Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = coal macromolecular structure model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2290 KB  
Article
Raman-Validated Macromolecular Model of SG Coking Coal: ESP–FMO Mapping Unravels Site-Selective Oxidation in Combustion
by Xiaoxu Gao, Lu Du, Jinzhang Jia, Hao Tian and Xiaoqi Huang
Appl. Sci. 2025, 15(23), 12540; https://doi.org/10.3390/app152312540 - 26 Nov 2025
Viewed by 245
Abstract
Based on comprehensive experimental datasets—proximate/ultimate analyses, XPS, solid-state 13C NMR, and Raman spectroscopy—we constructed and optimized a compositionally faithful macromolecular model of SG coking coal. Using density-functional theory (DFT) calculations, we simulated electrostatic-potential (ESP) fields and frontier molecular orbitals (FMO) to probe [...] Read more.
Based on comprehensive experimental datasets—proximate/ultimate analyses, XPS, solid-state 13C NMR, and Raman spectroscopy—we constructed and optimized a compositionally faithful macromolecular model of SG coking coal. Using density-functional theory (DFT) calculations, we simulated electrostatic-potential (ESP) fields and frontier molecular orbitals (FMO) to probe elementary oxidation steps relevant to combustion, and focused on how heteroatom speciation and carbon ordering govern site-selective reactivity. Employing multi-peak deconvolution and parameter synthesis, we obtained an aromatic fraction fa = 76.56%, a bridgehead-to-periphery ratio XBP = 0.215, and Raman indices ID1/IG ≈ 1.45 (area) with FWHM(G) ≈ 86.7 cm−1; the model composition C190H144N2O21S and its predicted 13C NMR envelope validated the structural assignment against experiment. ESP–FMO synergy revealed electron-rich hotspots at phenolic/ether/carboxyl and thiophenic domains and electron-poor belts at H-terminated edges/aliphatic bridges, rationalizing carbon-end oxidation of CO, weak electrostatic steering by O2/CO2, and a benzylic H-abstraction → edge addition → O-insertion/charge-transfer sequence toward CO2/H2O, with thiophenic sulfur comparatively robust. We quantified surface functionalities (C–O 65.46%, O–C=O 24.51%, C=O 10.03%; pyrrolic/pyridinic N dominant; thiophenic-S with minor oxidized S) and determined a naphthalene-dominant, stacked-polyaromatic architecture with sparse alkyl side chains after Materials Studio optimization. The findings are significant for mechanistic understanding and control of coking-coal oxidation, providing actionable hotspots and a reproducible workflow (multi-probe constraints → model building/optimization → DFT reactivity mapping → spectral back-validation) for blend design and targeted oxidation-inhibition strategies. Full article
Show Figures

Figure 1

22 pages, 4787 KB  
Article
Methane Sorption Behavior in Nanopores of Coal: A Molecular Dynamics Simulation Based on a Reconstructed Macromolecular Model
by Junhan Cheng, Hanlin Liu, Xin Yang, Tao Lei and Qiulei Guo
Processes 2025, 13(11), 3478; https://doi.org/10.3390/pr13113478 - 29 Oct 2025
Cited by 1 | Viewed by 614
Abstract
Elucidating the characteristics of methane adsorption in coal is essential for accurately assessing coalbed methane (CBM) potential. Methane adsorption is primarily governed by the compositional complexity of coal and its pore structure. Molecular simulation enables characterization of coal’s molecular composition at the microscopic [...] Read more.
Elucidating the characteristics of methane adsorption in coal is essential for accurately assessing coalbed methane (CBM) potential. Methane adsorption is primarily governed by the compositional complexity of coal and its pore structure. Molecular simulation enables characterization of coal’s molecular composition at the microscopic level and facilitates the construction of nanoscale pore models. In this study, Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS) were used to characterize the molecular structure of coal. Pore models of various sizes were constructed in Materials Studio (MS) to simulate methane adsorption under different temperatures and pressures. To further clarify the influence of molecular structure, a reconstructed macromolecular model (RMM) was compared with a graphite model, revealing differences in methane adsorption behavior across varying pore sizes, temperatures, and pressures. The results show that absolute methane adsorption increases with pore size, while excess adsorption behavior is strongly associated with the adsorption layer. In the pore size range of 0.4 nm to 1.2 nm, excess adsorption increases due to spatial confinement, but decreases as pore size exceeds 1.2 nm. Structural differences between the RMM and graphite models also resulted in distinct temperature responses, with the graphite model underestimating methane adsorption capacity, highlighting the importance of realistic macromolecular representations in adsorption studies. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
Show Figures

