Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = ciliary network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2711 KB  
Article
Computational Evidence for Digenic Contribution of AIPL1 and BBS2 Rare Variants in Inherited Retinal Dystrophy
by Simona Alibrandi, Concetta Scimone, Giorgia Abate, Sergio Zaccaria Scalinci, Antonina Sidoti and Luigi Donato
Int. J. Mol. Sci. 2025, 26(19), 9430; https://doi.org/10.3390/ijms26199430 - 26 Sep 2025
Abstract
Inherited retinal dystrophies (IRDs) are clinically and genetically heterogeneous disorders. Most IRDs follow a monogenic inheritance pattern. However, an increasing number of unresolved cases suggest the possible contribution of oligogenic or digenic mechanisms. Here, we report two ultra-rare missense variants—AIPL1 R302L and BBS2 [...] Read more.
Inherited retinal dystrophies (IRDs) are clinically and genetically heterogeneous disorders. Most IRDs follow a monogenic inheritance pattern. However, an increasing number of unresolved cases suggest the possible contribution of oligogenic or digenic mechanisms. Here, we report two ultra-rare missense variants—AIPL1 R302L and BBS2 P134R—that co-segregate with early-onset nonsyndromic retinal degeneration in affected individuals from a non-consanguineous family. We performed a multi-level computational investigation to assess whether these variants may act through a convergent pathogenic mechanism. Using AlphaFold2-predicted structures, we modeled both wild-type and mutant proteins, introduced point mutations, and performed energy minimization and validation. FoldX, DynaMut2, and DUET all predicted destabilizing effects at the variant sites, corroborated by local disruption of secondary structure and altered surface electrostatics. Comparative docking (via HDOCK and ClusPro) identified a putative interaction interface between the TPR domain of AIPL1 and the β-sheet face of BBS2. This interface was destabilized in the double-mutant model. At the systems level, transcriptomic profiling confirmed co-expression of AIPL1 and BBS2 in human retina and fetal eye, while functional enrichment analysis highlighted overlapping involvement in ciliary and proteostasis pathways. Network propagation suggested that the two proteins may converge on shared interactors relevant to photoreceptor maintenance. Collectively, these in silico results provide structural and systems-level support for a candidate digenic mechanism involving AIPL1 and BBS2. While experimental validation remains necessary, our study proposes a testable mechanistic hypothesis and underscores the value of computational approaches in uncovering complex genetic contributions to IRDs. Full article
Show Figures

Figure 1

25 pages, 1486 KB  
Article
Functional Enrichment Analysis of Rare Mutations in Patients with Brain Arteriovenous Malformations
by Elena Zholdybayeva, Ayazhan Bekbayeva, Karashash Menlibayeva, Alua Gusmaulemova, Botakoz Kurentay, Bekbolat Tynysbekov, Almas Auganov, Ilyas Akhmetollayev and Chingiz Nurimanov
Biomedicines 2025, 13(6), 1451; https://doi.org/10.3390/biomedicines13061451 - 12 Jun 2025
Viewed by 698
Abstract
Background/Objectives: Brain arteriovenous malformations (bAVMs) are rare vascular anomalies characterized by direct connections between arteries and veins, bypassing the capillary network. This study aimed to identify potential genetic factors contributing to the development of sporadic bAVMs. Methods: Three patients (AVM1–3) from Kazakhstan [...] Read more.
Background/Objectives: Brain arteriovenous malformations (bAVMs) are rare vascular anomalies characterized by direct connections between arteries and veins, bypassing the capillary network. This study aimed to identify potential genetic factors contributing to the development of sporadic bAVMs. Methods: Three patients (AVM1–3) from Kazakhstan who underwent microsurgical resection at the National Centre for Neurosurgery (NCN) in Astana, Kazakhstan, were analyzed. Brain AVMs were diagnosed using magnetic resonance imaging (MRI). Genomic DNA was isolated from whole venous blood samples, and whole-exome sequencing was performed on the NovaSeq 6000 platform (Illumina). Variants were filtered according to standard bioinformatics protocols, and candidate gene prioritization was conducted using the ToppGene tool. Results: In silico analysis further revealed candidate genes likely associated with lesion development, including COL3A1, CTNNB1, LAMA1, NPHP3, SLIT2, SLIT3, SMO, MAPK3, LRRK2, TTN, ERBB2, PARD3, and OBSL1. It is essential to focus on the genetic variants affecting the following prioritized genes: ERBB2, SLIT3, SMO, MAPK3, and TTN. Mutations in these genes were predicted to be “damaging”. Most of these genes are involved in signaling pathways that control vasculogenesis and angiogenesis. Conclusions: Defects in genes associated with ciliary structure and function may be critical to the pathogenesis of brain AVMs. These findings provide valuable insights into the molecular underpinnings of bAVM development, emphasizing key biological pathways and potential candidate genes. Further research is needed to establish robust correlations between specific genetic mutations and clinical phenotypes, which could ultimately inform the development of improved diagnostic, therapeutic, and prognostic approaches. Full article
(This article belongs to the Special Issue Exploring Human Diseases Through Genomic and Genetic Analyses)
Show Figures

