Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = chronic lung disease of prematurity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 771 KiB  
Review
Therapeutic Prospects of αv Integrins Inhibition in Fibrotic Lung Diseases and Carcinogenesis
by Eugenija Leonidovna Golovina, Veronika Vladimirovna Kochubey, Marina Alekseevna Shabanova, Darya Maksimovna Chekhvalova, Valentina Alexandrovna Serebryakova, Evgenii Germanovich Skurikhin, Olga Evgenievna Vaizova, Sergey Georgievich Morozov, Aslan Amirkhanovich Kubatiev and Alexander Mikhaylovich Dygai
Int. J. Mol. Sci. 2025, 26(13), 6202; https://doi.org/10.3390/ijms26136202 - 27 Jun 2025
Viewed by 684
Abstract
The uncontrolled fibrosis of lung tissue can lead to premature death in patients suffering from idiopathic pulmonary fibrosis (IPF), and it complicates the course of chronic obstructive pulmonary disease (COPD) and emphysema. It is also a risk factor for developing lung cancer. Antifibrotic [...] Read more.
The uncontrolled fibrosis of lung tissue can lead to premature death in patients suffering from idiopathic pulmonary fibrosis (IPF), and it complicates the course of chronic obstructive pulmonary disease (COPD) and emphysema. It is also a risk factor for developing lung cancer. Antifibrotic drugs, such as nantedanib and pirfenidone, are able to slow down the progression of pulmonary fibrosis, but more effective treatment is still needed to reverse it. Studies on the pathogenesis of tissue fibrosis have demonstrated that integrins play a crucial role affecting the development of pulmonary fibrosis, for example, by activating transforming growth factor-β (TGF-β). Taking the above into consideration, targeting specific integrins could offer promising opportunities for managing fibroplastic changes in lung tissue. Integrins are a type of transmembrane molecule that mediate interactions between cells and extracellular matrix (ECM) molecules. This review discusses the role of integrins in the pathogeneses of respiratory diseases and carcinogenesis, as well as presents promising approaches to the drug therapy of pulmonary fibrosis of various etiologies based on integrin inhibition. Full article
Show Figures

Figure 1

19 pages, 1598 KiB  
Review
Molecular and Immunological Mechanisms Associated with Diesel Exhaust Exposure
by Naresh Singh and Samantha Sharma
Targets 2025, 3(2), 14; https://doi.org/10.3390/targets3020014 - 21 Apr 2025
Viewed by 856
Abstract
Air pollution, particularly from vehicular emissions, has emerged as a critical environmental health concern, contributing to a global estimated 7 million premature deaths annually. Diesel exhaust, a major component of urban air pollution, contains fine particulate matter and gases that evade respiratory filtration, [...] Read more.
Air pollution, particularly from vehicular emissions, has emerged as a critical environmental health concern, contributing to a global estimated 7 million premature deaths annually. Diesel exhaust, a major component of urban air pollution, contains fine particulate matter and gases that evade respiratory filtration, penetrating deep into the lungs and triggering oxidative stress, inflammation, and immune dysregulation. Epidemiological and in vitro studies have linked diesel exhaust exposure to respiratory diseases such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and lung cancer, with immunological mechanisms playing a central role. Diesel exhaust particles induce oxidative stress, impair macrophage phagocytosis, and skew T-cell polarization toward pro-inflammatory Th2 and Th17 responses, exacerbating chronic inflammation and tissue damage. Despite these insights, significant gaps remain in understanding the precise immunomodulatory pathways and long-term systemic effects of diesel exhaust exposure. While animal models and in vitro studies provide valuable data, they often fail to capture the complexity of human exposure and immune responses. Further research is needed to elucidate the mechanisms underlying diesel exhaust-induced immune dysregulation, particularly in vulnerable populations with pre-existing respiratory conditions. This review focuses on summarizing the current knowledge and identifying gaps that are essential for developing targeted interventions and policies to mitigate the adverse health impacts of diesel exhaust and improve respiratory health outcomes globally. Full article
Show Figures

