Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = coal-bearing strata

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3175 KiB  
Article
Creep Deformation Mechanisms of Gas-Bearing Coal in Deep Mining Environments: Experimental Characterization and Constitutive Modeling
by Xiaolei Sun, Xueqiu He, Liming Qiu, Qiang Liu, Limin Qie and Qian Sun
Processes 2025, 13(8), 2466; https://doi.org/10.3390/pr13082466 - 4 Aug 2025
Abstract
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining [...] Read more.
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining pressures, axial stresses, and gas pressures. Through systematic analysis of coal’s physical responses across different loading conditions, we developed and validated a novel creep damage constitutive model for gas-saturated coal through laboratory data calibration. The key findings reveal three characteristic creep regimes: (1) a decelerating phase dominates under low stress conditions, (2) progressive transitions to combined decelerating–steady-state creep with increasing stress, and (3) triphasic decelerating–steady–accelerating behavior at critical stress levels. Comparative analysis shows that gas-free specimens exhibit lower cumulative strain than the 0.5 MPa gas-saturated counterparts, with gas presence accelerating creep progression and reducing the time to failure. Measured creep rates demonstrate stress-dependent behavior: primary creep progresses at 0.002–0.011%/min, decaying exponentially to secondary creep rates below 0.001%/min. Steady-state creep rates follow a power law relationship when subject to deviatoric stress (R2 = 0.96). Through the integration of Burgers viscoelastic model with the effective stress principle for porous media, we propose an enhanced constitutive model, incorporating gas adsorption-induced dilatational stresses. This advancement provides a theoretical foundation for predicting time-dependent deformation in deep coal reservoirs and informs monitoring strategies concerning gas-bearing strata stability. This study contributes to the theoretical understanding and engineering monitoring of creep behavior in deep coal rocks. Full article
Show Figures

Figure 1

21 pages, 2430 KiB  
Article
Mechanisms and Genesis of Acidic Goaf Water in Abandoned Coal Mines: Insights from Mine Water–Surrounding Rock Interaction
by Zhanhui Wu, Xubo Gao, Chengcheng Li, Hucheng Huang, Xuefeng Bai, Lihong Zheng, Wanpeng Shi, Jiaxin Han, Ting Tan, Siyuan Chen, Siyuan Ma, Siyu Li, Mengyun Zhu and Jiale Li
Minerals 2025, 15(7), 753; https://doi.org/10.3390/min15070753 - 18 Jul 2025
Viewed by 228
Abstract
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column [...] Read more.
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column leaching experiments using coal mine surrounding rocks (CMSR) from Yangquan, China. The coal-bearing strata, primarily composed of sandstone, mudstone, shale, and limestone, contain high concentrations of pyrite (up to 12.26 wt%), which oxidizes to produce sulfuric acid, leading to a drastic reduction in pH (approximately 2.5) and the mobilization of toxic elements. The CMSR samples exhibit elevated levels of arsenic (11.0 mg/kg to 18.1 mg/kg), lead (69.5 mg/kg to 113.5 mg/kg), and cadmium (0.6 mg/kg to 2.6 mg/kg), all of which exceed natural crustal averages and present significant contamination risks. The fluorine content varies widely (106.1 mg/kg to 1885 mg/kg), with the highest concentrations found in sandstone. Sequential extraction analyses indicate that over 80% of fluorine is bound in residual phases, which limits its immediate release but poses long-term leaching hazards. The leaching experiments reveal a three-stage release mechanism: first, the initial oxidation of sulfides rapidly lowers the pH (to between 2.35 and 2.80), dissolving heavy metals and fluorides; second, slower weathering of aluminosilicates and adsorption by iron and aluminum hydroxides reduce the concentrations of dissolved elements; and third, concentrations stabilize as adsorption and slow silicate weathering regulate the long-term release of contaminants. The resulting acidic goaf water contains extremely high levels of metals (with aluminum at 191.4 mg/L and iron at 412.0 mg/L), which severely threaten groundwater, particularly in karst areas where rapid cross-layer contamination can occur. These findings provide crucial insights into the processes that drive the acidity of goaf water and the release of contaminants, which can aid in the development of effective mitigation strategies for abandoned mines. Targeted management is essential to safeguard water resources and ecological health in regions affected by mining activities. Full article
Show Figures

