Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = chromosome compartments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6736 KiB  
Article
Genome-Wide Identification, Characterization, and Expression Analysis of the U-Box Gene Family in Cucumber (Cucumis sativus)
by Quanqing Chen, Tian Zhao, Hao Song, Siyuan Sha, Jun Ma, Ruihan Zhang, Weiwen Kong, Shuying Yang, Jinglan Liu and Yiping Wang
Plants 2025, 14(12), 1801; https://doi.org/10.3390/plants14121801 - 12 Jun 2025
Viewed by 573
Abstract
Plant U-box (PUB) E3 ubiquitin ligases have undergone significant expansion compared to their fungal and animal counterparts. These E3 ligases play critical roles in diverse biological processes, including responses to biotic and abiotic stresses. However, systematic identification of PUB genes in cucumber ( [...] Read more.
Plant U-box (PUB) E3 ubiquitin ligases have undergone significant expansion compared to their fungal and animal counterparts. These E3 ligases play critical roles in diverse biological processes, including responses to biotic and abiotic stresses. However, systematic identification of PUB genes in cucumber (Cucumis sativus L.) has been lacking, and their expression and functional characterization remain largely unexplored. Leveraging the recently released near-complete cucumber genome, we identified 53 putative PUB proteins classified into eight distinct groups based on domain architecture. The molecular weights of CsPUBs range from 26 to 166 kilodaltons (kDa). Exon numbers in CsPUB genes vary substantially, with CsPUB48 containing a maximum of 17 exons, while 18 CsPUB genes harbor only a single exon. Chromosomal distribution of CsPUBs is uneven, with Chr 3 harboring the highest density (12 genes) and Chr 7 the lowest (1 gene). Notably, tandem duplications (e.g., CsPUB29-CsPUB36 and CsPUB18-CsPUB49) and seven collinear gene pairs were identified, suggesting evolutionary diversification. Promoter regions of CsPUBs are enriched with cis-regulatory elements linked to plant growth and development, phytohormone, stress responses, light, and so on, implying their regulatory roles in various biological processes. Expression profiling revealed tissue-specific patterns and differential regulation of multiple CsPUBs under stress conditions. Subcellular localization studies demonstrated that CsPUBs target diverse organelles, with some localizing to punctate structures potentially representing uncharacterized compartments. Collectively, this systematic analysis establishes a comprehensive framework for understanding particular CsPUB functions. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

39 pages, 8285 KiB  
Article
The Three-Dimensional Structure of the Genome of the Dark Septate Endophyte Exophiala tremulae and Its Symbiosis Effect on Alpine Meadow Plant Growth
by Chu Wu, Junjie Fan, Die Hu, Honggang Sun, Guangxin Lu, Yun Wang and Yujie Yang
J. Fungi 2025, 11(4), 246; https://doi.org/10.3390/jof11040246 - 24 Mar 2025
Viewed by 882
Abstract
The establishment of artificial grassland is a good pathway for resolving serious social and economic problems in the Qinghai–Tibet Plateau. Some beneficial indigenous microbes may be used to improve productivity in artificial grassland. The genome of the indigenous dark septate fungus, Exophiala tremulae [...] Read more.
The establishment of artificial grassland is a good pathway for resolving serious social and economic problems in the Qinghai–Tibet Plateau. Some beneficial indigenous microbes may be used to improve productivity in artificial grassland. The genome of the indigenous dark septate fungus, Exophiala tremulae CICC2537, was sequenced and assembled at the chromosome level using the PacBio sequencing platform, with the assistance of the Hi-C technique for scaffolding, and its 3D genome structures were investigated. The genome size of E. tremulae is 51.903848 Mb, and it contains eight chromosomes. A total of 12,277 protein-coding genes were predicted, and 11,932 genes (97.19%) were annotated. As for the distribution of exon and intron number and the distribution of gene GC and CDS GC, E. tremulae showed similar distribution patterns to the other investigated members of the genus Exophiala. The analysis of carbohydrate-active enzymes showed that E. tremulae possesses the greatest number of enzymes with auxiliary activities and the lowest number of enzymes with carbohydrate-binding modules among the investigated fungi. The total number of candidate effector proteins was 3337, out of which cytoplasmic and apoplastic effector proteins made up 3100 and 163, respectively. The whole genome of E. tremulae contained 40 compartment As and 76 compartment Bs, and there was no significant difference in GC content in its compartment As and Bs. The whole genome of E. tremulae was predicted to contain 155 topologically associating domains (TADs), and their average length was 250,000 bp, but there were no significant differences in the numbers of genes and the GC content per bin localized within the boundaries and interiors of TADs. Comparative genome analysis showed that E. tremulae diverged from Exophiala mesophila about 34.1 (30.0–39.1) Myr ago, and from Exophiala calicioides about 85.6 (76.1–90.6) Myr ago. Compared with all the investigated fungi, the numbers of contraction and expansion gene families in the E. tremulae genome were 13 and 89, respectively, and the numbers of contraction and expansion genes were 14 and 670, respectively. Our work provides a basis for the use of the dark septate fungus in alpine artificial grassland and further research into its symbiosis mechanisms, which may improve the growth of plant species used in the Qinghai–Tibet Plateau. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