Figure 1

13 pages, 2245 KB  
Article
Mouse SPAG6L, a Key Cytoskeleton Modulator Essential for Male Germ Cell Development, Is Not Required for Sertoli Cell Function
by Tao Li, Wei Li, Cheng Zheng, Jannette M. Dufour, William H. Walker, Shuiqiao Yuan and Zhibing Zhang
Cells 2025, 14(11), 783; https://doi.org/10.3390/cells14110783 - 26 May 2025
Viewed by 706
Abstract
Mouse sperm-associated antigen 6-like (SPAG6L) evolved from SPAG6, the mammalian ortholog of Chlamydomonas PF16, which is localized in the central apparatus of the motile cilia and is essential for ciliary motility. Even though the amino acid sequences of the two SPAG6 proteins are [...] Read more.
Mouse sperm-associated antigen 6-like (SPAG6L) evolved from SPAG6, the mammalian ortholog of Chlamydomonas PF16, which is localized in the central apparatus of the motile cilia and is essential for ciliary motility. Even though the amino acid sequences of the two SPAG6 proteins are highly similar, the two proteins have different biological expression patterns in vivo. No major phenotypes were discovered in the global Spag6 knockout mice. However, the global Spag6l knockout mice demonstrated multiple phenotypes in tissues with and without cilia. Since SPAG6L decorates microtubules and modulates cytoskeleton function, and Sertoli cells have a well-developed microtubule transport network, the potential function of SPAG6L in Sertoli cells was evaluated. The floxed Spag6l mice were crossed with Amh-Cre transgenic mice to inactivate the Spag6l gene specifically in Sertoli cells. Surprisingly, the fertility of the homozygous mutant males was not reduced. The testis size and sperm number and motility showed no significant difference to those of the control mice. Testicular histology also showed normal spermatogenesis. No significant changes were observed in the number of Sertoli cells and blood–testis barrier function. Our study showed that the inactivation of only Spag6l does not affect Sertoli cell function during the first 6 months of life. Full article
(This article belongs to the Special Issue Advances in Spermatogenesis)
Show Figures

Figure 1

19 pages, 11814 KB  
Article
Reversible Modulation of Motile Cilia by a Benzo[e][1,2,4]triazinone: A Potential Non-Hormonal Approach to Male Contraception
by Maria Chatzifrangkeskou, Alexandra Perdiou, Revekka Kreouzou, Georgia A. Zissimou, Dragos F. Flesariu, Panayiotis A. Koutentis and Paris A. Skourides
Cells 2025, 14(10), 688; https://doi.org/10.3390/cells14100688 - 9 May 2025
Viewed by 681
Abstract
Motile cilia play essential roles in various physiological processes including fluid flow generation and sperm motility. In this study, we identified 1,3-diphenyl-6-(4-phenylpiperazin-1-yl)benzo[e][1,2,4]triazin-7(1H)-one as a potent and reversible modulator of ciliary function using the Xenopus laevis model. This benzotriazinone derivative [...] Read more.
Motile cilia play essential roles in various physiological processes including fluid flow generation and sperm motility. In this study, we identified 1,3-diphenyl-6-(4-phenylpiperazin-1-yl)benzo[e][1,2,4]triazin-7(1H)-one as a potent and reversible modulator of ciliary function using the Xenopus laevis model. This benzotriazinone derivative inhibits ciliary-driven fluid flow by inducing cilia detachment without causing toxicity in developing embryos. Unlike traditional deciliation agents that rely on calcium signaling, this compound induces cilia loss through a shear stress-driven mechanism at the transition zone, without disrupting tissue morphology or the apical actin network. Importantly, it also induces flagellar loss and impairs sperm motility at picomolar concentrations. Our findings highlight the potential of this 6-(4-phenylpiperazin-1-yl)-substituted benzotriazinone as a non-hormonal male contraceptive and underscore a novel mechanism of cilia modulation that may have broader implications for the treatment of cilia-related disorders. Full article
(This article belongs to the Special Issue The Role of Cilia in Health and Diseases—2nd Edition)
Show Figures