Figure 1

18 pages, 7579 KB  
Article
Molecular Simulation of Ultra-Microstructural Characteristics of Adsorption Pores in Terms of Coal and Gas Adsorption Properties
by Pan Chen, Yanping Wang, Yanxia Zhao, Qi Wang, Zhihui Wen and Ligang Tang
Processes 2025, 13(3), 771; https://doi.org/10.3390/pr13030771 - 7 Mar 2025
Viewed by 921
Abstract
To investigate the ultra-microstructural characteristics and adsorption properties of coal pores, the pore structure of Dongsheng lignite and Chengzhuang anthracite in Qinshui Basin was characterized by the liquid nitrogen adsorption method. It was found that the SSA of micropores constituted more than 65% [...] Read more.
To investigate the ultra-microstructural characteristics and adsorption properties of coal pores, the pore structure of Dongsheng lignite and Chengzhuang anthracite in Qinshui Basin was characterized by the liquid nitrogen adsorption method. It was found that the SSA of micropores constituted more than 65% of the total SSA in both coal samples. The macromolecular model of coal and the N2 molecular probe were used to obtain the ultrastructure parameters, and the gas adsorption behaviors of the two coals under different conditions were simulated by Grand Canonical Monte Carlo (GCMC) and Molecular Dynamics (MD). The results show that the pores of the lignite are mainly small pores, while the pores of the anthracite are mainly micropores. The specific surface area of the adsorption pores mainly constitutes micropores and ultra-micropores. The adsorption capacity of the CH4 of anthracite is consistently higher than that of lignite. The CH4 adsorption amount is positively correlated with the specific surface area and pore volume. This indicates that the gas adsorption capacity of coal is concentrated in micropores and ultra-micropores. The adsorption capacity increases with the increase in pressure and decreases with the increase in temperature. In the competitive adsorption of CH4/CO2/H2O, the adsorption quantity is in the order of H2O > CO2 > CH4. The research results provide a theoretical basis for coalbed methane exploitation and methane replacement. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Figure 1

14 pages, 6236 KB  
Article
Characterization of Macromolecular Structure and Molecular Dynamics Optimization of Gas Coal: A Case Study of Hongdunzi Coal
by Lin Hong, Xingzhu Che, Dan Zheng and Dameng Gao
Processes 2025, 13(1), 275; https://doi.org/10.3390/pr13010275 - 19 Jan 2025
Cited by 1 | Viewed by 1446
Abstract
To investigate the molecular structure characteristics and chemical reaction mechanisms of gas coal from the Hong II coal mine of the Ningxia Hongdunzi Coal Industry, this study explores its elemental composition, structural features, and methods for constructing and optimizing molecular models. The basic [...] Read more.
To investigate the molecular structure characteristics and chemical reaction mechanisms of gas coal from the Hong II coal mine of the Ningxia Hongdunzi Coal Industry, this study explores its elemental composition, structural features, and methods for constructing and optimizing molecular models. The basic properties of the coal were determined through proximate and elemental analyses. The carbon structure was characterized using 13C-NMR nuclear magnetic resonance, the N and S chemical states were analyzed with XPS, and the distribution of hydroxyl, aliphatic hydrocarbons, aromatic rings, and oxygen-containing functional groups was characterized by FT-IR. Based on the analysis results, a molecular structure model of Hongdunzi gas coal was constructed with the molecular formula C204H117O17NS, and the calculated results of the model showed high consistency with the experimental spectra of 13C-NMR. The macromolecular model of gas coal was constructed using the Materials Studio 2020 software, and its structure was optimized through geometric optimization and dynamic simulations. After optimization, the total energy of the model was significantly reduced from 8525.12 kcal·mol−1 to 3966.16 kcal·mol−1, highlighting the enhanced stability of the coal molecular structure. This optimization indicates that torsional energy plays a dominant role in molecular stability, while van der Waals forces and electrostatic interactions were significantly improved during the optimization process. Full article
(This article belongs to the Topic Energy Extraction and Processing Science)
Show Figures