24 pages, 5762 KiB  
Article
Relative Distribution of DnaA and DNA in Escherichia coli Cells as a Factor of Their Phenotypic Variability
by Sharanya K. Namboodiri, Alexander Aranovich, Uzi Hadad, Levi A. Gheber, Mario Feingold and Itzhak Fishov
Int. J. Mol. Sci. 2025, 26(2), 464; https://doi.org/10.3390/ijms26020464 - 8 Jan 2025
Cited by 2 | Viewed by 1208
Abstract
Phenotypic variability in isogenic bacterial populations is a remarkable feature that helps them cope with external stresses, yet it is incompletely understood. This variability can stem from gene expression noise and/or the unequal partitioning of low-copy-number freely diffusing proteins during cell division. Some [...] Read more.
Phenotypic variability in isogenic bacterial populations is a remarkable feature that helps them cope with external stresses, yet it is incompletely understood. This variability can stem from gene expression noise and/or the unequal partitioning of low-copy-number freely diffusing proteins during cell division. Some high-copy-number components are transiently associated with almost immobile large assemblies (hyperstructures) and may be unequally distributed, contributing to bacterial phenotypic variability. We focus on the nucleoid hyperstructure containing numerous DNA-associated proteins, including the replication initiator DnaA. Previously, we found an increasing asynchrony in the nucleoid segregation dynamics in growing E. coli cell lineages and suggested that variable replication initiation timing may be the main cause of this phenomenon. Here, we support this hypothesis revealing that DnaA/DNA variability represents a key factor leading to the enhanced asynchrony in E. coli. We followed the intra- and intercellular distribution of fluorescently tagged DnaA and histone-like HU chromosomally encoded under their native promoters. The diffusion rate of DnaA is low, corresponding to a diffusion-binding mode of mobility, but still one order faster than that of HU. The intracellular distribution of DnaA concentration is homogeneous in contrast to the significant asymmetry in the distribution of HU to the cell halves, leading to the unequal DNA content of nucleoids and DnaA/DNA ratios in future daughter compartments. Accordingly, the intercellular variabilities in HU concentration (CV = 26%) and DnaA/DNA ratio (CV = 18%) are high. The variable DnaA/DNA may cause a variable replication initiation time (initiation noise). Asynchronous initiation at different replication origins may, in turn, be the mechanism leading to the observed asymmetric intracellular DNA distribution. Our findings indicate that the feature determining the variability of the initiation time in E. coli is the DnaA/DNA ratio, rather than each of them separately. We provide a likely mechanism for the ‘loss of segregation synchrony’ phenomenon. Full article
(This article belongs to the Special Issue Molecular Research on Bacteria)
Show Figures

Figure 1

12 pages, 2292 KiB  
Article
Chladni and Fractal Dynamics: Dual Mode Marker to Map Cancer Cell Nucleus Disintegration Phases
by Parama Dey, Anup Singhania, Ajaikumar B. Kunnumakkara, Subrata Ghosh and Anirban Bandyopadhyay
Fractal Fract. 2025, 9(1), 8; https://doi.org/10.3390/fractalfract9010008 - 27 Dec 2024
Viewed by 861
Abstract
Conventional cancer drugs are small molecules that target specific pathways. We introduced PCMS, a 26 kDa supramolecule combining sensors (S), molecular motors (M), and switching molecules (C), integrated within a fourth-generation PAMAM structure (P). PCMS identifies and deactivates cancer cell nucleus dynamics. A [...] Read more.
Conventional cancer drugs are small molecules that target specific pathways. We introduced PCMS, a 26 kDa supramolecule combining sensors (S), molecular motors (M), and switching molecules (C), integrated within a fourth-generation PAMAM structure (P). PCMS identifies and deactivates cancer cell nucleus dynamics. A decade ago, we demonstrated programmable, clock-like interactions among the S-C-M components. In this study, we captured images of fractal patterns formed by chromosomal compartments and developed a theoretical model of their fractal dynamics. We showed that the nucleus behaves like a cavity, producing resonance effects similar to Chladni patterns. When the external agent, PCMS, interacts with this cavity, it generates a fractal pattern. We identified and mapped five key phase transitions that ultimately lead to the breakdown of cancer cell nuclei. Full article
(This article belongs to the Special Issue Fractals in Biophysics and Their Applications)
Show Figures