Figure 1

19 pages, 1414 KB  
Article
Efficacy and Mechanism of Schisandra chinensis Fructus Water Extract in Alzheimer’s Disease: Insights from Network Pharmacology and Validation in an Amyloid-β Infused Animal Model
by Hye-Jeong Yang, Ting Zhang, Min-Jung Kim, Haeng-Jeon Hur, Xuangao Wu, Dai-Ja Jang and Sunmin Park
Nutrients 2024, 16(21), 3751; https://doi.org/10.3390/nu16213751 - 31 Oct 2024
Cited by 8 | Viewed by 2728
Abstract
Background/Objectives: Schisandra chinensis Fructus (SCF) is a traditional medicinal herb containing lignans that improves glucose metabolism by mitigating insulin resistance. We aimed to investigate the therapeutic potential and action mechanism of SCF for Alzheimer’s disease (AD) using a network pharmacology analysis, followed by [...] Read more.
Background/Objectives: Schisandra chinensis Fructus (SCF) is a traditional medicinal herb containing lignans that improves glucose metabolism by mitigating insulin resistance. We aimed to investigate the therapeutic potential and action mechanism of SCF for Alzheimer’s disease (AD) using a network pharmacology analysis, followed by experimental validation in an AD rat model. Methods: The biological activities of SCF’s bioactive compounds were assessed through a network pharmacology analysis. An AD rat model was generated by infusing amyloid-β peptide (Aβ) (25–35) into the hippocampus to induce Aβ accumulation. The AD rats were fed either 0.5% dextrin (AD-Con) or 0.5% SCF (AD-SCF group) in a high-fat diet for seven weeks. The rats in the normal/control group received an Aβ (35–25) infusion (no Aβ deposition) and were fed a control diet (Normal-C). Aβ deposition, memory function, inflammation, and glucose/lipid metabolism were evaluated. Results: The network analysis revealed significant intersections between AD-related targets and bioactive SCF compounds, like gomisin A, schisandrin, and longikaurin A. Key AD genes prostaglandin-endoperoxide synthase-2 (PTGS2, cyclooxygenase-2) and acetylcholinesterase (AChE) were linked to SCF compounds. In the rats with AD induced by bilaterally infusing amyloid-β (25–35) into the hippocampus, the 0.5% SCF intake mitigated hippocampal amyloid-β deposition, neuroinflammation, memory deficits, and dysregulated glucose and lipid metabolism versus the AD controls. SCF reduced hippocampal AChE activity, inflammatory cytokine expression related to PTGS2, and malondialdehyde contents and preserved neuronal cell survival-related factors such as brain-derived neurotrophic factor and ciliary neurotrophic factor similar to normal rats. The neuroprotective effects validated the network analysis findings. Conclusions: SCF could be a potential AD therapeutic agent by activating the parasympathetic nervous system to reduce hippocampal oxidative stress and inflammation, warranting further clinical investigations of its efficacy. Full article
(This article belongs to the Special Issue Inflammation and Nutritional Therapy)
Show Figures