Figure 1

15 pages, 549 KiB  
Review
Telomeropathies in Interstitial Lung Disease and Lung Transplant Recipients
by Brian D. Southern and Shruti K. Gadre
J. Clin. Med. 2025, 14(5), 1496; https://doi.org/10.3390/jcm14051496 - 24 Feb 2025
Cited by 1 | Viewed by 1555
Abstract
Telomeropathies, or telomere biology disorders (TBDs), are syndromes that can cause a number of medical conditions, including interstitial lung disease (ILD), bone marrow failure, liver fibrosis, and other diseases. They occur due to genetic mutations to the telomerase complex enzymes that result in [...] Read more.
Telomeropathies, or telomere biology disorders (TBDs), are syndromes that can cause a number of medical conditions, including interstitial lung disease (ILD), bone marrow failure, liver fibrosis, and other diseases. They occur due to genetic mutations to the telomerase complex enzymes that result in premature shortening of telomeres, the caps on the ends of cellular DNA that protect chromosome length during cell division, leading to early cell senescence and death. Idiopathic pulmonary fibrosis (IPF) is the most common manifestation of the telomere biology disorders, although it has been described in other interstitial lung diseases as well, such as rheumatoid arthritis-associated ILD and chronic hypersensitivity pneumonitis. Telomere-related mutations can be inherited or can occur sporadically. Identifying these patients and offering genetic counseling is important because telomerapathies have been associated with poorer outcomes including death, lung transplantation, hospitalization, and FVC decline. Additionally, treatment with immunosuppressants has been shown to be associated with worse outcomes. Currently, there is no specific treatment for TBD except to transplant the organ that is failing, although there are a number of promising treatment strategies currently under investigation. Shortened telomere length is routinely discovered in patients undergoing lung transplantation for IPF. Testing to detect early TBD in patients with suggestive signs or symptoms can allow for more comprehensive treatment and multidisciplinary care pre- and post-transplant. Patients with TBD undergoing lung transplantation have been reported to have both pulmonary and extrapulmonary complications at a higher frequency than other lung transplant recipients, such as graft-specific complications, increased infections, and complications related to immunosuppressive therapy. Full article
(This article belongs to the Special Issue Updates on Interstitial Lung Disease)
Show Figures

Figure 1

17 pages, 1049 KiB  
Review
Role of Epigenetics in Chronic Lung Disease
by Felix Ritzmann, Michelle Brand, Robert Bals, Michael Wegmann and Christoph Beisswenger
Cells 2025, 14(4), 251; https://doi.org/10.3390/cells14040251 - 10 Feb 2025
Cited by 1 | Viewed by 1768
Abstract
Epigenetics regulates gene expression and thus cellular processes that underlie the pathogenesis of chronic lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). Environmental factors (e.g., air pollution, smoking, infections, poverty), but also conditions such as gastroesophageal [...] Read more.
Epigenetics regulates gene expression and thus cellular processes that underlie the pathogenesis of chronic lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). Environmental factors (e.g., air pollution, smoking, infections, poverty), but also conditions such as gastroesophageal reflux, induce epigenetic changes long before lung disease is diagnosed. Therefore, epigenetic signatures have the potential to serve as biomarkers that can be used to identify younger patients who are at risk for premature loss of lung function or diseases such as IPF. Epigenetic analyses also contribute to a better understanding of chronic lung disease. This can be used directly to improve therapies, as well as for the development of innovative drugs. Here, we highlight the role of epigenetics in the development and progression of chronic lung disease, with a focus on DNA methylation. Full article
Show Figures

