Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = close-range coal seam group

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4147 KB  
Article
Research on Section Coal Pillar Deformation Prediction Based on Fiber Optic Sensing Monitoring and Machine Learning Algorithms
by Dingding Zhang, Yu Wang, Jianfeng Yang, Dengyan Gao and Jing Chai
Appl. Sci. 2024, 14(20), 9347; https://doi.org/10.3390/app14209347 - 14 Oct 2024
Cited by 1 | Viewed by 1299
Abstract
The mining face under the close coal seam group is affected by the superposition of the concentrated stress of the overlying residual diagonally intersecting coal pillar and the mining stress, which can easily cause the instability and damage of the section coal pillars [...] Read more.
The mining face under the close coal seam group is affected by the superposition of the concentrated stress of the overlying residual diagonally intersecting coal pillar and the mining stress, which can easily cause the instability and damage of the section coal pillars during the process of mining back to the downward face. Additionally, the traditional methods of monitoring such as numerical simulation, drilling peeping, and acoustic emission fail to realize the real-time and accurate deformation monitoring of the internal deformation of the section coal pillars. The introduction of the drill-hole-implanted fiber-optic grating monitoring method can realize real-time deformation monitoring for the whole area inside the coal pillar, which solves the short board problem of coal pillar deformation monitoring. However, fiber-optic monitoring is easily disturbed by the external environment, which is especially sensitive to the background noise of the complex underground mining environment. Therefore, taking the live chicken and rabbit well of Shaanxi Daliuta Coal Mine as the engineering background, the ensemble empirical modal decomposition (EEMD) is introduced for primary noise reduction and signal reconstruction by the threshold determination (DE) algorithm, and then the singular matrix decomposition (SVD) is introduced for secondary noise reduction. Finally, a machine learning algorithm is combined with the noise reduction algorithm for the prediction of the fiber grating strain signals of coal pillar in a zone, and DBO-LSTM-BP is constructed as the prediction model. The experimental results demonstrate that compared with the other two noise reduction prediction models, the SNR of the EEMD-DE-SVD-DBO-LSTM-BP model is improved by 0.8–2.3 dB on average, and the prediction accuracy is in the range of 88–99%, which realizes the over-advanced prediction of the deformation state of the coal column in the section. Full article
Show Figures

Figure 1

15 pages, 5463 KB  
Article
Study on the Mechanism and Control of Strong Rock Pressure in Thick Coal Seam Mining under the Goaf of Very Close Multiple Coal Seams
by Junwen Feng, Wenmiao Wang, Zhen Wang, Fang Lou, Hongzhi Wang, Rang Wu, Yongyong Jia and Mingchao Yong
Processes 2023, 11(5), 1320; https://doi.org/10.3390/pr11051320 - 24 Apr 2023
Cited by 10 | Viewed by 1966
Abstract
With the increasing proportion of close-distance coal seam mining in China, the problem of strong mining pressure during the mining of close-distance coal seams is becoming more and more severe. This article focuses on the complex stress environment and severe mining pressure encountered [...] Read more.
With the increasing proportion of close-distance coal seam mining in China, the problem of strong mining pressure during the mining of close-distance coal seams is becoming more and more severe. This article focuses on the complex stress environment and severe mining pressure encountered in the mining of thick coal seams under the multi-coal-seam goaf of Zhunnan Coal Mine. By using research methods, such as similar material simulation, theoretical analysis, and numerical simulation, it studies in depth the instability characteristics of the overlying rock structure of the W1701 working face, the inducing factors and mechanisms of strong mining pressure during the mining process, and control measures. The results show that the roof structure of the W1701 working face can be divided into “high-level key layer (hard rock)–giant thick soft and weak rock group–low-level key layer (hard rock)”, and the law of mining pressure manifestation presents a small cycle formed by the instability of “masonry beam” structure and a main large cycle formed by the periodic penetration and step-down of the giant thick soft and weak rock group, with the load on the support during the large cycle up to 5.4 times the rated working resistance. In addition, this article proposes the strategy of using layered mining to control the manifestation of strong mining pressure under the “hard sandwiched soft” overlying rock condition of the Zhunnan Coal Mine, optimizes the thickness of the layered mining of the thick coal seam, and finally, determines the upper layer thickness of 2.8 m and the lower layer thickness of 4 m, inducing the giant thick soft and weak rock formation to undergo incremental damage and releasing the fracture energy incrementally, effectively controlling the manifestation threat of strong mining pressure in the mining of thick coal seams under the close-distance coal seam goaf. As the proportion of close-range coal seam mining increases in China, the problem of strong mining pressure during the mining of close-range coal seams becomes more severe. This article focuses on the complex stress environment and severe mining pressure in the mining of thick coal seams under multiple mined-out areas in the Zhunnan coal mine. Similar material simulation, theoretical analysis, and numerical simulation methods were used to conduct in-depth research on the unstable characteristics of the overlying rock structure of the W1701 working face, the causes and mechanisms of strong mining pressure during the mining process, and control measures. The results show that the roof structure of the W1701 working face can be divided into “high-level key layer (hard rock)–thick soft weak rock group–low-level key layer (hard rock).” The law of mining pressure manifestation presents small cycles of instability formed by “block beams” and main cycles of pressure formed by vertically cracked periodic penetration and step sinking of the thick soft weak rock group. Moreover, during the main cycle of pressure, the load-bearing capacity of the support is up to 5.4 times the rated working resistance. Furthermore, it is proposed to use hierarchical mining to control the manifestation of strong mining pressure in the “hard-inlaid soft” overlying rock condition of the Zhunnan coal mine and optimize the thickness of layered mining of thick coal seams. Ultimately, the upper layer thickness was determined as 2.8 m; the lower layer thickness was determined as 4 m, and the layered mining induced the thick soft weak rock group to undergo gradual damage and energy release, effectively controlling the threat of severe mining pressure during the mining of thick coal seams under the close-range coal seam mining. Full article
Show Figures

