Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = coal fly and bottom ash landfill

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4638 KiB  
Article
Properties and Optimization Process Using Machine Learning for Recycling of Fly and Bottom Ashes in Fire-Resistant Materials
by Elena Guirado, Jaime Delfino Ruiz Martinez, Manuel Campoy and Carlos Leiva
Processes 2025, 13(4), 933; https://doi.org/10.3390/pr13040933 - 21 Mar 2025
Viewed by 531
Abstract
Significant amounts of coal fly and bottom ash are generated globally each year, with especially large quantities of bottom ash accumulating in landfills. In this study, fly ash and bottom ash were used to create fire-resistant materials. A mix of 30 wt% gypsum, [...] Read more.
Significant amounts of coal fly and bottom ash are generated globally each year, with especially large quantities of bottom ash accumulating in landfills. In this study, fly ash and bottom ash were used to create fire-resistant materials. A mix of 30 wt% gypsum, 9.5 wt% vermiculite, and 0.5 wt% polypropylene fibers was used, maintaining a constant water-to-solid ratio, with varying fly ash/bottom ash ratios (40/20, 30/30, and 20/40). The density, as well as various mechanical properties (compressive strength, flexural strength, and surface hardness), fire insulation capacity, and leaching behavior of both ashes were evaluated. When comparing the 40/20 and 20/40 compositions, a slight decrease in density was observed; however, compressive strength dropped drastically by 80%, while flexural strength decreased slightly due to the action of the polypropylene fibers, and fire resistance dropped by 8%. Neither of the ashes presented any environmental concerns from a leaching standpoint. Additionally, historical data from various materials with different wastes in previous works were used to train different machine learning models (random forest, gradient boosting, artificial neural networks, etc.). Compressive strength and fire resistance were predicted. Simple parameters (density, water/solid ratio and composition for compressive strength and thickness and the composition for fire resistance) were used as input in the models. Both regression and classification algorithms were applied to evaluate the models’ ability to predict compressive strength. Regression models for fire resistance reached r2 up to about 0.85. The classification results for the fire resistance rating (FRR) showed high accuracy (96%). The prediction of compressive strength is not as good as the fire resistance prediction, but compressive strength classification reached up to 99% accuracy for some models. Full article
Show Figures

Figure 1

28 pages, 5812 KiB  
Article
Physicochemical Properties of Fe-Bearing Phases from Commercial Colombian Coal Ash
by Ana Cláudia Santos, Cláudia Cruz, Eric Font, David French, Alexandra Guedes, Karen Moreira, Helena Sant’Ovaia, Bruno J. C. Vieira, João C. Waerenborgh and Bruno Valentim
Minerals 2023, 13(8), 1055; https://doi.org/10.3390/min13081055 - 9 Aug 2023
Cited by 6 | Viewed by 2022
Abstract
High amounts of coal combustion products, such as fly ash and bottom ash, are generated every year; however, only 64% are used, which means that a significant part is landfilled despite containing valuable materials such as ferrospheres, which may be used as catalysts, [...] Read more.
High amounts of coal combustion products, such as fly ash and bottom ash, are generated every year; however, only 64% are used, which means that a significant part is landfilled despite containing valuable materials such as ferrospheres, which may be used as catalysts, substituting critical raw materials (e.g., platinoids). In commercial coals, pyrite contents are reduced as a pre-combustion S-emissions control measure, so low amounts of ferrospheres are expected in the respective ashes. However, given the large amounts of ash being generated from these coals, it may provide a reliable source of catalysts, with ferrospheres being easily recovered via magnetic separation. Several studies have been conducted regarding these morphotypes; however, there is a lack of investigation considering the ash derived from highly beneficiated coals and the variations with location and time. In this study, bottom ash, economizer grits, and fly ash samples from a Portuguese power plant burning Colombian commercial coal were fractionated using ferrite (Fe-MC fraction) and Nd (Nd-MC fraction) magnets, and a multi-technique approach was used to assess their properties (magnetic parameters, particle size distribution, mineralogy, particle morphology, microtexture, and chemical composition). The Fe-MC presented higher Fe concentrations (up to 44 wt.% Fe2O4) than the Nd-MC (up to 7 wt.% Fe2O4). Once it was a sequential process, Nd magnets essentially collected Fe-bearing aluminosilicate glass, and Fe-bearing minerals were residual when compared to the Fe-MC, where magnetite, magnesioferrite, hematite, and maghemite accounted for up to 30 wt.%. Among the Fe-MC, the sample collected from electrostatic precipitator fly ash (ESP FA), despite having a lower yield, presented higher Fe concentrations than the ones from bottom ash and economizer grits, which was related to the mode of occurrence of Fe-bearing phases: in the Fe-MC from ESP FA, discrete ferrospheres predominated, while in the remaining Fe-bearing phases, they were often embedded in aluminosilicate glass. All Fe-MC samples showed an increase of Fe-substituting elements (e.g., Mn and Ni) and their concentration tended to increase with decreasing particle size along with Fe. The integrated study of cross-sections enabled the identification of oxidation rims, martitization aspects, and the co-existence of hematite and magnesioferrite. Full article
(This article belongs to the Special Issue Ashes: Characterisation, Recovery and Utilization)
Show Figures