Figure 1

19 pages, 8594 KB  
Article
The Effect of Oxidation on Coal’s Molecular Structure and the Structure Model Construction of Oxidized Coal Molecular
by Dahu Li, Fangjia Yang, Zhao Cao, Ruoqi Li and Yiwen Hu
Processes 2025, 13(1), 187; https://doi.org/10.3390/pr13010187 - 10 Jan 2025
Cited by 3 | Viewed by 1407
Abstract
Three kinds of 1/3 coking coals with different degrees of oxidation were used for this study in Inner Mongolia, China. Using analytical testing methods such as X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance carbon spectroscopy (13C-NMR) and Fourier transform infrared spectroscopy [...] Read more.
Three kinds of 1/3 coking coals with different degrees of oxidation were used for this study in Inner Mongolia, China. Using analytical testing methods such as X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance carbon spectroscopy (13C-NMR) and Fourier transform infrared spectroscopy (FT-IR), combined with computer-aided software such as Chemdraw, Materials Studio (2017), and MestRenova, three coal samples were characterized and analyzed. On this basis, the molecular formulas of three coal samples with different degrees of oxidation were constructed by optimizing the model energies: we used C228H165N3O21S4 for Suhaitu9# coal, C244H171N3O31S2 for Guoyu coal, and C225H177N3O33S2 for Lu9# coal. The results showed that, at the same coal rank, the oxidation degrees of S9, GY, and L9 coal samples were 21.10%, 48.30%, and 53.12%, respectively. As the oxidation degree increased, the proportion of oxygen-containing functional groups and nitrogen oxides in the coal macromolecular structure gradually increased. The bridge circumference ratios were 0.3786, 0.3351, and 0.2228, respectively, showing a gradual decrease. The average methylene chain lengths were 4.9569, 2.6843, and 1.9055, respectively, showing a gradual decrease. This indicates that the condensation degree of the compounds decreases with the increase in the degree of oxidation. These findings reflect the effect of oxidation on the modeling of coal’s macromolecular structure and lay a theoretical foundation for the further study of impact of the degree of oxidation on the physicochemical properties of coal. Full article
Show Figures

Figure 1

17 pages, 7003 KB  
Article
The Molecular Model of Organic Matter in Coal-Measure Shale: Structure Construction and Evaluation Based on Experimental Characterization
by Kunjie Li, Hongwu Tian, Yanxia Liang, Wei Guo, Yuqiong Zhao, Yanjun Meng and Shaoqi Kong
Molecules 2023, 28(13), 5203; https://doi.org/10.3390/molecules28135203 - 4 Jul 2023
Cited by 5 | Viewed by 2161
Abstract
To investigate the molecular structure and micropore structure of organic matters in coal-measure shale, the black shale samples of the Shanxi formation were collected from Xishan Coalfield, Taiyuan, and a hybrid experimental–simulation method was used for realistic macromolecular models of organic matter (OM). [...] Read more.
To investigate the molecular structure and micropore structure of organic matters in coal-measure shale, the black shale samples of the Shanxi formation were collected from Xishan Coalfield, Taiyuan, and a hybrid experimental–simulation method was used for realistic macromolecular models of organic matter (OM). Four experimental techniques were used to determine the structural information of OM, including elemental analysis, state 13C nuclear magnetic resonance (13CNMR), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). With structural parameters, two-dimensional (2D) average molecular models of OM were established as C177H160O8N2S with a molar weight of 2474, which agreed well with the experimental 13C-NMR spectra. A realistic three-dimensional (3D) OM macromolecular model was also reconstructed, containing 20 2D molecules with a density of 1.41 g/cm3. To determine the connectivity and spatial disposition of the OM pores, focused ion beam microscope (FIB-SEM) and transmission electron micrographs (TEM) were utilized. The 3D OM pores models were developed. The results show that whether the OM pores varied from 20 to 350 nm as obtained from FIB-SEM images or less than 10 nm as observed in the TEM images, both were of poor connectivity. However, the ultra-micro pores from the 3D OM macromolecular model varied from 3Å to 10 Å and showed certain connectivity, which may be the main channel of diffusion. Furthermore, with the pressure increased, the methane adsorption capacity of the 3D OM model increased with a maximum value of 103 cm3/g at 7 MPa, indicating that OM pores less than 1 nm have a huge methane adsorption capacity. Therefore, our work provides an analysis method that is a powerful and superior tool in further research on gas migration. Full article
(This article belongs to the Topic Energy Extraction and Processing Science)
Show Figures

Figure 1

22 pages, 12432 KB  
Article
Simulation Study on Molecular Adsorption of Coal in Chicheng Coal Mine
by Jingxue Yan, Baoshan Jia, Baogang Liu and Jinyi Zhang
Molecules 2023, 28(8), 3302; https://doi.org/10.3390/molecules28083302 - 7 Apr 2023
Cited by 16 | Viewed by 2397
Abstract
To study the importance of the adsorption mechanism of methane (CH4) and carbon dioxide (CO2) in coal for coalbed methane development, we aimed to reveal the influence mechanism of adsorption pressure, temperature, gas properties, water content, and other factors [...] Read more.
To study the importance of the adsorption mechanism of methane (CH4) and carbon dioxide (CO2) in coal for coalbed methane development, we aimed to reveal the influence mechanism of adsorption pressure, temperature, gas properties, water content, and other factors on gas molecular adsorption behavior from the molecular level. In this study, we selected the nonsticky coal in Chicheng Coal Mine as the research object. Based on the coal macromolecular model, we used the molecular dynamics (MD) and Monte Carlo (GCMC) methods to simulate and analyze the conditions of different pressure, temperature, and water content. The change rule and microscopic mechanism of the adsorption amount, equal adsorption heat, and interaction energy of CO2 and CH4 gas molecules in the coal macromolecular structure model establish a theoretical foundation for revealing the adsorption characteristics of coalbed methane in coal and provide technical support for further improving coalbed methane extraction. Full article
Show Figures