Graphical abstract

15 pages, 2433 KB  
Article
FABP5 Is a Possible Factor for the Maintenance of Functions of Human Non-Pigmented Ciliary Epithelium Cells
by Megumi Higashide, Megumi Watanabe, Tatsuya Sato, Araya Umetsu, Nami Nishikiori, Toshifumi Ogawa, Masato Furuhashi and Hiroshi Ohguro
Int. J. Mol. Sci. 2024, 25(17), 9285; https://doi.org/10.3390/ijms25179285 - 27 Aug 2024
Cited by 2 | Viewed by 1464
Abstract
To elucidate the possible biological roles of fatty acid-binding protein 5 (FABP5) in the intraocular environment, the cells from which FABP5 originates were determined by using four different intraocular tissue-derived cell types including human non-pigmented ciliary epithelium (HNPCE) cells, retinoblastoma (RB) cells, adult [...] Read more.
To elucidate the possible biological roles of fatty acid-binding protein 5 (FABP5) in the intraocular environment, the cells from which FABP5 originates were determined by using four different intraocular tissue-derived cell types including human non-pigmented ciliary epithelium (HNPCE) cells, retinoblastoma (RB) cells, adult retinal pigment epithelial19 (ARPE19) cells and human ocular choroidal fibroblast (HOCF) cell lines, and the effects of FABP ligand 6, a specific inhibitor for FABP5 and FABP7 were analyzed by RNA sequencing and seahorse cellular metabolic measurements. Among these four different cell types, qPCR analysis showed that FABP5 was most prominently expressed in HNPCE cells, in which no mRNA expression of FABP7 was detected. In RNA sequencing analysis, 166 markedly up-regulated and 198 markedly down-regulated differentially expressed genes (DEGs) were detected between non-treated cells and cells treated with FABP ligand 6. IPA analysis of these DEGs suggested that FABP5 may be involved in essential roles required for cell development, cell survival and cell homeostasis. In support of this possibility, both mitochondrial and glycolytic functions of HNPCE cells, in which mRNA expression of FABP5, but not that of FABP7, was detected, were shown by using a Seahorse XFe96 Bioanalyzer to be dramatically suppressed by FABP ligand 6-induced inhibition of the activity of FABP5. Furthermore, in IPA upstream analysis, various unfolded protein response (UPR)-related factors were identified as upstream and causal network master regulators. Analysis by qPCR analysis showed significant upregulation of the mRNA expression of most of UPR-related factors and aquaporin1 (AQP1). The findings in this study suggest that HNPCE is one of intraocular cells producing FABP5 and may be involved in the maintenance of UPR and AQP1-related functions of HNPCE. Full article
(This article belongs to the Special Issue Molecular Research of Ocular Pathologies, 2nd Edition)
Show Figures

Figure 1

13 pages, 3755 KB  
Article
FABP4 Is an Indispensable Factor for Regulating Cellular Metabolic Functions of the Human Retinal Choroid
by Hiroshi Ohguro, Megumi Watanabe, Tatsuya Sato, Nami Nishikiori, Araya Umetsu, Megumi Higashide, Toshifumi Ogawa and Masato Furuhashi
Bioengineering 2024, 11(6), 584; https://doi.org/10.3390/bioengineering11060584 - 7 Jun 2024
Cited by 4 | Viewed by 2255
Abstract
The purpose of the current study was to elucidate the physiological roles of intraocularly present fatty acid-binding protein 4 (FABP4). Using four representative intraocular tissue-derived cell types, including human non-pigmented ciliary epithelium (HNPCE) cells, retinoblastoma (RB) cells, adult retinal pigment epithelial19 (ARPE19) cells [...] Read more.
The purpose of the current study was to elucidate the physiological roles of intraocularly present fatty acid-binding protein 4 (FABP4). Using four representative intraocular tissue-derived cell types, including human non-pigmented ciliary epithelium (HNPCE) cells, retinoblastoma (RB) cells, adult retinal pigment epithelial19 (ARPE19) cells and human ocular choroidal fibroblast (HOCF) cells, the intraocular origins of FABP4 were determined by qPCR analysis, and the intracellular functions of FABP4 were investigated by seahorse cellular metabolic measurements and RNA sequencing analysis using a specific inhibitor for FABP4, BMS309403. Among these four different cell types, FABP4 was exclusively expressed in HOCF cells. In HOCF cells, both mitochondrial and glycolytic functions were significantly decreased to trace levels by BMS309403 in a dose-dependent manner. In the RNA sequencing analysis, 67 substantially up-regulated and 94 significantly down-regulated differentially expressed genes (DEGs) were identified in HOCF cells treated with BMS309403 and those not treated with BMS309403. The results of Gene Ontology enrichment analysis and ingenuity pathway analysis (IPA) revealed that the DEGs were most likely involved in G-alpha (i) signaling, cAMP-response element-binding protein (CREB) signaling in neurons, the S100 family signaling pathway, visual phototransduction and adrenergic receptor signaling. Furthermore, upstream analysis using IPA suggested that NKX2-1 (thyroid transcription factor1), HOXA10 (homeobox A10), GATA2 (gata2 protein), and CCAAT enhancer-binding protein A (CEBPA) were upstream regulators and that NKX homeobox-1 (NKX2-1), SFRP1 (Secreted frizzled-related protein 1) and TREM2 (triggering receptor expressed on myeloid cells 2) were causal network master regulators. The findings in this study suggest that intraocularly present FABP4 originates from the ocular choroid and may be a critical regulator for the cellular homeostasis of non-adipocyte HOCF cells. Full article
(This article belongs to the Special Issue Pathophysiology and Translational Research of Retinal Diseases)
Show Figures