Figure 1

15 pages, 5598 KiB  
Article
Genome-Wide Identification of UGT Genes and Analysis of Their Expression Profiles During Fruit Development in Walnut (Juglans regia L.)
by Danhua Shi, Jinyu Yang, Gengyang Li, Yuanting Zhou, Pei Yao, Yanyu Shi, Jieyun Tian, Xiaojun Zhang and Qunlong Liu
Horticulturae 2024, 10(11), 1130; https://doi.org/10.3390/horticulturae10111130 - 23 Oct 2024
Viewed by 1284
Abstract
Walnut (Juglans regia L.) possesses the ability to prevent coronary heart disease and promote cardiovascular health. This ability can be attributed to their rich content of polyphenols, particularly flavonoids. The biosynthesis of flavonoids is reliant on the catalytic activity of uridine diphosphate [...] Read more.
Walnut (Juglans regia L.) possesses the ability to prevent coronary heart disease and promote cardiovascular health. This ability can be attributed to their rich content of polyphenols, particularly flavonoids. The biosynthesis of flavonoids is reliant on the catalytic activity of uridine diphosphate glycosyltransferase (UGT). However, the identification of UGTs in walnut has not been reported. In the current study, a total of 124 UGT genes containing the PSPG box were identified from the walnut genome. Based on phylogenetic analysis, the 124 UGTs could be classified into 16 distinct groups, which exhibited an uneven distribution across the 16 chromosomes. Subcellular localization prediction analysis revealed that approximately 78.23% of walnut UGT proteins were predominantly localized in the cytoplasmic compartment. Furthermore, motif annotation confirmed that motifs 1, 2, and 3 represented conserved structural features within UGT proteins, while interestingly, around 56.5% of walnut UGT members lacked introns. Through the analysis of promoter cis-regulatory elements, it was revealed that JrUGTs are involved in photoresponse, hormonal regulation, and other physiological responses. In conjunction with transcriptome analysis and quantitative expression, approximately 39% of UGT genes in walnut exhibited high expression levels during early fruit development. Correlation analysis between UGT genes’ expression and phenolic content in walnut indicated that JrUGT6, JrUGT38, JrUGT39, JrUGT58, JrUGT69, JrUGT75, and JrUGT82 might be involved in phenolic biosynthesis in walnut. This comprehensive study provides an overview of the UGT genes in walnut, serving as a valuable reference and theoretical foundation for further investigations into the biological functions of JrUGTs in flavonoid biosynthesis. Full article
Show Figures

Figure 1

14 pages, 10504 KiB  
Review
Pseudomonas aeruginosa in the Frontline of the Greatest Challenge of Biofilm Infection—Its Tolerance to Antibiotics
by Niels Høiby, Claus Moser and Oana Ciofu
Microorganisms 2024, 12(11), 2115; https://doi.org/10.3390/microorganisms12112115 - 22 Oct 2024
Cited by 4 | Viewed by 1846
Abstract
P. aeruginosa biofilms are aggregates of bacteria surrounded by a self-produced matrix which binds to some antibiotics such as aminoglycosides. P. aeruginosa biofilms are tolerant to antibiotics. The treatment of biofilm infections leads to a recurrence of symptoms after finishing antibiotic treatment, although [...] Read more.
P. aeruginosa biofilms are aggregates of bacteria surrounded by a self-produced matrix which binds to some antibiotics such as aminoglycosides. P. aeruginosa biofilms are tolerant to antibiotics. The treatment of biofilm infections leads to a recurrence of symptoms after finishing antibiotic treatment, although the initial clinical response to the treatment is frequently favorable. There is a concentration gradient of oxygen and nutrients from the surface to the center of biofilms. Surface-located bacteria are multiplying and metabolizing, whereas deeper located bacteria are dormant and tolerant to most antibiotics. Colistin kills dormant bacteria, and combination therapy with colistin and antibiotics which kills multiplying bacteria is efficient in vitro. Some antibiotics such as imipenem induce additional production of the biofilm matrix and of chromosomal beta-lactamase in biofilms. Biofilms present a third Pharmacokinetic/Pharmacodynamic (PK/PD) micro-compartment (first: blood, second: tissue, third: biofilm) which must be taken into consideration when calculations try to predict the antibiotic concentrations in biofilms and thereby the probability of target attainment (PTA) for killing the biofilm. Treating biofilms with hyperbaric oxygen to wake up the dormant cells, destruction of the biofilm matrix, and the use of bacteriophage therapy in combination with antibiotics are promising possibilities which have shown proof of concept in in vitro experiments and in animal experiments. Full article
Show Figures