Figure 1

21 pages, 29682 KB  
Article
Molecular Dynamics Simulation of Methane Adsorption and Diffusion: A Case Study of Low-Rank Coal in Fukang Area, Southern Junggar Basin
by Jie Xiang, Xianqing Li, Weiyu Gao, Yu Liu, Jiandong Li, Jingwei Yang and Yixiao Gong
Minerals 2023, 13(2), 229; https://doi.org/10.3390/min13020229 - 4 Feb 2023
Cited by 6 | Viewed by 4259
Abstract
Adsorption and diffusion are the key factors affecting coalbed methane (CBM) accumulation, resource assessment and production prediction. To study the adsorption and diffusion mechanism of Fukang low-rank coal at the microscopic level, samples of Fukang low-rank coal were collected, and the elemental composition, [...] Read more.
Adsorption and diffusion are the key factors affecting coalbed methane (CBM) accumulation, resource assessment and production prediction. To study the adsorption and diffusion mechanism of Fukang low-rank coal at the microscopic level, samples of Fukang low-rank coal were collected, and the elemental composition, carbon type distribution and functional group type of the Fukang low-rank coal structure were determined by elemental analysis (Ea), Fourier-transform interferometric radiometer (FTIR), X-ray photoelectron spectroscopy (XPS) and 13C nuclear magnetic resonance (13C NMR) experiments to construct a 2D molecular structure of the coal and a 3D macromolecular structure model. The adsorption and diffusion characteristics of methane were researched by giant regular Monte Carlo (GCMC) and molecular dynamics (MD) simulation methods. The results showed that the excess adsorption amount of methane increased and then decreased with the increase in pressure. The diffusion of methane showed two stages with increasing pressure: a sharp decrease in the diffusion coefficient from 0.5 to 5.0 MPa and a slow decrease in the diffusion coefficient from 5.0 to 15.0 MPa. The lower the pressure, the larger the effective radius of the CH4 and C atoms, and the higher the temperature, the more pronounced the diffusion and the larger the effective radius. Full article
(This article belongs to the Special Issue Micro-Mechanism and Characteristics of Coal Reservoirs)
Show Figures

Figure 1

15 pages, 4098 KB  
Article
Molecular Model Construction and Optimization Study of Gas Coal in the Huainan Mining Area
by Lina Qu, Long Liu, Jinhao Chen and Zhenzhen Wang
Processes 2023, 11(1), 73; https://doi.org/10.3390/pr11010073 - 28 Dec 2022
Cited by 14 | Viewed by 3760
Abstract
To construct the macromolecular model of gas coal in the Huainan mining area, 13C nuclear magnetic resonance spectroscopy (13C-NMR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) tests were used to analyze the microstructure characteristics of coal including the aromatic [...] Read more.
To construct the macromolecular model of gas coal in the Huainan mining area, 13C nuclear magnetic resonance spectroscopy (13C-NMR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) tests were used to analyze the microstructure characteristics of coal including the aromatic ring type, the linkage mode, and the chemical bonding composition. The model was simulated and optimized by molecular mechanics (MM) and molecular dynamics (MD). The experimental results showed that the coal macromolecular formula in the Huainan mine was expressed as C181H150O9N3. The aromatic ring was dominated by anthracene and phenanthrene. Aliphatic carbon mainly existed in the form of methylene and methine. The oxygen atoms existed in the form of ether−oxygen bonds. The ratio of pyridine nitrogen to pyrrolic nitrogen was 2:1. The molecular simulation results showed the π−π interaction between the aromatic lamellae within the molecule. The van der Waals energy was the major factor of coal molecular structure stability and energy change. The results of the calculated 13C-NMR carbon spectrum and density simulation agreed well with the experimental results. The study provides a scientific and reasonable method for coal macromolecular model prediction and theoretical support for coal spontaneous combustion prevention technology. Full article
(This article belongs to the Special Issue Process Safety in Coal Mining)
Show Figures

Figure 1

Back to TopTop