Graphical abstract

16 pages, 3653 KiB  
Article
The Origin and Mixed-Source Proportion of Natural Gas in the Dixin Area of the Junggar Basin: Geochemical Insights from Molecular and Isotopic Composition
by Sizhe Deng, Dujie Hou and Wenli Ma
Appl. Sci. 2025, 15(13), 7130; https://doi.org/10.3390/app15137130 - 25 Jun 2025
Viewed by 222
Abstract
The Dixi area of the Junggar Basin has favorable petroleum geological conditions, with the Cretaceous system representing one of the principal hydrocarbon-bearing strata. However, the genetic origin and mixing characteristics of natural gas across different tectonic zones remain insufficiently understood. In this study, [...] Read more.
The Dixi area of the Junggar Basin has favorable petroleum geological conditions, with the Cretaceous system representing one of the principal hydrocarbon-bearing strata. However, the genetic origin and mixing characteristics of natural gas across different tectonic zones remain insufficiently understood. In this study, a total of 65 natural gas samples were analyzed using molecular composition and stable carbon isotopic data to determine gas origins and quantify the contributions of different source rocks. A novel multivariate mathematical analysis method was developed and applied to convert compositional and isotopic data into quantitative parameters, enabling the accurate estimation of end-member mixing ratios in natural gas. This methodological innovation addresses the challenge of interpreting multi-source gas systems under complex geological conditions. The results show that the Cretaceous natural gas in the Dixi area is derived from three main sources, comprising both oil-type gas from Permian lacustrine source rocks and coal-type gas from Carboniferous coal-measure source rocks. The calculated mixing proportions exhibit significant spatial variation: in the northern Dixi area, coal-type gas dominates (67.8–84.3%), while the southern zone presents a broader mixture (25.6–68.4% coal-type gas). In the Dongdaohaizi Depression, oil-type gas is predominant, accounting for 89.4–97.7%. This study not only clarifies the genetic classification and mixing dynamics of natural gas in the Dixi area but also provides a quantitative framework for evaluating accumulation processes and source contributions in multi-source gas reservoirs. The proposed method offers valuable guidance for assessing resources and optimizing exploration strategies in the Junggar Basin and other similar basins. Full article
Show Figures

Figure 1

16 pages, 5360 KiB  
Article
Petrophysics Parameter Inversion and Its Application Based on the Transient Electromagnetic Method
by Xiaozhen Teng, Jianhua Yue, Kailiang Lu, Danyang Xi, Herui Zhang and Kua Wang
Appl. Sci. 2025, 15(11), 6256; https://doi.org/10.3390/app15116256 - 2 Jun 2025
Viewed by 430
Abstract
The transient electromagnetic (TEM) method is a widely used geophysical technique for detecting subsurface electrical structures. However, its inversion results are typically limited to resistivity parameters, making it challenging to directly infer key petrophysical properties, such as water saturation and porosity. This study [...] Read more.
The transient electromagnetic (TEM) method is a widely used geophysical technique for detecting subsurface electrical structures. However, its inversion results are typically limited to resistivity parameters, making it challenging to directly infer key petrophysical properties, such as water saturation and porosity. This study proposes a petrophysics parameter inversion approach based on TEM data. By constructing multiple geoelectric models with varying porosities and water saturation values for numerical simulations, the results demonstrated that both the forward and inversion responses of the TEM field maintained errors within 5%. The inversion procedure begins with the reconstruction of the subsurface resistivity distribution, which reliably reflects the true geoelectric model. Based on the inverted resistivity, the water saturation and porosity parameters are subsequently estimated. The inversion results closely match the overall trend of the actual model and exhibit a clear response at the target layer. Finally, the proposed method is applied to a field test at the Tongxin Coal Mine. By integrating subsurface electrical responses with geological data, the spatial distributions of water saturation and porosity within the coal-bearing strata were delineated. This provides a scientific basis for the detailed characterization of the physical properties of coal and surrounding rock, as well as for understanding the development of pores and fractures in underground strata. Full article
Show Figures