Figure 1

16 pages, 2108 KB  
Article
Pyricularia’s Capability of Infecting Different Grasses in Two Regions of Mexico
by Ivan Sequera-Grappin, Elsa Ventura-Zapata, Erika Alicia De la Cruz-Arguijo, Claudia Patricia Larralde-Corona and Jose Alberto Narváez-Zapata
J. Fungi 2023, 9(11), 1055; https://doi.org/10.3390/jof9111055 - 27 Oct 2023
Viewed by 1666
Abstract
The genus Pyricularia includes species that are phytopathogenic fungi, which infect different species of Poaceae, such as rice and sorghum. However, few isolates have been genetically characterized in North America. The current study addresses this lack of information by characterizing an additional 57 [...] Read more.
The genus Pyricularia includes species that are phytopathogenic fungi, which infect different species of Poaceae, such as rice and sorghum. However, few isolates have been genetically characterized in North America. The current study addresses this lack of information by characterizing an additional 57 strains of three grasses (Stenotaphrum secundatum, Cenchrus ciliaris and Digitaria ciliaris) from two distant regions of Mexico. A Pyricularia dataset with ITS sequences retrieved from GenBank and the studied sequences were used to build a haplotype network that allowed us to identify a few redundant haplotypes highly related to P. oryzae species. An analysis considering only the Mexican sequences allowed us to identify non-redundant haplotypes in the isolates of C. ciliaris and D. ciliaris, with a high identity with P. pennisetigena. The Pot2-TIR genomic fingerprinting technique resulted in high variability and allowed for the isolates to be grouped according to their host grass, whilst the ERIC-PCR technique was able to separate the isolates according to their host grass and their region of collection. Representative isolates from different host grasses were chosen to explore the pathogenic potential of these isolates. The selected isolates showed a differential pathogenic profile. Cross-infection with representative isolates from S. secundatum and C. ciliaris showed that these were unable to infect D. ciliaris grass and that the DY1 isolate from D. ciliaris was only able to infect its host grass. The results support the identification of pathogenic strains of Pyricularia isolates and their cross-infection potential in different grasses surrounding important crops in Mexico. Full article
Show Figures