Figure 1

14 pages, 869 KiB  
Article
Skin Markers of Premature Ageing in Patients with COPD: Results Form COSYCONET
by Thomas Melzer, Veronika Graf, Angelika Kronseder, Stefan Karrasch, Martina Kerschner, Claus F. Vogelmeier, Robert Bals, Peter Alter, Henrik Watz, Sebastian Fähndrich, Jürgen Behr, Benjamin Waschki, Franziska Christina Trudzinski, Rudolf A. Jörres and Kathrin Kahnert
J. Clin. Med. 2024, 13(22), 6972; https://doi.org/10.3390/jcm13226972 - 19 Nov 2024
Viewed by 1268
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is commonly associated with ageing, with the prevalence and severity increasing by age. Smoking-induced premature ageing is thought to contribute to COPD, particularly lung emphysema. This study aimed to explore the relationship between lung function impairment and [...] Read more.
Background: Chronic obstructive pulmonary disease (COPD) is commonly associated with ageing, with the prevalence and severity increasing by age. Smoking-induced premature ageing is thought to contribute to COPD, particularly lung emphysema. This study aimed to explore the relationship between lung function impairment and skin texture, as a marker of biological or premature ageing, in COPD patients. Methods: A subcohort from the COSYCONET COPD-study was analyzed, where skin-relief replicas of the eye’s outer corner and mid-lower inner arm were collected, along with semi-quantitative facial photographs. We examined the correlation between skin parameters and lung function, particularly the diffusing capacity (TLCO) as an indicator of emphysema. Results: Among 46 COPD patients (69 ± 8 years, 52% female), skin texture from the inner forearm, but not from the eye corner, was significantly associated with TLCO% predicted, with a higher skin roughness correlating with a lower TLCO (p = 0.015). This relationship persisted after adjusting for age, BMI, sex, pack years, and smoking status. No significant associations were found with facial photographs. Conclusions: These findings suggest that systemic ageing, reflected in inner arm skin texture, is linked to lung emphysema. Skin ageing markers may be valuable in future interventional studies involving anti-ageing treatments. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

10 pages, 5405 KiB  
Communication
Loss of Surfactant Protein A Alters Perinatal Lung Morphology and Susceptibility to Hyperoxia-Induced Bronchopulmonary Dysplasia
by Shaili Amatya, Matthew Lanza, Todd M. Umstead and Zissis C. Chroneos
Antioxidants 2024, 13(11), 1309; https://doi.org/10.3390/antiox13111309 - 28 Oct 2024
Viewed by 1581
Abstract
Bronchopulmonary dysplasia (BPD) is a condition of poor alveolar formation that causes chronic breathing impairment in infants born prematurely. Preterm lungs lack surfactant and are vulnerable to oxidative injuries driving the development of BPD. Our recent studies reported that surfactant protein A (SP-A) [...] Read more.
Bronchopulmonary dysplasia (BPD) is a condition of poor alveolar formation that causes chronic breathing impairment in infants born prematurely. Preterm lungs lack surfactant and are vulnerable to oxidative injuries driving the development of BPD. Our recent studies reported that surfactant protein A (SP-A) genetic variants influence susceptibility to neonatal lung disease. SP-A modulates activation of alveolar macrophages and parturition onset in late gestation. We asked whether a lack of SP-A alters alveolarization in a mouse model of hyperoxia-induced BPD. SP-A-deficient and control newborn mice were exposed to either clinically relevant 60% O2 hyperoxia or normoxia for 5–7 days. Alveolar formation was then assessed by mean linear intercept (MLI) and radial alveolar count (RAC) measurements in lung tissue sections. We report that the combination of SP-A deficiency and hyperoxia reduces alveolar growth compared to WT mice. The morphometric analysis of normoxic SP-A-deficient lungs showed lower RAC compared to controls, indicating reduced alveolar number. In the presence of hyperoxia, MLI was higher in SP-A-deficient lungs compared to controls. Differences were statistically significant for female pups. Spatial proteomic profiling of lung tissue sections showed that hyperoxia caused a 4-fold increase in the DNA damage marker γH2Ax in macrophages of SP-A-deficient lungs compared to normoxia. Our short report suggests an important role for SP-A in perinatal lung development and the protection of lung macrophages from oxidant injury. These studies warrant future investigation to discern the temporal interaction of SP-A, gender, oxidant injury, and lung macrophages in perinatal alveolar formation and development of BPD. Full article
(This article belongs to the Special Issue Oxidative Stress in Lung Diseases)
Show Figures