Figure 1

16 pages, 7350 KiB  
Article
Study on the Mechanisms of Floor Heave in Roadways and Control Strategies via Grooving and Pressure Relief
by Tongxi Li, Bingyuan Hao and Chaoyao Shi
Processes 2025, 13(6), 1642; https://doi.org/10.3390/pr13061642 - 23 May 2025
Viewed by 365
Abstract
With the increasing depth of mining operations, roadways experience higher ground stress and pronounced deformation. Elevated in situ stress leads to a continuous rise in vertical stress on surrounding rock. The excavation of roadways and working faces further redistributes the stress field, resulting [...] Read more.
With the increasing depth of mining operations, roadways experience higher ground stress and pronounced deformation. Elevated in situ stress leads to a continuous rise in vertical stress on surrounding rock. The excavation of roadways and working faces further redistributes the stress field, resulting in more frequent and severe floor heave. To address this issue in the 1232 transportation roadway of Shuguang Coal Mine, a numerical model was developed using the discrete element method (PFC2D) to systematically analyze the impacts of floor stiffness, strength, and joint distribution on heave mechanisms. A mechanical device for underground slotting operations was designed, and the optimal slotting depth was determined through simulation. The results indicate that floor heave stems from progressive failure of composite strata, governed by stiffness, strength, and moment of inertia (influenced by strata thickness and joint development). Effective suppression requires slotting depths to penetrate the shallow fractured zone and reach the load-bearing structure. Stress arching effects significantly mitigate deformation at 2.5 m depth, providing a theoretical basis for optimal slotting design. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Figure 1

17 pages, 6538 KiB  
Article
The Hydrogeochemical Characteristics and Formation Mechanisms of the High-Salinity Groundwater in Yuheng Mining Area of the Jurassic Coalfield, Northern Shaanxi, China
by Yuanhong Han, Hongchao Zhao, Yongtao Ji, Yue Wang and Liwei Zhang
Water 2025, 17(10), 1459; https://doi.org/10.3390/w17101459 - 12 May 2025
Viewed by 487
Abstract
In the Yuheng mining area (Jurassic coalfield, northern Shaanxi, China), the Yan’an Formation groundwater is characterized by elevated salinity, posing challenges for mine water pollution control and regional water resource management. However, the spatial distribution patterns and formation mechanisms of this high-salinity groundwater [...] Read more.
In the Yuheng mining area (Jurassic coalfield, northern Shaanxi, China), the Yan’an Formation groundwater is characterized by elevated salinity, posing challenges for mine water pollution control and regional water resource management. However, the spatial distribution patterns and formation mechanisms of this high-salinity groundwater remain poorly studied. This study integrates hydrogeochemical data from 18 coal mines, analyzing the spatial salinity variations, major ion compositions and isotopic signatures. Combined with the evolution characteristics of ancient sedimentary environments and the composition analysis of rock salt minerals in the coal rock interlayers, the formation mechanism of high salinity water was explored. The results indicate that the groundwater mineralization degree of the Yan’an Formation in the Jurassic strata encountered in the Yuheng mining area is the highest, showing a decreasing trend upwards. On the plane, the western and northern regions are generally higher than the eastern and southern regions. The highest mineralization level of groundwater can reach 36.25g/L, and the high mineralization hydrochemical type is mainly SO4-Na·Ca type, with occasional Cl-Na type in areas with extremely high mineralization level. The cause analysis shows that the highly mineralized groundwater in the Yuheng mining area comes from atmospheric precipitation, which infiltrates and dissolves salt rocks. In addition, the mining area is located in the arid area of northern Shaanxi, with insufficient water supply and no obvious structural faults, and has good sealing properties, thus exhibiting the characteristics of high mineralization. These mechanisms provide a formation model for the high-salinity groundwater in Jurassic coal-bearing strata, offering critical implications for predictive hydrogeochemical modeling and sustainable water management in arid mining regions. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