Figure 1

30 pages, 16711 KiB  
Article
Dinochromosome Heterotermini with Telosomal Anchorages
by Alvin Chun Man Kwok, Kosmo Ting Hin Yan, Shaoping Wen, Shiyong Sun, Chongping Li and Joseph Tin Yum Wong
Int. J. Mol. Sci. 2024, 25(20), 11312; https://doi.org/10.3390/ijms252011312 - 21 Oct 2024
Viewed by 1289
Abstract
Dinoflagellate birefringent chromosomes (BfCs) contain some of the largest known genomes, yet they lack typical nucleosomal micrococcal-nuclease protection patterns despite containing variant core histones. One BfC end interacts with extranuclear mitotic microtubules at the nuclear envelope (NE), which remains intact throughout the cell [...] Read more.
Dinoflagellate birefringent chromosomes (BfCs) contain some of the largest known genomes, yet they lack typical nucleosomal micrococcal-nuclease protection patterns despite containing variant core histones. One BfC end interacts with extranuclear mitotic microtubules at the nuclear envelope (NE), which remains intact throughout the cell cycle. Ultrastructural studies, polarized light and fluorescence microscopy, and micrococcal nuclease-resistant profiles (MNRPs) revealed that NE-associated chromosome ends persisted post-mitosis. Histone H3K9me3 inhibition caused S-G2 delay in synchronous cells, without any effects at G1. Differential labeling and nuclear envelope swelling upon decompaction indicate an extension of the inner compartment into telosomal anchorages (TAs). Additionally, limited effects of low-concentration sirtinol on bulk BfCs, coupled with distinct mobility patterns in MNase-digested and psoralen-crosslinked nuclei observed on 2D gels, suggest that telomeric nucleosomes (TNs) are the primary histone structures. The absence of a nucleosomal ladder with cDNA probes, the presence of histone H2A and telomere-enriched H3.3 variants, along with the immuno-localization of H3 variants mainly at the NE further reinforce telomeric regions as the main nucleosomal domains. Cumulative biochemical and molecular analyses suggest that telomeric repeats constitute the major octameric MNRPs that provision chromosomal anchorage at the NE. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

18 pages, 5695 KiB  
Article
Benzoxazinoids Biosynthetic Gene Cluster Identification and Expression Analysis in Maize under Biotic and Abiotic Stresses
by Xiaoqiang Zhao, Zhenzhen Shi, Fuqiang He, Yining Niu, Guoxiang Qi, Siqi Sun, Xin Li and Xiquan Gao
Int. J. Mol. Sci. 2024, 25(13), 7460; https://doi.org/10.3390/ijms25137460 - 7 Jul 2024
Cited by 2 | Viewed by 1751
Abstract
Benzoxazinoids (BXs) are unique bioactive metabolites with protective and allelopathic properties in maize in response to diverse stresses. The production of BXs involves the fine regulations of BXs biosynthetic gene cluster (BGC). However, little is known about whether and how the expression pattern [...] Read more.
Benzoxazinoids (BXs) are unique bioactive metabolites with protective and allelopathic properties in maize in response to diverse stresses. The production of BXs involves the fine regulations of BXs biosynthetic gene cluster (BGC). However, little is known about whether and how the expression pattern of BGC members is impacted by biotic and abiotic stresses. Here, maize BGC was systemically investigated and 26 BGC gene members were identified on seven chromosomes, for which Bin 4.00–4.01/4.03–4.04/7.02 were the most enriched regions. All BX proteins were clearly divided into three classes and seven subclasses, and ten conserved motifs were further identified among these proteins. These proteins were localized in the subcellular compartments of chloroplast, endoplasmic reticulum, or cytoplasmic, where their catalytic activities were specifically executed. Three independent RNA-sequencing (RNA-Seq) analyses revealed that the expression profiles of the majority of BGC gene members were distinctly affected by multiple treatments, including light spectral quality, low-temperature, 24-epibrassinolide induction, and Asian corn borer infestation. Thirteen differentially expressed genes (DEGs) with high and specific expression levels were commonly detected among three RNA-Seq, as core conserved BGC members for regulating BXs biosynthesis under multiple abiotic/biotic stimulates. Moreover, the quantitative real-time PCR (qRT-PCR) verified that six core conserved genes in BGC were significantly differentially expressed in leaves of seedlings upon four treatments, which caused significant increases in 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) content under darkness and wound treatments, whereas a clear decrease in DIMBOA content was observed under low-temperature treatment. In conclusion, the changes in BX metabolites in maize were regulated by BGC gene members in multiple stress presences. Therefore, the identification of key genes associated with BX accumulation under biotic/abiotic stresses will provide valuable gene resources for breeding maize varieties with enhanced capability to adapt to environmental stresses. Full article
(This article belongs to the Special Issue Recent Advances in Maize Stress Biology)
Show Figures

