line extraction ( A: sv_angle, W: sv_line_widthpx, L: sv_line_lengthpx, B: sv_border_widthpx) ‘lv_blue’ => ‘Blines’ | |
layer arithmetics | (val “Blines+Glines+Rlines”, layer lines [32Bit float]) | |
Segment and classify lines | creating ‘lvl’: | unclassified <=30 < lines on lines |
Reshaping | lines with Area <= 30 Pxl at lvl1: loop: lines at lvl1: lines at lvl1: | unclassified grow into classified where lines > 0 merge region |
Pixel-based growing | sv_number_pixels_growth = ‘sv_number_pixels_growth’ cycles: lines at lvl1: | 2 grow into all merge region |
Assessment | tp | fn | fp | Precision | Recall |
---|---|---|---|---|---|
Length-based | 4478 | 1995 | 887 | 83.5 | 69.2 |
Count-based | 180 | 45 | 76 | 70.3 | 80.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiel, C.; Mueller, M.M.; Epple, L.; Thau, C.; Hese, S.; Voltersen, M.; Henkel, A. UAS Imagery-Based Mapping of Coarse Wood Debris in a Natural Deciduous Forest in Central Germany (Hainich National Park). Remote Sens. 2020, 12, 3293. https://doi.org/10.3390/rs12203293
Thiel C, Mueller MM, Epple L, Thau C, Hese S, Voltersen M, Henkel A. UAS Imagery-Based Mapping of Coarse Wood Debris in a Natural Deciduous Forest in Central Germany (Hainich National Park). Remote Sensing. 2020; 12(20):3293. https://doi.org/10.3390/rs12203293
Chicago/Turabian StyleThiel, Christian, Marlin M. Mueller, Lea Epple, Christian Thau, Sören Hese, Michael Voltersen, and Andreas Henkel. 2020. "UAS Imagery-Based Mapping of Coarse Wood Debris in a Natural Deciduous Forest in Central Germany (Hainich National Park)" Remote Sensing 12, no. 20: 3293. https://doi.org/10.3390/rs12203293
APA StyleThiel, C., Mueller, M. M., Epple, L., Thau, C., Hese, S., Voltersen, M., & Henkel, A. (2020). UAS Imagery-Based Mapping of Coarse Wood Debris in a Natural Deciduous Forest in Central Germany (Hainich National Park). Remote Sensing, 12(20), 3293. https://doi.org/10.3390/rs12203293