Figure 1

19 pages, 8612 KB  
Article
Instability Control of Roadway Surrounding Rock in Close-Distance Coal Seam Groups under Repeated Mining
by Yu Xiong, Dezhong Kong, Zhanbo Cheng, Zhijie Wen, Zhenqian Ma, Guiyi Wu and Yong Liu
Energies 2021, 14(16), 5193; https://doi.org/10.3390/en14165193 - 22 Aug 2021
Cited by 26 | Viewed by 3663
Abstract
In order to solve the problems of roadway stability and easy instability under repeated mining of close-distance coal seam groups, the mechanism and control technology of surrounding rock instability under repeated mining were studied via indoor testing, field testing, physical similarity simulation experiment, [...] Read more.
In order to solve the problems of roadway stability and easy instability under repeated mining of close-distance coal seam groups, the mechanism and control technology of surrounding rock instability under repeated mining were studied via indoor testing, field testing, physical similarity simulation experiment, and numerical simulation. The results show that the surrounding rock of roadway has low strength, low bearing capacity, and poor self-stabilization ability, and it is vulnerable to engineering disturbances and fragmentation. Affected by the disturbance under repeated mining, the roadway surrounding rock cracks are developed and the sensitivity is strong, and it is prone to large-scale loose and destroyed. The location of the roadway is unreasonable, and the maximum principal stress of the roadway is 3.1 times of the minimum principal stress, which is quite different. Thus, under a large horizontal stress, the surrounding rock undergoes long-range expansion deformation. On the basis of this research, the direction and emphasis of stability control of roadway surrounding rock under repeated mining of coal seam groups in close-distance are shown. A repair scheme (i.e., long bolt + high-strength anchor cable + U-shaped steel + grouting) is proposed, and reduces the risk of roadway instability. Full article
(This article belongs to the Special Issue Rock Burst Disasters in Coal Mines)
Show Figures

Figure 1

23 pages, 8001 KB  
Article
Experimental Development of Coal-Like Material with Solid-Gas Coupling for Quantitative Simulation Tests of Coal and Gas Outburst Occurred in Soft Coal Seams
by Xingkai Wang, Wenbing Xie, Zhili Su and Qingteng Tang
Processes 2019, 7(3), 155; https://doi.org/10.3390/pr7030155 - 13 Mar 2019
Cited by 10 | Viewed by 3776
Abstract
Solid-gas coupling coal-like materials are essential for simulating coal and gas outbursts and the long-term safety study of CO2 sequestration in coal. However, reported materials still differ substantially from natural coal in mechanical, deformation and gaseous properties; the latter two aspects are [...] Read more.
Solid-gas coupling coal-like materials are essential for simulating coal and gas outbursts and the long-term safety study of CO2 sequestration in coal. However, reported materials still differ substantially from natural coal in mechanical, deformation and gaseous properties; the latter two aspects are common not considered. There is a lack of a definite and quantitative preparation method of coal-like materials with high similarity for future reference. Here, 25 groups of raw material ratios were designed in the orthogonal experiment using uniaxial compression, shearing and adsorption/desorption tests. Experiment results indicated that the coal-like materials were highly similar to soft coals in properties mentioned above. And range analysis revealed the key influencing factors of each mechanical index. The gypsum/petrolatum ratio controls the density, compressive strength, elastic modulus, cohesion and deformation characteristic. The coarse/fine coal powder (1–2 and 0–0.5 mm) controls the internal friction angle and is the secondary controlling factor for compressive strength and elastic modulus. The effect of coal particle size on the sample strength was studied using scanning electron microscope (SEM). When the gypsum/petrolatum ratio increased, the deformation characteristics changed from ductile to brittle. The different failure modes in the samples were revealed. The coal powder content is a key in the gas adsorption/desorption properties and an empirical formula for estimating the adsorption capacity was established. Based on the range analysis of experimental results, a multiple linear regression model of the mechanical parameters and their key influencing factors was obtained. Finally, a composition closely resembling the natural coal was determined, which differs by only 0.47–7.41% in all parameters except porosity (11.76%). Possible improvements and extension to similar materials are discussed. The findings of this study can help for better understanding of coal and gas outburst mechanism and stability of CO2 sequestration in soft coal seams. Full article
(This article belongs to the Special Issue Fluid Flow in Fractured Porous Media)
Show Figures

Graphical abstract

Back to TopTop