20 pages, 7195 KiB  
Article
Bitumen Characteristics, Genesis, and Hydrocarbon Significance in Paleozoic Reservoirs: A Case Study in the Kongxi Slope Zone, Dagang Oilfield, Huanghua Depression
by Da Lou, Yingchang Cao and Xueyu Han
Minerals 2025, 15(5), 443; https://doi.org/10.3390/min15050443 - 25 Apr 2025
Viewed by 266
Abstract
The Paleozoic strata in the Kongxi slope zone of the Dagang oilfield, Huanghua depression, exhibit significant hydrocarbon exploration potential. Although bitumen is widely present in the Paleozoic reservoirs, its formation process and genetic mechanism remain poorly understood. This study systematically investigates the occurrence, [...] Read more.
The Paleozoic strata in the Kongxi slope zone of the Dagang oilfield, Huanghua depression, exhibit significant hydrocarbon exploration potential. Although bitumen is widely present in the Paleozoic reservoirs, its formation process and genetic mechanism remain poorly understood. This study systematically investigates the occurrence, maturity, origin, and evolutionary processes of Paleozoic reservoir bitumen in the Kongxi zone through core observations, microscopic analyses, geochemical testing, and thermal simulation experiments. The results reveal that reservoir bitumen in the Kongxi slope zone is characteristically black with medium to medium-high maturity. In core samples, bitumen occurs as bands, veins, lines, and dispersions within partially filled fractures and breccia pores. Petrographic analysis shows bitumen partially occupying intergranular pores and intergranular pores of Lower Paleozoic carbonate rocks and Upper Paleozoic sandstones, either as complete or partial pore fills. Additional bitumen occurrences include strip-like deposits along microfractures and as bitumen inclusions. Dark brown bitumen fractions were also identified in crude oil separates. The formation and evolution of Paleozoic reservoir bitumen in the Kongxi slope zone occurred in two main stages. The first-stage bitumen originated from Ordovician marine hydrocarbon source rocks, subsequently undergoing oxidative water washing and biodegradation during tectonic uplift stage. This bitumen retains compositional affinity with crude oils from Lower Paleozoic carbonate rocks. Second-stage bitumen formed through the thermal evolution of Carboniferous crude oil during deeper burial, showing compositional similarities with Carboniferous source rocks and their oil. This two-stage bitumen evolution indicates charging events in the Paleozoic reservoirs. While early uplift and exposure destroyed some paleo-reservoirs, unexposed areas within the Dagang oilfield may still contain preserved primary accumulations. Furthermore, second-stage hydrocarbon, dominated condensates derived from Carboniferous coal-bearing sequences since the Eocene, experienced limited thermal evolution to form some bitumen. These condensate accumulations remain the primary exploration target in the Paleozoic Formations. Full article
(This article belongs to the Special Issue Organic Petrology and Geochemistry: Exploring the Organic-Rich Facies)
Show Figures

Figure 1

30 pages, 9041 KiB  
Article
Pore–Fracture Structure and Fractal Features of Carboniferous Taiyuan Formation Hydrocarbon Source Rocks as Investigated Using MICP, LFNMR, and FESEM
by Dun Wu, Liu Zhao, Guangqing Hu and Wenyong Zhang
Fractal Fract. 2025, 9(4), 263; https://doi.org/10.3390/fractalfract9040263 - 20 Apr 2025
Viewed by 454
Abstract
The pore structure of reservoir rocks was a crucial factor affecting hydrocarbon production. Accurately characterized the micropore structure of different types of rock reservoirs was of great significance for unconventional natural gas exploration. In this study, multiple observation methods (field emission scanning electron [...] Read more.
The pore structure of reservoir rocks was a crucial factor affecting hydrocarbon production. Accurately characterized the micropore structure of different types of rock reservoirs was of great significance for unconventional natural gas exploration. In this study, multiple observation methods (field emission scanning electron microscope (FESEM) and low-field nuclear magnetic resonance (LFNMR)) and physical tests (mercury injection capillary pressure (MICP)) were employed, and double logarithmic plots for fractal fitting were illustrated. The fractal dimension of 15 samples was calculated using fractal theory to systematically investigate the pore–fracture structure and fractal characteristics of hydrocarbon source rock (limestone, mudstone, and sandstone) samples from the Late Carboniferous Taiyuan Formation in the Huainan coalfield. MICP experiments revealed that sandstone reservoirs had larger and more uniformly distributed pore throats compared to mudstone and limestone, exhibiting superior connectivity and permeability. The T2 spectrum characteristic maps obtained using LFNMR were also consistent with the pore distribution patterns derived from MICP experiments, particularly showed that sandstone types exhibited excellent signal intensity across different relaxation time periods and had a broader T2 spectrum width, which fully indicated that sandstone types possess superior pore structures and higher connectivity. FESEM experiments demonstrated that sandstone pores were highly developed and uniform, with sandstone fractures dominated by large fractures above the micrometer scale. Meanwhile, the FESEM fractal dimension results indicated that sandstone exhibits good fractal characteristics, validating its certain oil storage capacity. Furthermore, the FESEM fractal dimension exhibited a good correlation with the porosity and permeability of the hydrocarbon source rock reservoirs, suggesting that the FESEM fractal dimension can serve as an important parameter for evaluating the physical properties of hydrocarbon source rock reservoirs. This study enriched the basic geological theories for unconventional natural gas exploration in deep coal-bearing strata in the Huainan coalfield. Full article
Show Figures

