Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = coalescent failure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 21376 KiB  
Article
Numerical Simulation of Fracture Failure Propagation in Water-Saturated Sandstone with Pore Defects Under Non-Uniform Loading Effects
by Gang Liu, Yonglong Zan, Dongwei Wang, Shengxuan Wang, Zhitao Yang, Yao Zeng, Guoqing Wei and Xiang Shi
Water 2025, 17(12), 1725; https://doi.org/10.3390/w17121725 - 7 Jun 2025
Cited by 1 | Viewed by 480
Abstract
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the [...] Read more.
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the mechanical properties of the rock mass, while non-uniform loading leads to stress concentration. The combined effect facilitates the propagation of microcracks and the formation of shear zones, ultimately resulting in localized instability. This initial damage disrupts the mechanical equilibrium and can evolve into severe geohazards, including roof collapse, water inrush, and rockburst. Therefore, understanding the damage and failure mechanisms of mine roadways at the mesoscale, under the combined influence of stress heterogeneity and hydraulic weakening, is of critical importance based on laboratory experiments and numerical simulations. However, the large scale of in situ roadway structures imposes significant constraints on full-scale physical modeling due to limitations in laboratory space and loading capacity. To address these challenges, a straight-wall circular arch roadway was adopted as the geometric prototype, with a total height of 4 m (2 m for the straight wall and 2 m for the arch), a base width of 4 m, and an arch radius of 2 m. Scaled physical models were fabricated based on geometric similarity principles, using defect-bearing sandstone specimens with dimensions of 100 mm × 30 mm × 100 mm (length × width × height) and pore-type defects measuring 40 mm × 20 mm × 20 mm (base × wall height × arch radius), to replicate the stress distribution and deformation behavior of the prototype. Uniaxial compression tests on water-saturated sandstone specimens were performed using a TAW-2000 electro-hydraulic servo testing system. The failure process was continuously monitored through acoustic emission (AE) techniques and static strain acquisition systems. Concurrently, FLAC3D 6.0 numerical simulations were employed to analyze the evolution of internal stress fields and the spatial distribution of plastic zones in saturated sandstone containing pore defects. Experimental results indicate that under non-uniform loading, the stress–strain curves of saturated sandstone with pore-type defects typically exhibit four distinct deformation stages. The extent of crack initiation, propagation, and coalescence is strongly correlated with the magnitude and heterogeneity of localized stress concentrations. AE parameters, including ringing counts and peak frequencies, reveal pronounced spatial partitioning. The internal stress field exhibits an overall banded pattern, with localized variations induced by stress anisotropy. Numerical simulation results further show that shear failure zones tend to cluster regionally, while tensile failure zones are more evenly distributed. Additionally, the stress field configuration at the specimen crown significantly influences the dispersion characteristics of the stress–strain response. These findings offer valuable theoretical insights and practical guidance for surrounding rock control, early warning systems, and reinforcement strategies in water-infiltrated mine roadways subjected to non-uniform loading conditions. Full article
Show Figures

Figure 1

35 pages, 22649 KiB  
Article
Research on the Self-Organized Criticality and Fracture Predictability of Sandstone via Real-Time CT Scanning and AE Monitoring
by Huimin Yang, Yongjun Song, Jianxi Ren and Yiqian Chen
Appl. Sci. 2025, 15(11), 6205; https://doi.org/10.3390/app15116205 - 31 May 2025
Viewed by 463
Abstract
Progressive damage evolution in rock masses serves as the fundamental mechanism driving geological hazards by controlling deformation patterns and failure predictability. To address the critical challenge of predicting fracture behaviors in heterogeneous geological media, this study pioneers the integration of real-time computed tomography [...] Read more.
Progressive damage evolution in rock masses serves as the fundamental mechanism driving geological hazards by controlling deformation patterns and failure predictability. To address the critical challenge of predicting fracture behaviors in heterogeneous geological media, this study pioneers the integration of real-time computed tomography (CT) scanning and acoustic emission (AE) monitoring to investigate self-organized criticality and fracture predictability in Cretaceous sandstone under uniaxial compression. By systematically analyzing internal structural evolution and damage parameters, this established a multiparameter framework to characterize self-organized processes and critical phase transitions during progressive fracturing. Key findings include the following: (1) Distinct critical thresholds emerge during yield-stage self-organization, marked by abrupt transitions in AE signals and crack metrics—from microdamage coalescence initiating volumetric expansion (first critical point) to macrocrack nucleation preceding peak strength (second critical point). (2) AE-crack evolution follows power–law statistics, where elevated scaling exponents (r > 0.85) correlate with intensified nonlinear damage, accelerated localization, and progressive rate enhancement. Yield-stage power–law acceleration provides quantifiable failure precursors. (3) Yield-stage damage patterns exhibit 85% similarity with terminal failure configurations, confirming yield-stage as the definitive precursor with critical temporal signatures for failure prediction. A conceptual framework integrating multiparameter responses (AE signals, crack metrics) was developed to decipher self-organized critical phase transitions during deformation-failure processes. This work establishes methodological foundations for investigating damage mechanisms and predictive strategies in heterogeneous rock systems. Full article
Show Figures