Figure 1

12 pages, 1190 KiB  
Article
Re-Examination of PGT-A Detected Genetic Pathology in Compartments of Human Blastocysts: A Series of 23 Cases
by Andrei V. Tikhonov, Mikhail I. Krapivin, Olga V. Malysheva, Evgeniia M. Komarova, Arina V. Golubeva, Olga A. Efimova and Anna A. Pendina
J. Clin. Med. 2024, 13(11), 3289; https://doi.org/10.3390/jcm13113289 - 3 Jun 2024
Cited by 2 | Viewed by 2877
Abstract
Background: In recent years, preimplantation genetic testing for aneuploidies (PGT-A) has become widespread in assisted reproduction. However, contrary to expectations, PGT-A does not significantly improve the clinical outcomes of assisted reproductive technologies. One of the underlying reasons is the discordance between the PGT-A [...] Read more.
Background: In recent years, preimplantation genetic testing for aneuploidies (PGT-A) has become widespread in assisted reproduction. However, contrary to expectations, PGT-A does not significantly improve the clinical outcomes of assisted reproductive technologies. One of the underlying reasons is the discordance between the PGT-A results and the true chromosomal constitution of the blastocyst. In this case series, we re-examined the PGT-A results in trophectoderm (TE) re-biopsies and in the two isolated blastocyst compartments—the TE and the inner cell mass (ICM). Methods: This study enrolled 23 human blastocysts from 17 couples who were referred for assisted reproduction. The blastocysts were unsuitable for uterine transfer due to the chromosomal imbalance revealed by PGT-A using array comparative genomic hybridization (aCGH) (n = 11) or next-generation sequencing (NGS) (n = 12). The re-examination of the PGT results involved two steps: (1) a TE re-biopsy with subsequent aCGH and (2) blastocyst separation into the TE and the ICM with a subsequent cell-by-cell analysis of each isolated compartment by fluorescence in situ hybridization (FISH) with the DNA probes to chromosomes 13, 16, 18, 21, and 22 as well as to the PGT-A detected imbalanced chromosomes. Results: In 8 out of 23 cases, the PGT-A results were concordant with both the re-biopsy and the isolated TE and ICM analyses. The latter included the diagnoses of full non-mosaic aneuploidies (five cases of trisomies and two cases of monosomies). In one case, the results of PGT-A, aCGH on the TE re-biopsy, and FISH on the isolated TE showed Xp tetrasomy, which contrasted with the FISH results on the isolated ICM, where this chromosomal pathology was not detected. This case was classified as a confined mosaicism. In 4 out of 23 cases, the results were partially discordant. The latter included one case of trisomy 12, which was detected as non-mosaic by PGT-A and the re-biopsy and as mosaic by FISH on the isolated TE and ICM. This case was classified as a true mosaicism with a false negative PGT-A result. In 11 out of 23 cases, the re-examination results were not concordant with the PGT-A results. In one of these discordant cases, non-mosaic tetraploidy was detected by FISH in the isolated TE and ICM, whereas the PGT-A and the TE re-biopsy failed to detect any abnormality, which advocated for their false negative result. In two cases, the re-examination did not confirm full aneuploidies. In eight cases, full or partial mosaic aneuploidies as well as chaotic mosacism were not confirmed in the isolated TE nor the isolated ICM. Thus, in 47.8% of cases, the PGT-A results did not reflect the true chromosomal constitution of a blastocyst. Conclusions: The PGT results may have different prognostic value in the characterization of the chromosomal constitution of a blastocyst. The detected non-mosaic aneuploidies have the highest prognostic value. In stark contrast, most PGT-identified mosaic aneuploidies fail to characterize the true chromosomal constitution of a blastocyst. Once detected, a differential diagnosis is needed. Full article
(This article belongs to the Special Issue Assisted Reproductive Technology: Clinical Advances and Challenges)
Show Figures