Figure 1

15 pages, 5205 KiB  
Article
Discussion on the Geochemical Characteristics and Enrichment Process of Li-Rich Layers in Xian’an Coalfield, Guangxi Province, China
by Li Zhang, Degao Zhang, Fuqiang Zhang, Zhongyue Lin, Jie Sun, Xiaoyun Yan, Huiheng Xu, Shaobo Di, Shaoqing Huang, Xiaotao Xu and Zhuo Zou
Minerals 2025, 15(4), 404; https://doi.org/10.3390/min15040404 - 11 Apr 2025
Cited by 1 | Viewed by 337
Abstract
As a rare metal, lithium plays a pivotal role in strategic critical metal mineral resources and is one of the critical metals for developing the contemporary social economy. The Li-rich layers in the Xian’an coalfield in Guangxi Province were taken as a typical [...] Read more.
As a rare metal, lithium plays a pivotal role in strategic critical metal mineral resources and is one of the critical metals for developing the contemporary social economy. The Li-rich layers in the Xian’an coalfield in Guangxi Province were taken as a typical study area in this research, the material sources of Li-rich strata were discussed, and the enrichment process of Li-rich layers was revealed through geochemical research methods. The coal seams in this area have abnormal enrichment points with high lithium content, but there is a certain inhomogeneity in the plane and longitudinal distribution. This research studies the causes and material sources around the multi-layer lithium-extruded layers in the longitudinal distribution of coal-based strata. Through mineralogy and geochemical research methods, this research shows that Li-rich mineralization results from the combined action of terrigenous material and volcaniclastic source inputs, water–rock processes, and fluid inputs. The Li-bearing rocks formed over three periods, which are the weathering, sedimentation, and diagenesis stages. Based on factors such as provenance and geological processes, this study analyzes the genesis of Li-rich layers and provides a theoretical basis for the future prospecting of lithium ore deposits. Full article
Show Figures

Figure 1

30 pages, 13319 KiB  
Article
Simulation of a Multi-Stage Stress Field and Regional Prediction of Structural Fractures in the Tucheng Syncline, Western Guizhou, China
by Jilin Wang, Lijun Jiang, Tiancheng Cang, Xiaozhi Zhou and Bicong Wang
Geosciences 2025, 15(4), 132; https://doi.org/10.3390/geosciences15040132 - 2 Apr 2025
Cited by 1 | Viewed by 432
Abstract
The prediction of structural fractures in concealed coal-bearing strata has always been a complex problem. The purpose of this study was to clarify the tectonic evolution of the study area, i.e., the Tucheng syncline, since the coal-forming period and to predict the development [...] Read more.
The prediction of structural fractures in concealed coal-bearing strata has always been a complex problem. The purpose of this study was to clarify the tectonic evolution of the study area, i.e., the Tucheng syncline, since the coal-forming period and to predict the development of structural fractures. The tectonic evolution of the study area was divided into three stages using regional tectonic analysis. The paleotectonic stress field of the study area was reconstructed through the field investigation, statistics, and analysis of joints. Based on the tectonic deformation analysis, numerical simulation was used to reveal the stress field characteristics of different tectonic deformation stages, and combined with the Mohr–Coulomb criterion, the degree of structural fracture development in the target layers (No.17# coal seam) of the study area was predicted. This study concludes the following: (1) The study area underwent two tectonic deformations during the Yanshanian period, transitioning from an ellipsoidal columnar shape to a semi-ellipsoidal and stereotyped form, forming a superimposed short-axis syncline, and then tilting southeastward as a whole, and was locally cut by faults during the Himalayan period. (2) The distribution characteristics of the stress field in different tectonic stages vary. The stress concentration zones in the first and second stages have a more obvious symmetry, and the present-day stress concentration zone is located in the center of the syncline basin. (3) The superimposed rock fracture indices are larger in the edge zone parallel to the long axis of the syncline and at the bottom of the syncline, which also indicates a higher degree of structural fracture development at the corresponding locations. Full article
Show Figures