Figure 1

30 pages, 2060 KB  
Review
Cellular and Molecular Triggers of Retinal Regeneration in Amphibians
by Yuliya V. Markitantova and Eleonora N. Grigoryan
Life 2023, 13(10), 1981; https://doi.org/10.3390/life13101981 - 28 Sep 2023
Cited by 2 | Viewed by 2130
Abstract
Understanding the mechanisms triggering the initiation of retinal regeneration in amphibians may advance the quest for prevention and treatment options for degenerating human retina diseases. Natural retinal regeneration in amphibians requires two cell sources, namely retinal pigment epithelium (RPE) and ciliary marginal zone. [...] Read more.
Understanding the mechanisms triggering the initiation of retinal regeneration in amphibians may advance the quest for prevention and treatment options for degenerating human retina diseases. Natural retinal regeneration in amphibians requires two cell sources, namely retinal pigment epithelium (RPE) and ciliary marginal zone. The disruption of RPE interaction with photoreceptors through surgery or injury triggers local and systemic responses for retinal protection. In mammals, disease-induced damage to the retina results in the shutdown of the function, cellular or oxidative stress, pronounced immune response, cell death and retinal degeneration. In contrast to retinal pathology in mammals, regenerative responses in amphibians have taxon-specific features ensuring efficient regeneration. These include rapid hemostasis, the recruitment of cells and factors of endogenous defense systems, activities of the immature immune system, high cell viability, and the efficiency of the extracellular matrix, cytoskeleton, and cell surface remodeling. These reactions are controlled by specific signaling pathways, transcription factors, and the epigenome, which are insufficiently studied. This review provides a summary of the mechanisms initiating retinal regeneration in amphibians and reveals its features collectively directed at recruiting universal responses to trauma to activate the cell sources of retinal regeneration. This study of the integrated molecular network of these processes is a prospect for future research in demand biomedicine. Full article
(This article belongs to the Section Cell Biology and Tissue Engineering)
Show Figures

Figure 1

12 pages, 1014 KB  
Review
Life-Saver or Undertaker: The Relationship between Primary Cilia and Cell Death in Vertebrate Embryonic Development
by Thorsten Pfirrmann and Christoph Gerhardt
J. Dev. Biol. 2022, 10(4), 52; https://doi.org/10.3390/jdb10040052 - 12 Dec 2022
Cited by 5 | Viewed by 3269
Abstract
The development of multicellular organisms requires a tightly coordinated network of cellular processes and intercellular signalling. For more than 20 years, it has been known that primary cilia are deeply involved in the mediation of intercellular signalling and that ciliary dysfunction results in [...] Read more.
The development of multicellular organisms requires a tightly coordinated network of cellular processes and intercellular signalling. For more than 20 years, it has been known that primary cilia are deeply involved in the mediation of intercellular signalling and that ciliary dysfunction results in severe developmental defects. Cilia-mediated signalling regulates cellular processes such as proliferation, differentiation, migration, etc. Another cellular process ensuring proper embryonic development is cell death. While the effect of cilia-mediated signalling on many cellular processes has been extensively studied, the relationship between primary cilia and cell death remains largely unknown. This article provides a short review on the current knowledge about this relationship. Full article
(This article belongs to the Special Issue Cilia in Development)
Show Figures

Figure 1

16 pages, 2333 KB  
Article
Transcriptional Specificity Analysis of Testis and Epididymis Tissues in Donkey
by Mubin Yu, Xiaoyuan Zhang, Jiamao Yan, Jianhua Guo, Fali Zhang, Kexin Zhu, Shuqin Liu, Yujiang Sun, Wei Shen and Junjie Wang
Genes 2022, 13(12), 2339; https://doi.org/10.3390/genes13122339 - 11 Dec 2022
Cited by 9 | Viewed by 2638
Abstract
Donkeys, with high economic value for meat, skin and milk production, are important livestock. However, the current insights into reproduction of donkeys are far from enough. To obtain a deeper understanding, the differential expression analysis and weighted gene co-expression network analysis (WGCNA) of [...] Read more.
Donkeys, with high economic value for meat, skin and milk production, are important livestock. However, the current insights into reproduction of donkeys are far from enough. To obtain a deeper understanding, the differential expression analysis and weighted gene co-expression network analysis (WGCNA) of transcriptomic data of testicular and epididymis tissues in donkeys were performed. In the result, there were 4313 differentially expressed genes (DEGs) in the two tissues, including 2047 enriched in testicular tissue and 2266 in epididymis tissue. WGCNA identified 1081 hub genes associated with testis development and 6110 genes with epididymal development. Next, the tissue-specific genes were identified with the above two methods, and the gene ontology (GO) analysis revealed that the epididymal-specific genes were associated with gonad development. On the other hand, the testis-specific genes were involved in the formation of sperm flagella, meiosis period, ciliary assembly, ciliary movement, etc. In addition, we found that eca-Mir-711 and eca-Mir-143 likely participated in regulating the development of epididymal tissue. Meanwhile, eca-Mir-429, eca-Mir-761, eca-Mir-200a, eca-Mir-191 and eca-Mir-200b potentially played an important role in regulating the development of testicular tissue. In short, these results will contribute to functional studies of the male reproductive trait in donkeys. Full article
(This article belongs to the Special Issue Equine Genetics and Genomics)
Show Figures