Figure 1

23 pages, 1863 KiB  
Review
Clinical Insights into Structure, Regulation, and Targeting of ABL Kinases in Human Leukemia
by Andrew Wu, Xiaohu Liu, Clark Fruhstorfer and Xiaoyan Jiang
Int. J. Mol. Sci. 2024, 25(6), 3307; https://doi.org/10.3390/ijms25063307 - 14 Mar 2024
Cited by 2 | Viewed by 3401
Abstract
Chronic myeloid leukemia is a multistep, multi-lineage myeloproliferative disease that originates from a translocation event between chromosome 9 and chromosome 22 within the hematopoietic stem cell compartment. The resultant fusion protein BCR::ABL1 is a constitutively active tyrosine kinase that can phosphorylate multiple downstream [...] Read more.
Chronic myeloid leukemia is a multistep, multi-lineage myeloproliferative disease that originates from a translocation event between chromosome 9 and chromosome 22 within the hematopoietic stem cell compartment. The resultant fusion protein BCR::ABL1 is a constitutively active tyrosine kinase that can phosphorylate multiple downstream signaling molecules to promote cellular survival and inhibit apoptosis. Currently, tyrosine kinase inhibitors (TKIs), which impair ABL1 kinase activity by preventing ATP entry, are widely used as a successful therapeutic in CML treatment. However, disease relapses and the emergence of resistant clones have become a critical issue for CML therapeutics. Two main reasons behind the persisting obstacles to treatment are the acquired mutations in the ABL1 kinase domain and the presence of quiescent CML leukemia stem cells (LSCs) in the bone marrow, both of which can confer resistance to TKI therapy. In this article, we systemically review the structural and molecular properties of the critical domains of BCR::ABL1 and how understanding the essential role of BCR::ABL1 kinase activity has provided a solid foundation for the successful development of molecularly targeted therapy in CML. Comparison of responses and resistance to multiple BCR::ABL1 TKIs in clinical studies and current combination treatment strategies are also extensively discussed in this article. Full article
(This article belongs to the Special Issue Molecular Mechanism of Leukemia 2.0)
Show Figures

Figure 1

30 pages, 4479 KiB  
Article
The Proteomic Composition and Organization of Constitutive Heterochromatin in Mouse Tissues
by Annika Schmidt, Hui Zhang, Stephanie Schmitt, Cathia Rausch, Oliver Popp, Jiaxuan Chen, Dusan Cmarko, Falk Butter, Gunnar Dittmar, Frederik Lermyte and M. Cristina Cardoso
Cells 2024, 13(2), 139; https://doi.org/10.3390/cells13020139 - 11 Jan 2024
Cited by 1 | Viewed by 2842
Abstract
Pericentric heterochromatin (PCH) forms spatio-temporarily distinct compartments and affects chromosome organization and stability. Albeit some of its components are known, an elucidation of its proteome and how it differs between tissues in vivo is lacking. Here, we find that PCH compartments are dynamically [...] Read more.
Pericentric heterochromatin (PCH) forms spatio-temporarily distinct compartments and affects chromosome organization and stability. Albeit some of its components are known, an elucidation of its proteome and how it differs between tissues in vivo is lacking. Here, we find that PCH compartments are dynamically organized in a tissue-specific manner, possibly reflecting compositional differences. As the mouse brain and liver exhibit very different PCH architecture, we isolated native PCH fractions from these tissues, analyzed their protein compositions using quantitative mass spectrometry, and compared them to identify common and tissue-specific PCH proteins. In addition to heterochromatin-enriched proteins, the PCH proteome includes RNA/transcription and membrane-related proteins, which showed lower abundance than PCH-enriched proteins. Thus, we applied a cut-off of PCH-unspecific candidates based on their abundance and validated PCH-enriched proteins. Amongst the hits, MeCP2 was classified into brain PCH-enriched proteins, while linker histone H1 was not. We found that H1 and MeCP2 compete to bind to PCH and regulate PCH organization in opposite ways. Altogether, our workflow of unbiased PCH isolation, quantitative mass spectrometry, and validation-based analysis allowed the identification of proteins that are common and tissue-specifically enriched at PCH. Further investigation of selected hits revealed their opposing role in heterochromatin higher-order architecture in vivo. Full article
Show Figures