Figure 1

21 pages, 3815 KiB  
Article
Paleoenvironmental Controls and Economic Potential of Li-REY Enrichment in the Upper Carboniferous Coal-Bearing “Si–Al–Fe” Strata, Northeastern Qinshui Basin
by Ning Wang, Jun Zhao, Yingxia Xu, Mangen Mu, Shangqing Zhang, Libo Jing, Guoshu Huang, Liang Liu and Pengfei Tian
Minerals 2025, 15(3), 269; https://doi.org/10.3390/min15030269 - 5 Mar 2025
Viewed by 706
Abstract
Critical metals in coal-bearing strata have recently emerged as a frontier hotspot in both coal geology and ore deposit research. In the Upper Carboniferous coal-bearing “Si–Al–Fe” strata (Benxi Formation) of the North China Craton (NCC), several critical metals, including Li, Ga, Sc, V, [...] Read more.
Critical metals in coal-bearing strata have recently emerged as a frontier hotspot in both coal geology and ore deposit research. In the Upper Carboniferous coal-bearing “Si–Al–Fe” strata (Benxi Formation) of the North China Craton (NCC), several critical metals, including Li, Ga, Sc, V, and rare earth elements and Y (REY or REE + Y), have been discovered, with notable mineralization anomalies observed across northern, central, and southern Shanxi Province. However, despite the widespread occurrence of outcrops of the “Si–Al–Fe” strata in the northeastern Qinshui Basin of eastern Shanxi, there has been no prior report on the critical metal content in this region. Traditionally, the “Si–Al–Fe” strata have been regarded as a primary source of clastic material for the surrounding coal seams of the Carboniferous–Permian Taiyuan and Shanxi Formations, which are known to display critical metal anomalies (e.g., Li and Ga). Given these observations, it is hypothesized that the “Si–Al–Fe” strata in the northeastern Qinshui Basin may also contain critical metal mineralization. To evaluate this hypothesis, new outcrop samples from the “Si–Al–Fe” strata of the Benxi Formation in the Yangquan area of the northeastern Qinshui Basin were collected. Detailed studies on critical metal enrichment were assessed using petrographic observations, mineralogy (XRD, X-ray diffractometer), and geochemistry (XRF, X-ray fluorescence spectrometer, and ICP-MS, inductively coupled plasma mass spectrometer). The results indicate that the siliceous, ferruginous, and aluminous rocks within the study strata exhibit varying degrees of critical metal mineralization, mainly consisting of Li and REY, with minor associated Nb, Zr, and Ga. The Al2O3/TiO2, Nb/Y vs. Zr/TiO2, and Nb/Yb vs. Al2O3/TiO2 diagrams suggest that these critical metal-enriched layers likely have a mixed origin, comprising both intermediate–felsic magmatic rocks and metamorphic rocks derived from the NCC, as well as alkaline volcaniclastics associated with the Tarim Large Igneous Province (TLIP). Furthermore, combined geochemical parameters, such as the CIA (chemical index of alteration), Sr/Cu vs. Ga/Rb, Th/U, and Ni/Co vs. V/(V + Ni), indicate that the “Si–Al–Fe” strata in the northeastern Qinshui Basin were deposited under warm-to-hot, humid climate conditions, likely in suboxic-to-anoxic environments. Additionally, an economic evaluation suggests that the “Si–Al–Fe” strata in the northeastern Qinshui Basin hold considerable potential as a resource for the industrial extraction of Li, REY, Nb, Zr, and Ga. Full article
Show Figures