Figure 1

16 pages, 8572 KiB  
Article
Fracture Behavior and Cracking Mechanism of Rock Materials Containing Fissure-Holes Under Brazilian Splitting Tests
by Hengjie Luan, Kun Liu, Decheng Ge, Wei Han, Yiran Zhou, Lujie Wang and Sunhao Zhang
Appl. Sci. 2025, 15(10), 5592; https://doi.org/10.3390/app15105592 - 16 May 2025
Viewed by 339
Abstract
Fractures and voids are widely distributed in slope rock masses. These defects promote crack initiation and propagation, ultimately leading to rock mass failure. Investigating their damage evolution mechanisms and strength characteristics is of significant importance for slope hazard prevention. A numerical simulation study [...] Read more.
Fractures and voids are widely distributed in slope rock masses. These defects promote crack initiation and propagation, ultimately leading to rock mass failure. Investigating their damage evolution mechanisms and strength characteristics is of significant importance for slope hazard prevention. A numerical simulation study of Brazilian splitting tests on disk samples containing prefabricated holes and fractures was conducted using the Finite Element Method with Cohesive Zone Modeling (FEM-CZM) in ABAQUS by embedding zero-thickness cohesive elements within the finite element model. This 2021 study analyzed the effects of fracture angle and length on tensile strength and crack propagation characteristics. The results revealed that when the fracture angle is small, cracks initiate near the fracture and propagate and intersect radially as the load increases, ultimately leading to specimen failure, with the crack coalescence pattern exhibiting local closure. As the fracture angle increases, the initiation location of the crack shifts. With an increase in fracture length, the crack initiation position may transfer to other parts of the fracture or near the hole, and longer fractures may result in more complex coalescence patterns and local closure phenomena. During the tensile and stable failure stages, the load–displacement curves of samples with different fracture angles and lengths exhibit similar trends. However, the fracture angle has a notable impact on the curve during the shear failure stage, while the fracture length significantly affects the peak value of the curve. Furthermore, as displacement increases, the proportion of tensile failure undergoes a process of rapid decline, slow rise, and then rapid decline again before stabilizing, with the fracture angle having a significant influence on the proportion of tensile failure. Lastly, as the fracture angle and length increase, the number of damaged cohesive elements shows an upward trend. This study provides novel perspectives on the tensile behavior of fractured rock masses through the FEM-CZM approach, contributing to a fundamental understanding of the strength characteristics and crack initiation mechanism of rocks under tensile loading conditions. Full article
Show Figures