Graphical abstract

29 pages, 7020 KiB  
Review
Role of Myeloperoxidase, Oxidative Stress, and Inflammation in Bronchopulmonary Dysplasia
by Tzong-Jin Wu, Xigang Jing, Michelle Teng, Kirkwood A. Pritchard, Billy W. Day, Stephen Naylor and Ru-Jeng Teng
Antioxidants 2024, 13(8), 889; https://doi.org/10.3390/antiox13080889 - 23 Jul 2024
Cited by 13 | Viewed by 2640
Abstract
Bronchopulmonary dysplasia (BPD) is a lung complication of premature births. The leading causes of BPD are oxidative stress (OS) from oxygen treatment, infection or inflammation, and mechanical ventilation. OS activates alveolar myeloid cells with subsequent myeloperoxidase (MPO)-mediated OS. Premature human neonates lack sufficient [...] Read more.
Bronchopulmonary dysplasia (BPD) is a lung complication of premature births. The leading causes of BPD are oxidative stress (OS) from oxygen treatment, infection or inflammation, and mechanical ventilation. OS activates alveolar myeloid cells with subsequent myeloperoxidase (MPO)-mediated OS. Premature human neonates lack sufficient antioxidative capacity and are susceptible to OS. Unopposed OS elicits inflammation, endoplasmic reticulum (ER) stress, and cellular senescence, culminating in a BPD phenotype. Poor nutrition, patent ductus arteriosus, and infection further aggravate OS. BPD survivors frequently suffer from reactive airway disease, neurodevelopmental deficits, and inadequate exercise performance and are prone to developing early-onset chronic obstructive pulmonary disease. Rats and mice are commonly used to study BPD, as they are born at the saccular stage, comparable to human neonates at 22–36 weeks of gestation. The alveolar stage in rats and mice starts at the postnatal age of 5 days. Because of their well-established antioxidative capacities, a higher oxygen concentration (hyperoxia, HOX) is required to elicit OS lung damage in rats and mice. Neutrophil infiltration and ER stress occur shortly after HOX, while cellular senescence is seen later. Studies have shown that MPO plays a critical role in the process. A novel tripeptide, N-acetyl-lysyltyrosylcysteine amide (KYC), a reversible MPO inhibitor, attenuates BPD effectively. In contrast, the irreversible MPO inhibitor—AZD4831—failed to provide similar efficacy. Interestingly, KYC cannot offer its effectiveness without the existence of MPO. We review the mechanisms by which this anti-MPO agent attenuates BPD. Full article
Show Figures

Figure 1

15 pages, 5770 KiB  
Article
PGC1-Alpha/Sirt3 Signaling Pathway Mediates the Anti-Pulmonary Fibrosis Effect of Hirudin by Inhibiting Fibroblast Senescence
by Bin He, Qian Zeng, Yumei Tian, Yuyang Luo, Minlin Liao, Wenjie Huang, Bin Wu, Ziqiang Luo, Xiaoting Huang, Wei Liu and Siyuan Tang
Biomedicines 2024, 12(7), 1436; https://doi.org/10.3390/biomedicines12071436 - 27 Jun 2024
Cited by 3 | Viewed by 1976
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic lung disease for which there is a lack of effective pharmacological treatments. Hirudin, a natural peptide extracted from leeches, has been used for broad pharmacological purposes. In this study, we investigated the therapeutic effects [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic lung disease for which there is a lack of effective pharmacological treatments. Hirudin, a natural peptide extracted from leeches, has been used for broad pharmacological purposes. In this study, we investigated the therapeutic effects of hirudin on IPF and its related mechanism of action. By constructing a mouse model of pulmonary fibrosis and treating it with hirudin in vivo, we found that hirudin exerted anti-fibrotic, anti-oxidative, and anti-fibroblast senescence effects. Moreover, using an in vitro model of stress-induced premature senescence in primary mouse lung fibroblasts and treating with hirudin, we observed inhibition of fibroblast senescence and upregulation of PGC1-alpha and Sirt3 expression. However, specific silencing of PGC1-alpha or Sirt3 suppressed the anti-fibroblast senescence effect of hirudin. Thus, the PGC1-alpha/Sirt3 pathway mediates the anti-fibroblast senescence effect of hirudin, potentially serving as a molecular mechanism underlying its anti-fibrosis and anti-oxidative stress effects exerted on the lungs. Full article
(This article belongs to the Special Issue Pathogenesis, Diagnosis, and Treatment of Respiratory Diseases)
Show Figures