Figure 1

28 pages, 19044 KiB  
Article
Investigating the Evolution Law and Fracture Mechanism of Overlying Coal-Bearing Strata Caused by Shallow Multi-Seam Mining in a Gully Area
by Xiaoshen Xie, Enke Hou, Bingchao Zhao, Dong Feng and Pengfei Hou
Appl. Sci. 2025, 15(5), 2649; https://doi.org/10.3390/app15052649 - 1 Mar 2025
Cited by 1 | Viewed by 769
Abstract
Compared with single coal seam mining, the stratum damage induced by shallow multi-seam mining is more severe and poses a risk of mine disasters that threaten the safety of coal mine personnel. In order to reveal the characteristics and mechanism of strata damage, [...] Read more.
Compared with single coal seam mining, the stratum damage induced by shallow multi-seam mining is more severe and poses a risk of mine disasters that threaten the safety of coal mine personnel. In order to reveal the characteristics and mechanism of strata damage, in this paper, field measurement, numerical simulation and mechanical analysis are used to study the development characteristics and dynamic evolution laws of overburden and explain the dynamic evolution mechanism of a water-conducting fracture zone (WCFZ) and surface cracks. The height of the WCFZ to the mining height exceeds 31.68, which is higher than the empirical value of the study area. There are self-healing and activation laws for overburden fissures in shallow multi-seam mining, which is related to the hinge rotation of overburden and the deflection of the inclined structure. However, the maximum subsidence coefficient and crack angle of the surface induced by shallow multi-seam mining does not alter, but the complexity of surface crack activity increases. The dynamic development law of WCFZ is closely related to the breaking of key strata, while the dynamic evolution of surface crack is controlled by the form of surface block fracture instability and topography. In addition, a shallow multi-seam horizontal staggered mining model that is conductive to reducing surface damage is constructed, and a method has been proposed to lessen the risk of landslides brought on by surface cracks. Full article
Show Figures

Figure 1

25 pages, 7311 KiB  
Article
Prediction, Prevention, and Control of “Overall–Local” Coal Burst of Isolated Working Faces Prior to Mining
by Ming Zhang and Shiji Yang
Appl. Sci. 2025, 15(4), 2150; https://doi.org/10.3390/app15042150 - 18 Feb 2025
Viewed by 529
Abstract
Ensuring the accurate prediction, prevention, and control of coal bursts in isolated working faces is crucial for ensuring safe mining operations. Coal bursts are typically caused by the accumulation of stress and energy released in coal seams and the overlying strata. This study [...] Read more.
Ensuring the accurate prediction, prevention, and control of coal bursts in isolated working faces is crucial for ensuring safe mining operations. Coal bursts are typically caused by the accumulation of stress and energy released in coal seams and the overlying strata. This study focuses on the 76 isolated working faces at Shanxi Wuyang Mine, employing a combination of theoretical analysis, numerical simulation, and field monitoring. Through theoretical analysis, the study examines the influence of the spatial structure of the overlying strata on support stress and develops corresponding estimation functions. Additionally, bearing strength calculation formulas under varying confining pressures are derived. Numerical simulations are used to validate the effectiveness of borehole stress relief, while field monitoring further confirms the accuracy of the proposed model, leading to the development of the “overall–local” coal burst prediction method. The results demonstrate that the proposed method effectively assesses coal burst risks and, based on different coal burst types, recommends borehole stress relief and roof deep-hole blasting as primary mitigation strategies. These methods were successfully applied to the 76 isolated working faces at Wuyang Mine, yielding conclusions of overall stability with localized instability. This study provides new insights into coal burst prediction theory and offers practical guidance for preventive engineering in isolated working faces, demonstrating substantial engineering applicability. Full article
Show Figures