Figure 1

25 pages, 8004 KiB  
Article
Facile Synthesis and Characterization of Novel Fe0.65Mg0.35Cr2O4@C Nanocomposite for Efficient Removal of Cd(II) Ions from Aqueous Media
by Ehab A. Abdelrahman, Reem K. Shah, Mortaga M. Abou-Krisha, Fawaz A. Saad and Alaa M. Munshi
Inorganics 2025, 13(3), 82; https://doi.org/10.3390/inorganics13030082 - 12 Mar 2025
Cited by 5 | Viewed by 779
Abstract
Cd(II) ions pose significant environmental and health threats due to their extreme toxicity, persistence, and bioaccumulation in ecosystems. They are associated with severe health disorders such as bone damage, kidney failure, and carcinogenic effects and disrupt aquatic life by impairing enzymatic and reproductive [...] Read more.
Cd(II) ions pose significant environmental and health threats due to their extreme toxicity, persistence, and bioaccumulation in ecosystems. They are associated with severe health disorders such as bone damage, kidney failure, and carcinogenic effects and disrupt aquatic life by impairing enzymatic and reproductive processes. In this research, novel Fe0.65Mg0.35Cr2O4@C nanocomposites, synthesized using the Pechini sol–gel method at 600 °C (F600) and 800 °C (F800), were investigated for their efficacy in removing Cd(II) ions from aqueous media. FE-SEM analysis showed that F600 had agglomerated spherical nanoparticles with an average grain size of 45.71 nm and a relatively porous structure, while F800 displayed denser and more compact spherical nanoparticles with an average grain size of 73.65 nm. HR-TEM images confirmed these findings, showing that F600 nanoparticles were loosely arranged with an average particle diameter of 14.72 nm, whereas F800 exhibited larger, more aggregated particles with an average diameter of 59.22 nm, reflecting enhanced particle coalescence at higher temperatures. EDX analysis confirmed the elemental composition of both samples, with F600 containing higher carbon content (7.0%) compared to F800 (3.4%), attributed to the more complete combustion of organic precursors during F800’s synthesis. This difference in composition, along with the structural variations, influenced their adsorption performance. F600 demonstrated superior adsorption with a maximum capacity of 295.86 mg/g compared to F800’s 185.19 mg/g. Thermodynamic and kinetic analyses confirmed that the adsorption was exothermic, spontaneous, and governed by a physical mechanism following the pseudo-second-order model and Langmuir isotherm. The superior performance of F600 is attributed to its higher surface area, porosity, and smaller particle size, which enhance the availability of active adsorption sites. Full article
Show Figures

Figure 1

19 pages, 3884 KiB  
Article
Theoretical Study on the Failure of Rocks with Preexisting Cracks Considering the Extension of the Crack Tip Plastic Zone
by Xuegui Zheng, Wei Gao, Xin Chen and Xu Wang
Mathematics 2025, 13(5), 718; https://doi.org/10.3390/math13050718 - 23 Feb 2025
Cited by 1 | Viewed by 478
Abstract
Rock failure, which causes instability in rock engineering, is an engineering accident that generally occurs through the coalescence of the preexisting cracks in rocks. Therefore, it is very important to research the coalescence of rock cracks to prevent rock engineering accidents. Based on [...] Read more.
Rock failure, which causes instability in rock engineering, is an engineering accident that generally occurs through the coalescence of the preexisting cracks in rocks. Therefore, it is very important to research the coalescence of rock cracks to prevent rock engineering accidents. Based on the mechanical theories of elastoplastic mechanics and fracture mechanics (the generalized Drucker–Prager (D-P) yield criterion and the core concept of the Kachanov method), the propagation of the plastic zones at rock crack tips affected by far-field uniform pressures is theoretically researched considering the interaction of two collinear cracks of unequal length. Moreover, for two cases of two cracks of equal length and unequal length in rocks, the basic laws of crack coalescence by the propagation of the plastic zones at rock crack tips are first studied, and the suggested threshold values of crack spacing for crack coalescence in rocks are provided. The results show that, for equal-length cracks, as the crack spacing decreases, the cracks propagate by a quadratic polynomial function, and the threshold is 0.2 of the ratio of crack spacing to crack length. Moreover, for unequal-length cracks, as the crack spacing decreases, the cracks propagate by a linear function, and the threshold is 0.3 of the ratio of crack spacing to secondary crack length. Finally, using the numerical simulation of a rock slope including equal-length and unequal-length cracks, and a laboratory test with a rock-like material specimen including unequal-length cracks, the main conclusions of the abovementioned theoretical studies have been verified. In this study, although the basic law of crack coalescence is first studied and the threshold value of crack coalescence is suggested first, the researched crack morphology and rock properties are relatively simple. Full article
(This article belongs to the Special Issue Mathematical Applications in Mechanical and Civil Engineering)
Show Figures