Graphical abstract

15 pages, 3183 KiB  
Article
The Effect of Bottom Ash Ball-Milling Time on Properties of Controlled Low-Strength Material Using Multi-Component Coal-Based Solid Wastes
by Tianxiang Chen, Ning Yuan, Shanhu Wang, Xinfei Hao, Xinling Zhang, Dongmin Wang and Xuan Yang
Sustainability 2022, 14(16), 9949; https://doi.org/10.3390/su14169949 - 11 Aug 2022
Cited by 17 | Viewed by 2979
Abstract
As the conventional disposal method for industrial by-products and wastes, landfills can cause environmental pollution and huge economic costs. However, some secondary materials can be effectively used to develop novel underground filling materials. Controlled low-strength material (CLSM) is a highly flowable, controllable, and [...] Read more.
As the conventional disposal method for industrial by-products and wastes, landfills can cause environmental pollution and huge economic costs. However, some secondary materials can be effectively used to develop novel underground filling materials. Controlled low-strength material (CLSM) is a highly flowable, controllable, and low-strength filling material. The rational use of coal industry by-products to prepare CLSM is significant in reducing environmental pollution and value-added disposal of solid waste. In this work, five different by-products of the coal industry (bottom ash (BA), fly ash, desulfurized gypsum, gasification slag, and coal gangue) and cement were used as mixtures to prepare multi-component coal industry solid waste-based CLSM. The microstructure and phase composition of the obtained samples were analyzed by scanning electron microscopy and X-ray diffraction. In addition, the particle size/fineness of samples was also measured. The changes in fresh and hardened properties of CLSM were studied using BA after ball milling for 20 min (BAI group) and 45 min (BAII group) that replaced fly ash with four mass ratios (10 wt%, 30 wt%, 50 wt%, and 70 wt%). The results showed that the CLSM mixtures satisfied the limits and requirements of the American Concrete Institute Committee 229 for CLSM. Improving the mass ratio of BA to fly ash and the ball-milling time of the BA significantly reduced the flowability and the bleeding of the CLSM; the flowability was still in the high flowability category, the lowest bleeding BAI70 (i.e., the content of BA in the BAI group was 70 wt%) and BAII70 (i.e., the content of BA in the BAII group was 70 wt%) decreased by 48% and 64%, respectively. Furthermore, the 3 d compressive strengths of BAI70 and BAII70 were increased by 48% and 93%, respectively, compared with the group without BA, which was significantly favorable, whereas the 28 d compressive strength did not change significantly. Moreover, the removability modulus of CLSM was calculated, which was greater than 1, indicating that CLSM was suitable for structural backfilling that requires a certain strength. This study provides a basis for the large-scale utilization of coal industry solid waste in the construction industry and underground coal mine filling. Full article
(This article belongs to the Special Issue Environmental Interface Chemistry and Pollution Control)
Show Figures