Figure 1

17 pages, 2766 KB  
Article
Performance of the Deep Neural Network Ciloctunet, Integrated with Open-Source Software for Ciliary Muscle Segmentation in Anterior Segment OCT Images, Is on Par with Experienced Examiners
by Torsten Straßer and Sandra Wagner
Diagnostics 2022, 12(12), 3055; https://doi.org/10.3390/diagnostics12123055 - 6 Dec 2022
Cited by 2 | Viewed by 1861
Abstract
Anterior segment optical coherence tomography (AS-OCT), being non-invasive and well-tolerated, is the method of choice for an in vivo investigation of ciliary muscle morphology and function. The analysis requires the segmentation of the ciliary muscle, which is, when performed manually, both time-consuming and [...] Read more.
Anterior segment optical coherence tomography (AS-OCT), being non-invasive and well-tolerated, is the method of choice for an in vivo investigation of ciliary muscle morphology and function. The analysis requires the segmentation of the ciliary muscle, which is, when performed manually, both time-consuming and prone to examiner bias. Here, we present a convolutional neural network trained for the automatic segmentation of the ciliary muscle in AS-OCT images. Ciloctunet is based on the Freiburg U-net and was trained and validated using 1244 manually segmented OCT images from two previous studies. An accuracy of 97.5% for the validation dataset was achieved. Ciloctunet’s performance was evaluated by replicating the findings of a third study with 180 images as the test data. The replication demonstrated that Ciloctunet performed on par with two experienced examiners. The intersection-over-union index (0.84) of the ciliary muscle thickness profiles between Ciloctunet and an experienced examiner was the same as between the two examiners. The mean absolute error between the ciliary muscle thickness profiles of Ciloctunet and the two examiners (35.16 µm and 45.86 µm) was comparable to the one between the examiners (34.99 µm). A statistically significant effect of the segmentation type on the derived biometric parameters was found for the ciliary muscle area but not for the selective thickness reading (“perpendicular axis”). Both the inter-rater and the intra-rater reliability of Ciloctunet were good to excellent. Ciloctunet avoids time-consuming manual segmentation, thus enabling the analysis of large numbers of images of ample study cohorts while avoiding possible examiner biases. Ciloctunet is available as open-source. Full article
(This article belongs to the Special Issue Artificial Intelligence in Eye Disease – Volume 2)
Show Figures

Figure 1

28 pages, 2021 KB  
Review
Cell Sources for Retinal Regeneration: Implication for Data Translation in Biomedicine of the Eye
by Eleonora N. Grigoryan
Cells 2022, 11(23), 3755; https://doi.org/10.3390/cells11233755 - 24 Nov 2022
Cited by 7 | Viewed by 5727
Abstract
The main degenerative diseases of the retina include macular degeneration, proliferative vitreoretinopathy, retinitis pigmentosa, and glaucoma. Novel approaches for treating retinal diseases are based on cell replacement therapy using a variety of exogenous stem cells. An alternative and complementary approach is the potential [...] Read more.
The main degenerative diseases of the retina include macular degeneration, proliferative vitreoretinopathy, retinitis pigmentosa, and glaucoma. Novel approaches for treating retinal diseases are based on cell replacement therapy using a variety of exogenous stem cells. An alternative and complementary approach is the potential use of retinal regeneration cell sources (RRCSs) containing retinal pigment epithelium, ciliary body, Müller glia, and retinal ciliary region. RRCSs in lower vertebrates in vivo and in mammals mostly in vitro are able to proliferate and exhibit gene expression and epigenetic characteristics typical for neural/retinal cell progenitors. Here, we review research on the factors controlling the RRCSs’ properties, such as the cell microenvironment, growth factors, cytokines, hormones, etc., that determine the regenerative responses and alterations underlying the RRCS-associated pathologies. We also discuss how the current data on molecular features and regulatory mechanisms of RRCSs could be translated in retinal biomedicine with a special focus on (1) attempts to obtain retinal neurons de novo both in vivo and in vitro to replace damaged retinal cells; and (2) investigations of the key molecular networks stimulating regenerative responses and preventing RRCS-related pathologies. Full article
(This article belongs to the Special Issue Gene and Cell Therapy in Regenerative Medicine)
Show Figures