Figure 1

25 pages, 27266 KiB  
Article
Shear Energy Evolution and Fracture Behavior of Rock–Concrete Interfaces Under Different Stress-Level Conditions
by Taoying Liu, Min Tang, Ping Cao, Mengyuan Cui and Longjun Dong
Materials 2025, 18(4), 795; https://doi.org/10.3390/ma18040795 - 11 Feb 2025
Viewed by 876
Abstract
Indoor direct shear tests under different stress levels were conducted on sandstone–concrete samples to investigate the rock–concrete interfaces’ shear energy evolution features and fracture behaviors under different normal stresses, combined with acoustic emission (AE) and digital image correlation (DIC) techniques. The research results [...] Read more.
Indoor direct shear tests under different stress levels were conducted on sandstone–concrete samples to investigate the rock–concrete interfaces’ shear energy evolution features and fracture behaviors under different normal stresses, combined with acoustic emission (AE) and digital image correlation (DIC) techniques. The research results show that the growth of normal stress restricts the coalescence and failure of micro-cracks inside the sample and improves the bearing capacity. The shear strength of the sandstone–concrete cemented interface increases by 12.3–34.34% with increasing normal stress. The evolution behaviors of the total input energy, elastic strain energy and dissipated energy density are similar under different normal stress conditions, and the increase in normal stress raises the energy storage capacity of the sample, as well as the input external energy required for a sample’s failure, thereby enhancing the bearing capability of the sample. In addition, the AE count and b value characteristics indicate that crack propagation shows a three-stage variation trend. It can be seen from the RA (rise time/amplitude)-AF (AE count/duration time) curves that as the normal stress increases, the proportion of shear cracks in the sample progressively increases. When the final overall failure of the sample is imminent, the high-energy level fracture type changes from tensile fracture to shear fracture with increased normal stress, leading to an increasing percentage of shear fracture. Finally, the speckle results indicate that the nucleation and coalescence of tensile wing-shaped cracks are the main causes of sample failure. Under relatively high normal stress conditions, the damage degree of the serrated interface increases and the crack morphology becomes more intricate. Full article
Show Figures

Figure 1

21 pages, 8772 KiB  
Article
Mesoscale Modeling for Predicting Effective Properties and Damage Behavior of Geopolymer Concrete
by Feiyu Shi, Shanshan Cheng and Longyuan Li
Materials 2025, 18(1), 88; https://doi.org/10.3390/ma18010088 - 28 Dec 2024
Viewed by 696
Abstract
Geopolymer concrete is a sustainable construction material and is considered as a promising alternative to traditional Portland cement concrete. However, there is still not much research on the effective properties and damage behavior of geopolymer concrete with consideration of its heterogeneous characteristics by [...] Read more.
Geopolymer concrete is a sustainable construction material and is considered as a promising alternative to traditional Portland cement concrete. However, there is still not much research on the effective properties and damage behavior of geopolymer concrete with consideration of its heterogeneous characteristics by means of mesoscale models combined with the regularized microplane damage model. Here, in this research, an easy and simpler approach for generating concrete mesoscale models and characterizing the angular characteristics of aggregate particles is presented. After the proposed mesoscale modeling was validated by numerical, experimental and theoretical models, it was employed further to predict the effective properties and damage behavior of geopolymer concrete. The obtained results show that the effective elastic modulus and compressive strength of geopolymer concrete were greatly affected by the volume fractions of aggregate, while no significant influence on Poisson’s ratio was found. The evolution of damage and coalescence of cracks were affected by the volume fractions and spatial distribution of aggregate particles, which resulted in the different failure patterns in the mesoscale model of geopolymer concrete manufactured by different volume ratios of aggregate. Full article
Show Figures