Figure 1

15 pages, 2478 KiB  
Article
Suitability of Selected Plant Species for Phytoremediation: A Case Study of a Coal Combustion Ash Landfill
by Artur Szwalec, Paweł Mundała and Renata Kędzior
Sustainability 2022, 14(12), 7083; https://doi.org/10.3390/su14127083 - 9 Jun 2022
Cited by 5 | Viewed by 2612
Abstract
Coal bottom and fly ash waste continue to be generated as a result of energy production from coal in the amount of about 750 million tonnes a year globally. Coal is the main source of energy in Poland, and about 338 million tonnes [...] Read more.
Coal bottom and fly ash waste continue to be generated as a result of energy production from coal in the amount of about 750 million tonnes a year globally. Coal is the main source of energy in Poland, and about 338 million tonnes of combustion waste has already been landfilled. The aim of the research was to identify factors determining the Cd, Pb, Zn and Cu phytostabilisation by vegetation growing on a coal combustion waste landfill. Soil and shoots of the following plants were analysed: wood small-reed, European goldenrod, common reed; silver birch, black locust, European aspen and common oak. The influence of the location where the plants grew and the influence of the interaction between the two factors (species and location) were significant. The tree species were more effective at accumulating heavy metals than the herbaceous plants. European aspen had the highest Bioaccumulation Factor (BCF) for cadmium and zinc. A high capacity to accumulate these elements was also demonstrated by silver birch, and in the case of cadmium, by common oak. Accumulation of both lead and copper was low in all plants. The Translocation Factors (TF) indicated that the heavy metals were accumulated mainly in the roots. European aspen, silver birch and European goldenrod were shown to be most suitable for stabilization of the metals analysed in the research. Full article
Show Figures

Figure 1

12 pages, 1866 KiB  
Article
Foamed Bitumen Mixtures for Road Construction Made with 100% Waste Materials: A Laboratory Study
by Nicola Baldo, Fabio Rondinella, Fabiola Daneluz and Marco Pasetto
Sustainability 2022, 14(10), 6056; https://doi.org/10.3390/su14106056 - 17 May 2022
Cited by 21 | Viewed by 4202
Abstract
Nowadays, budget restrictions for road construction, management, and maintenance require innovative solutions to guarantee the user acceptable service levels respecting environmental requirements. Such goals can be achieved by the re-use of various waste materials at the end of their service life in the [...] Read more.
Nowadays, budget restrictions for road construction, management, and maintenance require innovative solutions to guarantee the user acceptable service levels respecting environmental requirements. Such goals can be achieved by the re-use of various waste materials at the end of their service life in the pavement structure, therefore avoiding their disposal in landfill. At the same time, significant savings are achieved on natural aggregate by replacing it with such waste materials, improving the economic and environmental sustainability of road constructions. The purpose of this study is to discuss a laboratory investigation about foamed bitumen-stabilized mixtures for road foundation layers, in which the aggregate structure was entirely made up of industrial by-products and civil wastes, namely metallurgical slags such as electric arc furnace (EAF) and ladle furnace (LF) slags, coal fly (CF) ash, bottom ash from municipal solid waste incineration (MSWI), glass waste (GW) and reclaimed asphalt pavement (RAP). Combining these recycled aggregates in different proportions, six foamed bitumen mixtures were produced and investigated in terms of indirect tensile strength, stiffness modulus, and fatigue resistance. The leaching test carried out on the waste materials considered did not show any toxicological issue and the best foamed bitumen mixture’s composition was characterized by 20% of EAF slags, 10% of LF slags, 20% of MSWI ash, 10% of CF ash, 20% of GW, and 20% of RAP. Its mechanical characterization presented a dry indirect tensile strength at 25 °C of 0.62 MPa (well above the Italian technical acceptance limits), a stiffness modulus at 25 °C equal to 6171 MPa, and a number of cycles to failure at 20 °C equal to 6989 for a stress level of 300 kPa. Full article
(This article belongs to the Special Issue Transportation Safety and Pavement Management)
Show Figures

Figure 1

13 pages, 77384 KiB  
Article
The Solidification/Stabilization of Wastewater (From a Landfill Leachate) in Specially Designed Binders Based on Coal Ash
by Carmen-Lidia Oproiu, Georgeta Voicu, Alina Bădănoiu and Adrian-Ionuţ Nicoară
Materials 2021, 14(19), 5610; https://doi.org/10.3390/ma14195610 - 27 Sep 2021
Cited by 8 | Viewed by 2274
Abstract
The aim of this study is to assess the possibility to solidify/stabilize a liquid waste from a municipal waste landfill using binders based on coal ash (fly ash and bottom ash) and specially designed cements for waste treatment (INERCEM). The leaching test proved [...] Read more.
The aim of this study is to assess the possibility to solidify/stabilize a liquid waste from a municipal waste landfill using binders based on coal ash (fly ash and bottom ash) and specially designed cements for waste treatment (INERCEM). The leaching test proved that all cementitious systems are efficient for the solidification/stabilization of the studied wastes and can reduce the leaching potential of heavy metals present in both liquid waste and coal ash. Therefore, these wastes cease to be a source of environmental pollution. X-ray diffraction (XRD) and thermal complex analysis (DTA-TG) were used to assess the nature and amount of compounds formed in these cementitious systems during the hydration and hardening processes; ettringite, calcium silicate hydrates and CaCO3 were the main compounds formed in these systems assessed by these methods. The microstructure of hardened specimens was assessed by scanning electronic microscopy (SEM); the presence of hydrate phases, at the surface of cenospheres present in fly ash, proved the high pozzolanic reactivity of this phase. Full article
Show Figures