Figure 1

28 pages, 38808 KiB  
Article
Special Nuclear Structures in the Germinal Vesicle of the Common Frog with Emphasis on the So-Called Karyosphere Capsule
by Dmitry S. Bogolyubov, Sergey V. Shabelnikov, Alexandra O. Travina, Maksim I. Sulatsky and Irina O. Bogolyubova
J. Dev. Biol. 2023, 11(4), 44; https://doi.org/10.3390/jdb11040044 - 12 Dec 2023
Cited by 2 | Viewed by 2540
Abstract
The karyosphere (karyosome) is a structure that forms in the oocyte nucleus—germinal vesicle (GV)—at the diplotene stage of meiotic prophase due to the assembly of all chromosomes in a limited portion of the GV. In some organisms, the karyosphere has an extrachromosomal external [...] Read more.
The karyosphere (karyosome) is a structure that forms in the oocyte nucleus—germinal vesicle (GV)—at the diplotene stage of meiotic prophase due to the assembly of all chromosomes in a limited portion of the GV. In some organisms, the karyosphere has an extrachromosomal external capsule, the marker protein of which is nuclear F-actin. Despite many years of theories about the formation of the karyosphere capsule (KC) in the GV of the common frog Rana temporaria, we present data that cast doubt on its existence, at least in this species. Specific extrachromosomal strands, which had been considered the main elements of the frog’s KC, do not form a continuous layer around the karyosphere and, according to immunogold labeling, do not contain structural proteins, such as actin and lamin B. At the same time, F-actin is indeed noticeably concentrated around the karyosphere, creating the illusion of a capsule at the light microscopy/fluorescence level. The barrier-to-autointegration factor (BAF) and one of its functional partners—LEMD2, an inner nuclear membrane protein—are not localized in the strands, suggesting that the strands are not functional counterparts of the nuclear envelope. The presence of characteristic strands in the GV of R. temporaria late oocytes may reflect an excess of SMC1 involved in the structural maintenance of diplotene oocyte chromosomes at the karyosphere stage, since SMC1 has been shown to be the most abundant protein in the strands. Other characteristic microstructures—the so-called annuli, very similar in ultrastructure to the nuclear pore complexes—do not contain nucleoporins Nup35 and Nup93, and, therefore, they cannot be considered autonomous pore complexes, as previously thought. Taken together, our data indicate that traditional ideas about the existence of the R. temporaria KC as a special structural compartment of the GV are to be revisited. Full article
(This article belongs to the Special Issue The 10th Anniversary of JDB: Feature Papers)
Show Figures

Figure 1

11 pages, 2366 KiB  
Article
Nuclear PTEN Regulates Thymidylate Biosynthesis in Human Prostate Cancer Cell Lines
by Zoe N. Loh, Mu-En Wang, Changxin Wan, John M. Asara, Zhicheng Ji and Ming Chen
Metabolites 2023, 13(8), 939; https://doi.org/10.3390/metabo13080939 - 11 Aug 2023
Cited by 4 | Viewed by 2344
Abstract
The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor governs a variety of biological processes, including metabolism, by acting on distinct molecular targets in different subcellular compartments. In the cytosol, inactive PTEN can be recruited to the plasma membrane where [...] Read more.
The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor governs a variety of biological processes, including metabolism, by acting on distinct molecular targets in different subcellular compartments. In the cytosol, inactive PTEN can be recruited to the plasma membrane where it dimerizes and functions as a lipid phosphatase to regulate metabolic processes mediated by the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin complex 1 (mTORC1) pathway. However, the metabolic regulation of PTEN in the nucleus remains undefined. Here, using a gain-of-function approach to targeting PTEN to the plasma membrane and nucleus, we show that nuclear PTEN contributes to pyrimidine metabolism, in particular de novo thymidylate (dTMP) biosynthesis. PTEN appears to regulate dTMP biosynthesis through interaction with methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), a key enzyme that generates 5,10-methylenetetrahydrofolate, a cofactor required for thymidylate synthase (TYMS) to catalyze deoxyuridylate (dUMP) into dTMP. Our findings reveal a nuclear function for PTEN in controlling dTMP biosynthesis and may also have implications for targeting nuclear-excluded PTEN prostate cancer cells with antifolate drugs. Full article
(This article belongs to the Special Issue Cancer Metabolism: Molecular Insights of Cancer through Metabolomics)
Show Figures