Figure 1

28 pages, 55964 KiB  
Article
Shear Mechanical Behaviours and Size Effect of Band–Bedrock Interface: Discrete Element Method Simulation Insights
by Hao Wang, Xueyan Guo, Xinrong Liu, Xiaohan Zhou and Bin Xu
Appl. Sci. 2024, 14(20), 9481; https://doi.org/10.3390/app14209481 - 17 Oct 2024
Viewed by 977
Abstract
The shear band is a prominent feature within the Banbiyan hazardous rock mass located in the Wushan section of the Three Gorges Reservoir area. This band constitutes a latent risk, as the potential for the rock mass to slide along the region threatens [...] Read more.
The shear band is a prominent feature within the Banbiyan hazardous rock mass located in the Wushan section of the Three Gorges Reservoir area. This band constitutes a latent risk, as the potential for the rock mass to slide along the region threatens the safety of lives and property. Presently, the understanding of the shear mechanisms and the impact of shear band size on the band–bedrock interface is incomplete. In this study, based on band–bedrock shear laboratory tests, DEM simulation is used to investigate the shear-induced coalescence mechanism, stress evolution, and crack-type characteristics of the band–bedrock interface. In addition, the shear mechanical properties of samples considering specimen size, rock step height, and step width are further studied. The results show that the crack initiation and failure crack types observed in the first rock step are predominantly tensile. In contrast, the failure cracks in the remaining rock slabs and steps are primarily characterised by shear mode in addition to other mixed modes. The stress condition experienced by the first step is very near to the position of the applied point load, whereas the stress distribution across the remaining steps shows a more complex state of compressive–tensile stress. The relationship between shear parameters and sample size is best described by a negative exponential function. The representative elementary volume (REV) for shear parameters is suggested to be a sample with a geometric size of 350 mm. Notably, the peak shear strength and shear elastic modulus demonstrate a progressive increase with the rise in rock step height, with the amplifications reaching 91.37% and 115.83%, respectively. However, the residual strength exhibits an initial decline followed by a gradual ascent with increasing rock step height, with the amplitude of reduction and subsequent amplification being 23.73% and 116.94%, respectively. Additionally, a narrower rock step width is found to diminish the shear parameter values, which then tend to stabilise within a certain range as the step width increases. Full article
(This article belongs to the Special Issue Recent Advances in Rock Mass Engineering)
Show Figures

Figure 1

16 pages, 6942 KiB  
Article
A Numerical Study of the Mechanical Behavior of Jointed Soft Rocks under Triaxial Loading Using a Bonded Particle Model
by Mingxing Liu, Yijian Xu, Xiaohu Gao, Jie Fu, Xingyan Liu and Enlong Liu
Materials 2024, 17(19), 4842; https://doi.org/10.3390/ma17194842 - 30 Sep 2024
Cited by 2 | Viewed by 1021
Abstract
In order to master the strength and deformation characteristics, including the macro–micro failure mechanism of soft rock samples with penetrating joints under triaxial loading, a series of numerical triaxial tests have been carried out. The strength and deformation characteristics, failure modes, crack propagation, [...] Read more.
In order to master the strength and deformation characteristics, including the macro–micro failure mechanism of soft rock samples with penetrating joints under triaxial loading, a series of numerical triaxial tests have been carried out. The strength and deformation characteristics, failure modes, crack propagation, distribution of force chains, and the influences of joint dip angles and confining pressures have been analyzed and compared with the laboratory test results. The results show that (1) the residual strength ratio of jointed rock samples generally increases first and then decreases with the increase in joint dip angles under the same confining pressure and reaches the maximum value around 23–24°. Poisson’s ratio increases with the increase in the confining pressure or the joint dip angle. The elastic modulus increases with the increase in the confining pressure and decreases with the increase in the joint dip angle. (2) The jointed rock samples with different joint dip angles compact with relatively small volumetric strains and then dilate up to failure with relatively large volume expansions. Lower confining pressure and smaller dip angles will lead to a more pronounced dilation phenomenon and less obvious volume shrinkage rules. (3) The low-angle jointed rock samples all exhibit the X-type shear failure. The jointed rock samples with a joint dip angle of 45° exhibit hybrid failure with both slippage and shearing, which are controlled by both the matrix and the joint. (4) The change in the number of cracks includes three stages: the slow crack initiation stage, rapid growth stage, and crack coalescence stage. The total number of shear or tensile cracks all decrease with an increase in the joint dip angles, with the number of tensile cracks being approximately twice that of shear cracks. The tension cracks are mostly horizontal, and the shear cracks are mostly vertical. (5) The number of force chains shows a decreasing trend after the cracks begin to grow. The jointed rock samples for the intact, 15° and 30° cases all form a main force chain during the failure process, while there is no main force chain for the 45° case. Full article
Show Figures