Figure 1

21 pages, 4673 KiB  
Article
Leveraging Integrated RNA Sequencing to Decipher Adrenomedullin’s Protective Mechanisms in Experimental Bronchopulmonary Dysplasia
by Subarna Palit, Amrit Kumar Shrestha, Shyam Thapa, Sandra L. Grimm, Cristian Coarfa, Fabian Theis, Lukas M. Simon and Binoy Shivanna
Genes 2024, 15(6), 806; https://doi.org/10.3390/genes15060806 - 19 Jun 2024
Cited by 3 | Viewed by 2048
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease commonly affecting premature infants, with limited therapeutic options and increased long-term consequences. Adrenomedullin (Adm), a proangiogenic peptide hormone, has been found to protect rodents against experimental BPD. This study aims to elucidate the [...] Read more.
Bronchopulmonary dysplasia (BPD) is a chronic lung disease commonly affecting premature infants, with limited therapeutic options and increased long-term consequences. Adrenomedullin (Adm), a proangiogenic peptide hormone, has been found to protect rodents against experimental BPD. This study aims to elucidate the molecular and cellular mechanisms through which Adm influences BPD pathogenesis using a lipopolysaccharide (LPS)-induced model of experimental BPD in mice. Bulk RNA sequencing of Adm-sufficient (wild-type or Adm+/+) and Adm-haplodeficient (Adm+/−) mice lungs, integrated with single-cell RNA sequencing data, revealed distinct gene expression patterns and cell type alterations associated with Adm deficiency and LPS exposure. Notably, computational integration with cell atlas data revealed that Adm-haplodeficient mouse lungs exhibited gene expression signatures characteristic of increased inflammation, natural killer (NK) cell frequency, and decreased endothelial cell and type II pneumocyte frequency. Furthermore, in silico human BPD patient data analysis supported our cell type frequency finding, highlighting elevated NK cells in BPD infants. These results underscore the protective role of Adm in experimental BPD and emphasize that it is a potential therapeutic target for BPD infants with an inflammatory phenotype. Full article
(This article belongs to the Special Issue RNAs in Biology)
Show Figures

Figure 1

15 pages, 1296 KiB  
Article
Comprehensive Summary of Safety Data on Nirsevimab in Infants and Children from All Pivotal Randomized Clinical Trials
by Vaishali S. Mankad, Amanda Leach, Yue Chang, Ulrika Wählby Hamrén, Alexandre Kiazand, Robert J. Kubiak, Therese Takas, Tonya Villafana and Manish Shroff
Pathogens 2024, 13(6), 503; https://doi.org/10.3390/pathogens13060503 - 13 Jun 2024
Cited by 14 | Viewed by 6395
Abstract
Background: Nirsevimab is approved in the US for the prevention of respiratory syncytial virus (RSV) lower respiratory tract disease in neonates and infants during their first RSV season and in children aged ≤24 months who remain vulnerable to severe RSV disease through their [...] Read more.
Background: Nirsevimab is approved in the US for the prevention of respiratory syncytial virus (RSV) lower respiratory tract disease in neonates and infants during their first RSV season and in children aged ≤24 months who remain vulnerable to severe RSV disease through their second RSV season. We summarize a pre-specified analysis of nirsevimab safety data from three randomized controlled trials: Phase 2b (NCT02878330; healthy infants born ≥29 to <35 weeks’ gestational age [wGA]); Phase 3 MELODY (NCT03979313; healthy infants born ≥35 wGA); and Phase 2/3 MEDLEY (NCT03959488; infants with congenital heart disease [CHD] and/or chronic lung disease of prematurity [CLD] or born ≤35 wGA). Methods: Participants (randomized 2:1) received a single intramuscular dose of nirsevimab or comparator (placebo, Phase 2b/MELODY; 5× once-monthly palivizumab, MEDLEY) before their first RSV season (recipients < 5 kg, nirsevimab 50 mg; ≥5 kg, nirsevimab 100 mg). In MEDLEY, children with CHD/CLD continued to a second RSV season: first-season nirsevimab recipients received nirsevimab 200 mg; first-season palivizumab recipients were re-randomized 1:1 to receive nirsevimab 200 mg or 5× once-monthly palivizumab. Results: The incidence, severity, and nature of AEs were similar across treatments (nirsevimab, n = 3184; placebo, n = 1284; palivizumab, n = 304). Most AEs were mild to moderate in severity, with ≥98% unrelated to treatment. AEs of special interest occurred infrequently (<1%): no anaphylaxis or thrombocytopenia were treatment-related, and no immune complex disease was reported. Deaths (incidence < 1.0%) were all unrelated to treatment. Conclusions: A single dose per season of nirsevimab for the prevention of RSV disease had a favorable safety profile, irrespective of wGA or comorbidities. Full article
(This article belongs to the Special Issue Recent Advances in Pediatric Infectious Diseases)
Show Figures