Figure 1

43 pages, 36735 KiB  
Review
Reassessing the Global Significance of Geological Heritage in the Miné-Akiyoshidai Karst Plateau Aspiring UNESCO Global Geopark
by Koji Wakita, Hokuto Obara, Nozomu Oyama and Takashi Murakami
Geosciences 2025, 15(2), 56; https://doi.org/10.3390/geosciences15020056 - 7 Feb 2025
Cited by 1 | Viewed by 1320
Abstract
The Miné-Akiyoshidai Karst Plateau aspiring UNESCO Global Geopark (aUGGp) in western Japan hosts several geologically significant heritage sites, including the Late Paleozoic Akiyoshi Limestone, the Late Triassic Mine Group, the Late Cretaceous Naganobori copper deposits, and the Akiyoshido Cave and karst plateau. The [...] Read more.
The Miné-Akiyoshidai Karst Plateau aspiring UNESCO Global Geopark (aUGGp) in western Japan hosts several geologically significant heritage sites, including the Late Paleozoic Akiyoshi Limestone, the Late Triassic Mine Group, the Late Cretaceous Naganobori copper deposits, and the Akiyoshido Cave and karst plateau. The Akiyoshi Limestone at the Kaerimizu site originated as an atoll reef atop a seamount on an oceanic plate. It preserves approximately 80 million years of ancient marine environments and subduction-related tectonic histories. The Mine Group at the Momonoki site, with its coal-bearing strata, contains fossils of the earliest members of Diptera and Hymenoptera. The Naganobori copper mine at the Naganobori site played a vital role in Japanese society from the 8th to the 20th centuries. Meanwhile, the Akiyoshido site, renowned for its scenic beauty, is one of Japan’s most iconic tourist destinations. Using the IUGS guidelines and geoheritage assessment methodology, we reassessed the value and utilization of these geological heritage sites. The Kaerimizu and Momonoki sites were identified as internationally significant and ideal for scientific research. The Naganobori site was determined to be well-suited for educational purposes with national significance, while the Akiyoshido site was deemed optimal for geotourism with national significance. Full article
(This article belongs to the Section Geoheritage, Geoparks and Geotourism)
Show Figures

Figure 1

21 pages, 3535 KiB  
Review
Coal-Hosted Al-Ga-Li-REE Deposits in China: A Review
by Yanbo Zhang, Xiangyang Liu and Wei Zhao
Minerals 2025, 15(1), 74; https://doi.org/10.3390/min15010074 - 14 Jan 2025
Cited by 2 | Viewed by 1423
Abstract
Investigation of the critical metal elements in coal and coal-bearing strata has become one of the hottest research topics in coal geology and coal industry. Coal-hosted Ga-Al-Li-REE deposits have been discovered in the Jungar and Daqingshan Coalfields of Inner Mongolia, China. Gallium, Al, [...] Read more.
Investigation of the critical metal elements in coal and coal-bearing strata has become one of the hottest research topics in coal geology and coal industry. Coal-hosted Ga-Al-Li-REE deposits have been discovered in the Jungar and Daqingshan Coalfields of Inner Mongolia, China. Gallium, Al, and Li in the Jungar coals have been successfully extracted and utilized. This paper reviews the discovery history of coal-hosted Ga-Al-Li-REE deposits, including contents, modes of occurrence, and enrichment origin of critical metals in each coal mine, including Heidaigou, Harewusu, and Guanbanwusu Mines in the Jungar Coalfield and the Adaohai Coal Mine in the Daqingshan Coalfield, as well as the recently reported Lao Sangou Mine. Gallium and Al in the coals investigated mainly occur in kaolinite, boehmite, diaspore, and gorceixite; REEs are mainly hosted by gorceixite and kaolinite; and Li is mainly hosted by cholorite. Gallium, Al, and REEs are mainly derived from the sediment-source region, i.e., weathered bauxite in the Benxi Formation. In addition, REE enrichment is also attributed to the intra-seam parting leaching by groundwater. Lithium enrichment in the coals is of hydrothermal fluid input. The content of Al2O3 and Ga in coal combustions (e.g., fly ash) is higher than 50% and ~100 µg/g, respectively; concentrations of Li in these coals also reach the cut-off grade for industrial recovery (for example, Li concentration in the Haerwusu coals is ~116 µg/g). Investigations of the content, distribution, and mineralization of critical elements in coal not only provide important references for the potential discovery of similar deposits but also offer significant coal geochemical and coal mineralogical evidence for revealing the geological genesis of coal seams, coal seam correlation, the formation and post-depositional modification of coal basins, regional geological evolution, and geological events. Meanwhile, such investigation also has an important practical significance for the economic circular development of the coal industry, environmental protection during coal utilization, and the security of critical metal resources. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Back to TopTop