Figure 1

25 pages, 3229 KiB  
Review
Evaluation of Strength Anisotropy in Foliated Metamorphic Rocks: A Review Focused on Microscopic Mechanisms
by Umer Waqas, Mohsin Usman Qureshi, Shahab Saqib, Hafiz Muhammad Awais Rashid and Ali Murtaza Rasool
Geosciences 2024, 14(10), 253; https://doi.org/10.3390/geosciences14100253 - 26 Sep 2024
Cited by 2 | Viewed by 2386
Abstract
This review paper addresses the recent and past advancements in investigating the anisotropic behavior of foliated metamorphic rock strength subjected to uniaxial or triaxial compression loading, direct or indirect tensile loading, and shear loading. The experimental findings published in the literature show that [...] Read more.
This review paper addresses the recent and past advancements in investigating the anisotropic behavior of foliated metamorphic rock strength subjected to uniaxial or triaxial compression loading, direct or indirect tensile loading, and shear loading. The experimental findings published in the literature show that the strength of foliated rocks is significantly affected by varying the angle β between weak planes and major principal stress. A higher value of strength is reported at β = 0° or 90°; whereas a low strength value is noted at intermediate angles between β = 0° and 90°. The strength anisotropy depends on the degree of schistosity or gneissosity, which is the result of the preferred arrangement of phyllosilicate minerals under differential pressures. The failure of foliated rocks starts at the microscopic scale because of the dislocation slip, plastic kinking, and fracturing in phyllosilicate minerals such as mica. Tensile wing cracks at the tip of the mica propagate parallel to the deviatoric stress. Then, intergranular and intragranular shear-tensile cracks coalesce and lead to rock failure. The weak planes’ orientation controls the mode of failure such that tensile splitting, slip failure, and shear failure across foliations are observed at β = 0°–30°, β = 30°–60°, β = 60°–90° respectively. In the past, several attempts have been made to formulate failure criteria to estimate rock strength using different mathematical and empirical approaches. Over the years, the trend has shifted towards discontinuum modeling to simulate rock failure processes and to solve problems from laboratory to upscaled levels. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

16 pages, 5447 KiB  
Article
Upcycling Post-Consumer Paint Pail Plastic Waste
by Rajkamal Balu, Swati Sharma, Rachael Roberts, Jitraporn Vongsvivut and Namita Roy Choudhury
Polymers 2024, 16(18), 2631; https://doi.org/10.3390/polym16182631 - 18 Sep 2024
Viewed by 1835
Abstract
The need for ending plastic waste and creating a circular economy has prompted significant interest in developing a new family of composite materials through recycling and recovery of waste resources (including bio-sourced materials). In this work, a family of natural fiber-reinforced plastic composites [...] Read more.
The need for ending plastic waste and creating a circular economy has prompted significant interest in developing a new family of composite materials through recycling and recovery of waste resources (including bio-sourced materials). In this work, a family of natural fiber-reinforced plastic composites has been developed from paint pail waste recycled polypropylene (rPP) and waste wool fibers of different diameter and aspect ratio. Composites were fabricated by melt processing using polypropylene-graft-maleic anhydride as a compatibilizer. The internal morphology, interfacial and thermal characteristics, viscoelastic behavior, water sorption/wettability, and mechanical properties of composites were studied using electron microscopy, high-resolution synchrotron Fourier transform infrared microspectroscopy, thermal analysis, rheology, immersion test, contact angle measurement, tensile test and flexural test. The composite matrix exhibited an internal morphology of coalescent micro-droplets due to the presence of polyethylene and dry paint in the rPP phase. In general, the rheological and mechanical properties of the composites comprising higher-aspect-ratio (lower diameter) fibers exhibited relatively superior performance. About an 18% increase in tensile strength and a 39% increase in flexural strength were measured for composites with an optimal fiber loading of 10 wt.%. Interfacial debonding and fiber pull-out were observed as the main failure mechanism of the composites. The developed composites have potential for applications in automotive, decking, and building industries. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