Figure 1

13 pages, 588 KiB  
Systematic Review
Immunosenescence and Inflammation in Chronic Obstructive Pulmonary Disease: A Systematic Review
by Fabíola Ramos Jesus, Fabine Correia Passos, Michelle Miranda Lopes Falcão, Marcelo Vincenzo Sarno Filho, Ingrid Lorena Neves da Silva, Anna Clara Santiago Moraes, Margarida Célia Lima Costa Neves and Gyselle Chrystina Baccan
J. Clin. Med. 2024, 13(12), 3449; https://doi.org/10.3390/jcm13123449 - 13 Jun 2024
Cited by 8 | Viewed by 1855
Abstract
Background/Objectives: Chronic Obstructive Pulmonary Disease (COPD) is a disease of premature aging, characterized by airflow limitations in the lungs and systemic chronic inflammation. This systematic review aimed to provide a systematic overview of immunosenescence and inflammation in Chronic Obstructive Pulmonary Disease (COPD). [...] Read more.
Background/Objectives: Chronic Obstructive Pulmonary Disease (COPD) is a disease of premature aging, characterized by airflow limitations in the lungs and systemic chronic inflammation. This systematic review aimed to provide a systematic overview of immunosenescence and inflammation in Chronic Obstructive Pulmonary Disease (COPD). Methods: The PubMed, Science Direct, Scopus, Cochrane Library, and Web of Science databases were searched for studies on markers of immunosenescence. Observational studies comparing patients with COPD to individuals without disease were evaluated, considering the following markers: inflammation and senescence in COPD, naïve, memory, and CD28null T cells, and telomere length in leukocytes. Results: A total of 15 studies were included, eight of which were rated as high quality. IL-6 production, telomere shortening, and the higher frequencies of CD28null T cells were more prominent findings in the COPD studies analyzed. Despite lung function severity being commonly investigated in the included studies, the importance of this clinical marker to immunosenescence remains inconclusive. Conclusions: The findings of this systematic review confirmed the presence of accelerated immunosenescence, in addition to systemic inflammation, in stable COPD patients. Further studies are necessary to more comprehensively evaluate the impact of immunosenescence on lung function in COPD. Full article
(This article belongs to the Topic Inflammaging: The Immunology of Aging)
Show Figures

Figure 1

13 pages, 2203 KiB  
Review
The Role of the Airway and Gut Microbiome in the Development of Chronic Lung Disease of Prematurity
by Lieve Boel, David J. Gallacher, Julian R. Marchesi and Sailesh Kotecha
Pathogens 2024, 13(6), 472; https://doi.org/10.3390/pathogens13060472 - 4 Jun 2024
Cited by 5 | Viewed by 1705
Abstract
Chronic lung disease (CLD) of prematurity, a common cause of morbidity and mortality in preterm-born infants, has a multifactorial aetiology. This review summarizes the current evidence for the effect of the gut and airway microbiota on the development of CLD, highlighting the differences [...] Read more.
Chronic lung disease (CLD) of prematurity, a common cause of morbidity and mortality in preterm-born infants, has a multifactorial aetiology. This review summarizes the current evidence for the effect of the gut and airway microbiota on the development of CLD, highlighting the differences in the early colonisation patterns in preterm-born infants compared to term-born infants. Stool samples from preterm-born infants who develop CLD have less diversity than those who do not develop CLD. Pulmonary inflammation, which is a hallmark in the development of CLD, may potentially be influenced by gut bacteria. The respiratory microbiota is less abundant than the stool microbiota in preterm-born infants. There is a lack of clear evidence for the role of the respiratory microbiota in the development of CLD, with results from individual studies not replicated. A common finding is the presence of a single predominant bacterial genus in the lungs of preterm-born infants who develop CLD. Probiotic preparations have been proposed as a potential therapeutic strategy to modify the gut or lung microbiota with the aim of reducing rates of CLD but additional robust evidence is required before this treatment is introduced into routine clinical practice. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction in Respiratory Infections of the Neonate)
Show Figures