Figure 1

10 pages, 2360 KiB  
Article
Reactivity of Ground Coal Bottom Ash to Be Used in Portland Cement
by Esperanza Menéndez, Cristina Argiz and Miguel Ángel Sanjuán
J 2021, 4(3), 223-232; https://doi.org/10.3390/j4030018 - 23 Jun 2021
Cited by 2 | Viewed by 3372
Abstract
Ground coal bottom ash is considered a novel material when used in common cement production as a blended cement. This new application must be evaluated by means of the study of its pozzolanic properties. Coal bottom ash, in some countries, is being used [...] Read more.
Ground coal bottom ash is considered a novel material when used in common cement production as a blended cement. This new application must be evaluated by means of the study of its pozzolanic properties. Coal bottom ash, in some countries, is being used as a replacement for natural sand, but in some others, it is disposed of in a landfill, leading thus to environmental problems. The pozzolanic properties of ground coal bottom ash and coal fly ash cements were investigated in order to assess their pozzolanic performance. Proportions of coal fly ash and ground coal bottom ash in the mixes were 100:0, 90:10, 80:20, 50:50, 0:100. Next, multicomponent cements were formulated using 10%, 25% or 35% of ashes. In general, the pozzolanic performance of the ground coal bottom ash is quite similar to that of the coal fly ash. As expected, the pozzolanic reaction of both of them proceeds slowly at early ages, but the reaction rate increases over time. Ground coal bottom ash is a promising novel material with pozzolanic properties which are comparable to that of coal fly ashes. Then, coal bottom ash subjected to an adequate mechanical grinding is suitable to be used to produce common coal-ash cements. Full article
(This article belongs to the Section Chemistry & Material Sciences)
Show Figures

Figure 1

15 pages, 1485 KiB  
Article
Lime Treatment of Coal Bottom Ash for Use in Road Pavements: Application to El Jadida Zone in Morocco
by Souad El Moudni El Alami, Raja Moussaoui, Mohamed Monkade, Khaled Lahlou, Navid Hasheminejad, Alexandros Margaritis, Wim Van den bergh and Cedric Vuye
Materials 2019, 12(17), 2674; https://doi.org/10.3390/ma12172674 - 22 Aug 2019
Cited by 8 | Viewed by 3007
Abstract
Industrial waste causes environmental, economic, and social problems. In Morocco, the Jorf Lasfar Thermal Power Station produces two types of coal ash with enormous quantities: fly ash (FA) and Bottom ash (BA). FA is recovered in cement while BA is stored in landfills. [...] Read more.
Industrial waste causes environmental, economic, and social problems. In Morocco, the Jorf Lasfar Thermal Power Station produces two types of coal ash with enormous quantities: fly ash (FA) and Bottom ash (BA). FA is recovered in cement while BA is stored in landfills. To reduce the effects of BA disposal in landfills, several experimental studies have tested the possibility of their recovery in the road construction, especially as a subbase. In the first phase of this study, the BA underwent a physicochemical and geotechnical characterization. The results obtained show that the BA should be treated to improve its mechanical properties. The most commonly used materials are lime and cement. In the selected low-cost treatment, which is the subject of the second phase of the study, lime is used to improve the low pozzolanicity of BA while calcarenite sand is used to increase the compactness. Several mixtures containing BA, lime, and calcarenite sand were prepared. Each of these mixtures was compacted in modified Proctor molds and then subjected to a series of tests to study the following characteristics: compressive strength, dry and wet California Bearing Ratio (CBR), dry density and swelling. The composition of each mixture was based on an experimental design approach. The results show that the values of the compressive strength, the dry density, and the CBR index have increased after treatment, potentially leading to a valorization of the treated BA for use in a subbase. Full article
(This article belongs to the Special Issue Properties and Novel Applications of Recycled Aggregates)
Show Figures

Graphical abstract

Back to TopTop