19 pages, 8239 KiB  
Article
Conducting Research to Identify Key Features and Critical Nodes in the Coalescence and Instability of Pre-Fabricated Jointed Rock
by Buchu Zhang, Shichuan Zhang, Baotang Shen, Yangyang Li, Shilong Song and Xuexian Han
Appl. Sci. 2024, 14(17), 7905; https://doi.org/10.3390/app14177905 - 5 Sep 2024
Cited by 1 | Viewed by 868
Abstract
The instability of jointed rock masses has been a persistent concern in China’s underground geotechnical engineering, particularly regarding rock mass instability triggered by structural activation, such as faulting. This form of instability constitutes a significant type of dynamic geological hazard in the field [...] Read more.
The instability of jointed rock masses has been a persistent concern in China’s underground geotechnical engineering, particularly regarding rock mass instability triggered by structural activation, such as faulting. This form of instability constitutes a significant type of dynamic geological hazard in the field of geotechnical engineering. Research on the mechanism of jointed rock mass instability typically concentrates on various characteristics associated with structural activation but frequently neglects the interplay between coalescence instability within the jointed zones and the intact zones, as well as the development and evolution of abrupt water channels. To delve into the coalescence instability characteristics between jointed and intact zones, this study conducted uniaxial compression tests on macro-scale pre-fabricated jointed sandstone. The research results show that the failure process of the specimen consists of a strong deviation linear stage, a sub-critical stage, and an unstable stage. The main failure process occurs during the sub-critical stage. Full article
Show Figures

Figure 1

14 pages, 4138 KiB  
Article
Comparison of Biomechanical and Microstructural Properties of Aortic Graft Materials in Aortic Repair Surgeries
by Haoliang Sun, Zirui Cheng, Xiaoya Guo, Hongcheng Gu, Dalin Tang and Liang Wang
J. Funct. Biomater. 2024, 15(9), 248; https://doi.org/10.3390/jfb15090248 - 28 Aug 2024
Cited by 1 | Viewed by 1497
Abstract
Mechanical mismatch between native aortas and aortic grafts can induce graft failure. This study aims to compare the mechanical and microstructural properties of different graft materials used in aortic repair surgeries with those of normal and dissected human ascending aortas. Five types of [...] Read more.
Mechanical mismatch between native aortas and aortic grafts can induce graft failure. This study aims to compare the mechanical and microstructural properties of different graft materials used in aortic repair surgeries with those of normal and dissected human ascending aortas. Five types of materials including normal aorta (n = 10), dissected aorta (n = 6), human pericardium (n = 8), bovine pericardium (n = 8) and Dacron graft (n = 5) were collected to perform uniaxial tensile testing to determine their material stiffness, and ultimate strength/stretch. The elastin and collagen contents in four tissue groups except for Dacron were quantified by histological examinations, while the material ultrastructure of five material groups was visualized by scanning electron microscope. Statistical results showed that three graft materials including Dacron, human pericardium and bovine pericardium had significantly higher ultimate strength and stiffness than both normal and dissected aortas. Human and bovine pericardia had significantly lower ultimate stretch than native aortas. Histological examinations revealed that normal and diseased aortic tissues had a significantly higher content of elastic fiber than two pericardial tissues, but less collagen fiber content. All four tissue groups exhibited lamellar fiber ultrastructure, with aortic tissues possessing thinner lamella. Dacron was composed of densely coalesced polyethylene terephthalate fibers in thick bundles. Aortic graft materials with denser fiber ultrastructure and/or higher content of collagen fiber than native aortic tissues, exhibited higher ultimate strength and stiffness. This information provides a basis to understand the mechanical failure of aortic grafts, and inspire the design of biomimetic aortic grafts. Full article
(This article belongs to the Special Issue Functional Composite Biomaterials for Tissue Repair)
Show Figures