Figure 1

19 pages, 3507 KB  
Review
Ocular Lymphatic and Glymphatic Systems: Implications for Retinal Health and Disease
by Nasir Uddin and Matt Rutar
Int. J. Mol. Sci. 2022, 23(17), 10139; https://doi.org/10.3390/ijms231710139 - 4 Sep 2022
Cited by 17 | Viewed by 9533
Abstract
Clearance of ocular fluid and metabolic waste is a critical function of the eye in health and disease. The eye has distinct fluid outflow pathways in both the anterior and posterior segments. Although the anterior outflow pathway is well characterized, little is known [...] Read more.
Clearance of ocular fluid and metabolic waste is a critical function of the eye in health and disease. The eye has distinct fluid outflow pathways in both the anterior and posterior segments. Although the anterior outflow pathway is well characterized, little is known about posterior outflow routes. Recent studies suggest that lymphatic and glymphatic systems play an important role in the clearance of fluid and waste products from the posterior segment of the eye. The lymphatic system is a vascular network that runs parallel to the blood circulatory system. It plays an essential role in maintenance of fluid homeostasis and immune surveillance in the body. Recent studies have reported lymphatics in the cornea (under pathological conditions), ciliary body, choroid, and optic nerve meninges. The evidence of lymphatics in optic nerve meninges is, however, limited. An alternative lymphatic system termed the glymphatic system was recently discovered in the rodent eye and brain. This system is a glial cell-based perivascular network responsible for the clearance of interstitial fluid and metabolic waste. In this review, we will discuss our current knowledge of ocular lymphatic and glymphatic systems and their role in retinal degenerative diseases. Full article
(This article belongs to the Special Issue Novel Insights in Retinal Diseases Pathophysiology and Therapies)
Show Figures

Figure 1

13 pages, 7461 KB  
Article
Heterozygous Nme7 Mutation Affects Glucose Tolerance in Male Rats
by Lucie Šedová, Jan Prochazka, Dagmar Zudová, Běla Bendlová, Josef Včelák, Radislav Sedlacek and Ondřej Šeda
Genes 2021, 12(7), 1087; https://doi.org/10.3390/genes12071087 - 18 Jul 2021
Cited by 8 | Viewed by 3729
Abstract
Complex metabolic conditions such as type 2 diabetes and obesity result from the interaction of numerous genetic and environmental factors. While the family of Nme proteins has been connected so far mostly to development, proliferation, or ciliary functions, several lines of evidence from [...] Read more.
Complex metabolic conditions such as type 2 diabetes and obesity result from the interaction of numerous genetic and environmental factors. While the family of Nme proteins has been connected so far mostly to development, proliferation, or ciliary functions, several lines of evidence from human and experimental studies point to the potential involvement of one of its members, NME7 (non-metastatic cells 7, nucleoside diphosphate kinase 7) in carbohydrate and lipid metabolism. As a complete lack of Nme7 is semilethal in rats, we compared morphometric, metabolic, and transcriptomic profiles of standard diet-fed heterozygous Nme7+/− on male rats vs. their wild-type Nme7+/+ controls. Nme7+/− animals showed increased body weight, adiposity, higher insulin levels together with decreased glucose tolerance. Moreover, they displayed pancreatic islet fibrosis and kidney tubular damage. Despite no signs of overt liver steatosis or dyslipidemia, we found significant changes in the hepatic transcriptome of Nme7+/− male rats with a concerted increase of expression of lipogenic enzymes including Scd1, Fads1, Dhcr7 and a decrease of Cyp7b1 and Nme7. Network analyses suggested possible links between Nme7 and the activation of Srebf1 and Srebf2 upstream regulators. These results further support the implication of NME7 in the pathogenesis of glucose intolerance and adiposity. Full article
Show Figures

Figure 1

Back to TopTop