Figure 1

16 pages, 2961 KiB  
Article
Hyperoxia-Induced miR-195 Causes Bronchopulmonary Dysplasia in Neonatal Mice
by Patrick Philpot, Fred Graumuller, Nicole Melchiorre, Varsha Prahaladan, Xander Takada, Srinarmadha Chandran, Melissa Guillermo, David Dickler, Zubair H. Aghai, Pragnya Das and Vineet Bhandari
Biomedicines 2024, 12(6), 1208; https://doi.org/10.3390/biomedicines12061208 - 29 May 2024
Cited by 2 | Viewed by 1663
Abstract
Background: Exposure to hyperoxia is an important factor in the development of bronchopulmonary dysplasia (BPD) in preterm newborns. MicroRNAs (miRs) have been implicated in the pathogenesis of BPD and provide a potential therapeutic target. Methods: This study was conducted utilizing a postnatal animal [...] Read more.
Background: Exposure to hyperoxia is an important factor in the development of bronchopulmonary dysplasia (BPD) in preterm newborns. MicroRNAs (miRs) have been implicated in the pathogenesis of BPD and provide a potential therapeutic target. Methods: This study was conducted utilizing a postnatal animal model of experimental hyperoxia-induced murine BPD to investigate the expression and function of miR-195 as well as its molecular signaling targets within developing mouse lung tissue. Results: miR-195 expression levels increased in response to hyperoxia in male and female lungs, with the most significant elevation occurring in 40% O2 (mild) and 60% O2 (moderate) BPD. The inhibition of miR-195 improved pulmonary morphology in the hyperoxia-induced BPD model in male and female mice with females showing more resistance to injury and better recovery of alveolar chord length, septal thickness, and radial alveolar count. Additionally, we reveal miR-195-dependent signaling pathways involved in BPD and identify PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2) as a novel specific target protein of miR-195. Conclusions: Our data demonstrate that high levels of miR-195 in neonatal lungs cause the exacerbation of hyperoxia-induced experimental BPD while its inhibition results in amelioration. This finding suggests a therapeutic potential of miR-195 inhibition in preventing BPD. Full article
(This article belongs to the Special Issue Advances in Lung Diseases of Neonatal Medicine)
Show Figures