Figure 1

24 pages, 18169 KiB  
Article
Failure Mechanism and Control Mechanism of Intermittent Jointed Rock Bridge Based on Acoustic Emission (AE) and Digital Image Correlation (DIC)
by Hang Lin, Xing Zhang and Su Li
Materials 2024, 17(13), 3190; https://doi.org/10.3390/ma17133190 - 29 Jun 2024
Viewed by 1063
Abstract
Deep foundation pit excavation is an important way to develop underground space in congested urban areas. Rock bridges prevent the interconnection of joints and control the deformation and failure of the rock mass caused by excavation for foundation pits. However, few studies have [...] Read more.
Deep foundation pit excavation is an important way to develop underground space in congested urban areas. Rock bridges prevent the interconnection of joints and control the deformation and failure of the rock mass caused by excavation for foundation pits. However, few studies have considered the acoustic properties and strain field evolution of rock bridges. To investigate the control mechanisms of rock bridges in intermittent joints, jointed specimens with varying rock bridge length and angle were prepared and subjected to laboratory uniaxial compression tests, employing acoustic emission (AE) and digital image correlation (DIC) techniques. The results indicated a linear and positive correlation between uniaxial compressive strength and length, and a non-linear and negative correlation with angle. Moreover, AE counts and cumulative AE counts increased with loading, suggesting surges due to the propagation and coalescence of wing and macroscopic cracks. Analysis of RA-AF values revealed that shear microcracks dominated the failure, with the ratio of shear microcracks increasing as length decreased and angle increased. Notably, angle exerted a more significant impact on the damage form. As length diminished, the failure plane’s transition across the rock bridge shifted from a complex coalescence of shear cracks to a direct merger of only coplanar shear cracks, reducing the number of tensile cracks required for failure initiation. The larger the angle, the higher the degree of coalescence of the rock bridge and, consequently, the fewer tensile cracks required for failure. The decrease of length and the increase of angle make rock mass more fragile. The more inclined the failure mode is to shear failure, the smaller the damage required for failure, and the more prone the areas is to rock mass disaster. These findings can provide theoretical guidance for the deformation and control of deep foundation pits. Full article
(This article belongs to the Special Issue Study on Cyclic Mechanical Behaviors of Materials – 2nd Edition)
Show Figures

Figure 1

13 pages, 5547 KiB  
Article
Transient Liquid Phase Bonding with Sn-Ag-Co Composite Solder for High-Temperature Applications
by Byungwoo Kim, Gyeongyeong Cheon, Yong-Ho Ko and Yoonchul Sohn
Electronics 2024, 13(11), 2173; https://doi.org/10.3390/electronics13112173 - 3 Jun 2024
Cited by 1 | Viewed by 1299
Abstract
In this study, a novel composite solder, Sn-3.5Ag-10.0Co, was tailored for transient liquid phase (TLP) bonding in electric vehicle power module integration. Employing a meticulous two-step joining process, the solder joint was transformed into a robust microstructure characterized by two high-melting point intermetallic [...] Read more.
In this study, a novel composite solder, Sn-3.5Ag-10.0Co, was tailored for transient liquid phase (TLP) bonding in electric vehicle power module integration. Employing a meticulous two-step joining process, the solder joint was transformed into a robust microstructure characterized by two high-melting point intermetallic compounds, Ni3Sn4 and (Co,Ni)Sn2. After 1 h of TLP bonding, the Sn-3.5Ag-10.0Co paste transformed into the IMCs, but voids persisted between them, particularly between (Co,Ni)Sn2 and Ni3Sn4. Voids significantly reduced after 2 h of bonding, with full coalescence of the joint microstructure observed. The joint continued to be densified after 3 h of TLP bonding, but voids tended to accumulate at the joint center. Failure analysis revealed crack propagation through Ni3Sn4/(Co,Ni)Sn2 interfaces and internal voids. The engineered Sn-Ag-Co TLP joint exhibited superior shear strength retention even at an elevated temperature of 200 °C, contrasting with the significant reduction observed in the Sn-3.5Ag control specimen due to remaining Sn. Full article
(This article belongs to the Special Issue Advances on Electronics for Harsh Environments)
Show Figures

Figure 1

Back to TopTop