Figure 1

22 pages, 1526 KiB  
Review
Close Ties between the Nuclear Envelope and Mammalian Telomeres: Give Me Shelter
by Gaëlle Pennarun, Julien Picotto and Pascale Bertrand
Genes 2023, 14(4), 775; https://doi.org/10.3390/genes14040775 - 23 Mar 2023
Cited by 6 | Viewed by 3950
Abstract
The nuclear envelope (NE) in eukaryotic cells is essential to provide a protective compartment for the genome. Beside its role in connecting the nucleus with the cytoplasm, the NE has numerous important functions including chromatin organization, DNA replication and repair. NE alterations have [...] Read more.
The nuclear envelope (NE) in eukaryotic cells is essential to provide a protective compartment for the genome. Beside its role in connecting the nucleus with the cytoplasm, the NE has numerous important functions including chromatin organization, DNA replication and repair. NE alterations have been linked to different human diseases, such as laminopathies, and are a hallmark of cancer cells. Telomeres, the ends of eukaryotic chromosomes, are crucial for preserving genome stability. Their maintenance involves specific telomeric proteins, repair proteins and several additional factors, including NE proteins. Links between telomere maintenance and the NE have been well established in yeast, in which telomere tethering to the NE is critical for their preservation and beyond. For a long time, in mammalian cells, except during meiosis, telomeres were thought to be randomly localized throughout the nucleus, but recent advances have uncovered close ties between mammalian telomeres and the NE that play important roles for maintaining genome integrity. In this review, we will summarize these connections, with a special focus on telomere dynamics and the nuclear lamina, one of the main NE components, and discuss the evolutionary conservation of these mechanisms. Full article
(This article belongs to the Special Issue DNA Damage and Repair at the Crossroad with Telomeres)
Show Figures

Figure 1

17 pages, 2766 KiB  
Article
Epigenetic Silencing of P-Element Reporter Genes Induced by Transcriptionally Active Domains of Constitutive Heterochromatin in Drosophila melanogaster
by Giovanni Messina, Emanuele Celauro, Renè Massimiliano Marsano, Yuri Prozzillo and Patrizio Dimitri
Genes 2023, 14(1), 12; https://doi.org/10.3390/genes14010012 - 21 Dec 2022
Cited by 4 | Viewed by 2459
Abstract
Reporter genes inserted via P-element integration into different locations of the Drosophila melanogaster genome have been routinely used to monitor the functional state of chromatin domains. It is commonly thought that P-element-derived reporter genes are subjected to position effect variegation (PEV) when transposed [...] Read more.
Reporter genes inserted via P-element integration into different locations of the Drosophila melanogaster genome have been routinely used to monitor the functional state of chromatin domains. It is commonly thought that P-element-derived reporter genes are subjected to position effect variegation (PEV) when transposed into constitutive heterochromatin because they acquire heterochromatin-like epigenetic modifications that promote silencing. However, sequencing and annotation of the D. melanogaster genome have shown that constitutive heterochromatin is a genetically and molecularly heterogeneous compartment. In fact, in addition to repetitive DNAs, it harbors hundreds of functional genes, together accounting for a significant fraction of its entire genomic territory. Notably, most of these genes are actively transcribed in different developmental stages and tissues, irrespective of their location in heterochromatin. An open question in the genetic and molecular studies on PEV in D. melanogaster is whether functional heterochromatin domains, i.e., heterochromatin harboring active genes, are able to silence reporter genes therein transposed or, on the contrary, can drive their expression. In this work, we provide experimental evidence showing that strong silencing of the Pw+ reporters is induced even when they are integrated within or near actively transcribed loci in the pericentric regions of chromosome 2. Interestingly, some Pw+ reporters were found insensitive to the action of a known PEV suppressor. Two of them are inserted within Yeti, a gene expressed in the deep heterochromatin of chromosome 2 which carries active chromatin marks. The difference sensitivity to suppressors-exhibited Pw+ reporters supports the view that different epigenetic regulators or mechanisms control different regions of heterochromatin. Together, our results suggest that there may be more complexity regarding the molecular mechanisms underlying PEV. Full article
(This article belongs to the Special Issue The Stability and Evolution of Genes and Genomes)
Show Figures

Figure 1

Back to TopTop