Figure 1

22 pages, 5312 KiB  
Article
Use of Optical Redox Imaging to Quantify Alveolar Macrophage Redox State in Infants: Proof of Concept Experiments in a Murine Model and Human Tracheal Aspirates Samples
by He N. Xu, Diego Gonzalves, Jonathan H. Hoffman, Joseph A. Baur, Lin Z. Li and Erik A. Jensen
Antioxidants 2024, 13(5), 546; https://doi.org/10.3390/antiox13050546 - 29 Apr 2024
Cited by 2 | Viewed by 2352 | Correction
Abstract
Emerging data indicate that lung macrophages (LM) may provide a novel biomarker to classify disease endotypes in bronchopulmonary dysplasia (BPD), a form of infant chronic lung disease, and that augmentation of the LM phenotype may be a potential therapeutic target. To contribute to [...] Read more.
Emerging data indicate that lung macrophages (LM) may provide a novel biomarker to classify disease endotypes in bronchopulmonary dysplasia (BPD), a form of infant chronic lung disease, and that augmentation of the LM phenotype may be a potential therapeutic target. To contribute to this area of research, we first used Optical Redox Imaging (ORI) to characterize the responses to H2O2-induced oxidative stress and caffeine treatment in an in vitro model of mouse alveolar macrophages (AM). H2O2 caused a dose-dependent decrease in NADH and an increase in FAD-containing flavoproteins (Fp) and the redox ratio Fp/(NADH + Fp). Caffeine treatment did not affect Fp but significantly decreased NADH with doses of ≥50 µM, and 1000 µM caffeine treatment significantly increased the redox ratio and decreased the baseline level of mitochondrial ROS (reactive oxygen species). However, regardless of whether AM were pretreated with caffeine or not, the mitochondrial ROS levels increased to similar levels after H2O2 challenge. We then investigated the feasibility of utilizing ORI to examine macrophage redox status in tracheal aspirate (TA) samples obtained from premature infants receiving invasive ventilation. We observed significant heterogeneity in NADH, Fp, Fp/(NADH + Fp), and mitochondrial ROS of the TA macrophages. We found a possible positive correlation between gestational age and NADH and a negative correlation between mean airway pressure and NADH that provides hypotheses for future testing. Our study demonstrates that ORI is a feasible technique to characterize macrophage redox state in infant TA samples and supports further use of this method to investigate lung macrophage-mediated disease endotypes in BPD. Full article
(This article belongs to the Special Issue Oxidative Stress and Newborns)
Show Figures

Figure 1

10 pages, 1078 KiB  
Article
Metabolomic Analysis Reveals the Association of Severe Bronchopulmonary Dysplasia with Gut Microbiota and Oxidative Response in Extremely Preterm Infants
by Chih-Yung Chiu, Ming-Chou Chiang, Meng-Han Chiang, Reyin Lien, Ren-Huei Fu, Kai-Hsiang Hsu and Shih-Ming Chu
Metabolites 2024, 14(4), 219; https://doi.org/10.3390/metabo14040219 - 13 Apr 2024
Cited by 1 | Viewed by 1959
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease mainly affecting premature infants needing ventilation or oxygen for respiratory distress. This study aimed to evaluate the molecular linkages for BPD in very and extremely preterm infants using a metabolomics-based approach. A case-control study of [...] Read more.
Bronchopulmonary dysplasia (BPD) is a chronic lung disease mainly affecting premature infants needing ventilation or oxygen for respiratory distress. This study aimed to evaluate the molecular linkages for BPD in very and extremely preterm infants using a metabolomics-based approach. A case-control study of enrolling preterm infants born before 32 weeks gestational age (GA) was prospectively performed. These preterm infants were subsequently stratified into the following two groups for further analysis: no or mild BPD, and moderate or severe BPD based on the 2019 NICHD criteria. Urinary metabolomic profiling was performed using 1H-Nuclear magnetic resonance (NMR) spectroscopy coupled with partial least squares discriminant analysis (PLS-DA) at a corrected age of 6 months. Metabolites significantly differentially related to GA and BPD severity were performed between groups, and their roles in functional metabolic pathways were also assessed. A total of 89 preterm infants born before 32 weeks gestation and 50 infants born at term age (above 37 completed weeks’ gestation) served as controls and were enrolled into the study. There were 21 and 24 urinary metabolites identified to be significantly associated with GA and BPD severity, respectively (p < 0.05). Among them, N-phenylacetylglycine, hippurate, acetylsalicylate, gluconate, and indoxyl sulfate were five metabolites that were significantly higher, with the highest importance in both infants with GA < 28 weeks and those with moderate to severe BPD, whereas betaine and N,N-dimethylglycine were significantly lower (p < 0.05). Furthermore, ribose and a gluconate related pentose phosphate pathway were strongly associated with these infants (p < 0.01). In conclusion, urinary metabolomic analysis highlights the crucial role of gut microbiota dysbiosis in the pathogenesis of BPD in preterm infants, accompanied by metabolites related to diminished antioxidative capacity, prompting an aggressive antioxidation response in extremely preterm infants with severe BPD. Full article
(This article belongs to the Special Issue Application of Metabolomics in Clinical Neonatology)
Show Figures

Figure 1

Back to TopTop