Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = chlorotyrosine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1366 KiB  
Article
1H NMR-Based Analysis to Determine the Metabolomics Profile of Solanum nigrum L. (Black Nightshade) Grown in Greenhouse Versus Open-Field Conditions
by Lufuno Ethel Nemadodzi, Gudani Millicent Managa and Ndivho Nemukondeni
Metabolites 2025, 15(5), 344; https://doi.org/10.3390/metabo15050344 - 21 May 2025
Viewed by 682
Abstract
Background: Equally with other indigenous green leafy vegetables, Solunum nigrum L. has been widely consumed by the VhaVenda tribe found in the Limpopo Province of South Africa since ancient times as a source of food diversification due to its higher-quality nutritional value, sustainability, [...] Read more.
Background: Equally with other indigenous green leafy vegetables, Solunum nigrum L. has been widely consumed by the VhaVenda tribe found in the Limpopo Province of South Africa since ancient times as a source of food diversification due to its higher-quality nutritional value, sustainability, food security, and medicinal benefits. It is mostly cultivated from seeds in seedling trays and transplanted in the open field, and at the maturity stage, marketing and distribution are mainly conducting through informal markets (i.e., street vendors). However, recently, it can be found in selected supermarkets and commercial grocery stores in South Africa. The leaves and young shoots of S. nigrum are cooked solely and/or as a supplementary vegetable with Brassica rapa L. subsp. chinensis (Chinese cabbage), Spinacia oleracea L. (spinach), Amaranthus graecizans L. (green amaranth), Solanum lycopersicum L. (tomato), and/or cooking oil for flavor. Objective: Contrary to other green leafy vegetables, few studies have been conducted on the metabolites released by S. nigrum and the influence of growing conditions on the metabolites thereof. Method: A 1H-nuclear magnetic resonance tool was used to identify the untargeted metabolites released by S. nigrum, and spectra were phase-corrected and binned with MestReNova and statistically analyzed with SIMCA 18.0.2. Results: The findings showed that a total of 12 metabolites were detected between the growing conditions. Eleven similar metabolites, such as glycocholate, chlorogenate (human health benefits), caffeine for its bitter taste, choline, 3-Chlorotyrosine (antidiabetic, blood pressure), etc., and a few vital soluble sugars, were detected in S. nigrum samples grown in the open field and greenhouse-cultivated. Glucose was exclusively detected in the S. nigrum grown under greenhouse conditions. Full article
Show Figures

Figure 1

20 pages, 3546 KiB  
Article
Saliva Proteome, Metabolome and Microbiome Signatures for Detection of Alzheimer’s Disease
by Maxime François, Dana Pascovici, Yanan Wang, Toan Vu, Jian-Wei Liu, David Beale, Maryam Hor, Jane Hecker, Jeff Faunt, John Maddison, Sally Johns and Wayne Leifert
Metabolites 2024, 14(12), 714; https://doi.org/10.3390/metabo14120714 - 19 Dec 2024
Cited by 2 | Viewed by 1635
Abstract
Background: As the burden of Alzheimer’s disease (AD) escalates with an ageing population, the demand for early and accessible diagnostic methods becomes increasingly urgent. Saliva, with its non-invasive and cost-effective nature, presents a promising alternative to cerebrospinal fluid and plasma for biomarker discovery. [...] Read more.
Background: As the burden of Alzheimer’s disease (AD) escalates with an ageing population, the demand for early and accessible diagnostic methods becomes increasingly urgent. Saliva, with its non-invasive and cost-effective nature, presents a promising alternative to cerebrospinal fluid and plasma for biomarker discovery. Methods: In this study, we conducted a comprehensive multi-omics analysis of saliva samples (n = 20 mild cognitive impairment (MCI), n = 20 Alzheimer’s disease and age- and n = 40 gender-matched cognitively normal individuals), from the South Australian Neurodegenerative Disease (SAND) cohort, integrating proteomics, metabolomics, and microbiome data with plasma measurements, including pTau181. Results: Among the most promising findings, the protein Stratifin emerged as a top candidate, showing a strong negative correlation with plasma pTau181 (r = −0.49, p < 0.001) and achieving an AUC of 0.95 in distinguishing AD and MCI combined from controls. In the metabolomics analysis, 3-chlorotyrosine and L-tyrosine exhibited high correlations with disease severity progression, with AUCs of 0.93 and 0.96, respectively. Pathway analysis revealed significant alterations in vitamin B12 metabolism, with Transcobalamin-1 levels decreasing in saliva as AD progressed despite an increase in serum vitamin B12 levels (p = 0.008). Microbiome analysis identified shifts in bacterial composition, with a microbiome cluster containing species such as Lautropia mirabilis showing a significant decrease in abundance in MCI and AD samples. The overall findings were reinforced by weighted correlation network analysis, which identified key hubs and enriched pathways associated with AD. Conclusions: Collectively, these data highlight the potential of saliva as a powerful medium for early AD diagnosis, offering a practical solution for large-scale screening and monitoring. Full article
(This article belongs to the Special Issue Cellular Metabolism in Neurological Disorders)
Show Figures

Graphical abstract

10 pages, 293 KiB  
Article
High Concentration of Protein Oxidation Biomarker O-Tyr/Phe Predicts Better Outcome in Childhood Bacterial Meningitis
by Emilie Rugemalira, Irmeli Roine, Julia Kuligowski, Ángel Sánchez-Illana, José David Piñeiro-Ramos, Sture Andersson, Manuel Leite Cruzeiro, Máximo Vento and Tuula Pelkonen
Antioxidants 2023, 12(3), 621; https://doi.org/10.3390/antiox12030621 - 2 Mar 2023
Cited by 2 | Viewed by 2551
Abstract
Neuronal damage in bacterial meningitis (BM) partly stems from the host´s inflammatory response and induced oxidative stress (OS). We studied the association of cerebrospinal fluid (CSF) biomarkers indicating oxidative damage to proteins with course of illness and outcome in childhood BM in Angola. [...] Read more.
Neuronal damage in bacterial meningitis (BM) partly stems from the host´s inflammatory response and induced oxidative stress (OS). We studied the association of cerebrospinal fluid (CSF) biomarkers indicating oxidative damage to proteins with course of illness and outcome in childhood BM in Angola. Ortho-tyrosine/phenylalanine (o-Tyr/Phe), 3-chlorotyrosine/para-tyrosine (3Cl-Tyr/p-Tyr), and 3-nitrotyrosine/para-tyrosine (3NO2-Tyr/p-Tyr) concentration ratios were measured in 79 BM admission CSF samples, employing liquid chromatography coupled to tandem mass spectrometry. Besides death, disease outcomes were registered on Day 7 of treatment and one month after discharge (control visit). The outcome was graded according to the modified Glasgow Outcome Scale (GOS), which considers neurological and audiological sequelae. Children with a o-Tyr/Phe ratio below the median were more likely to present focal convulsions and secondary fever during recovery and suboptimal outcome (GOS < 5) on Day 7 and at control visit (odds ratio (OR) 2.85; 95% CI 1.14–7.14 and OR 5.23; 95% CI 1.66–16.52, respectively). Their most common sequela was ataxia on Day 7 and at control visit (OR 8.55; 95% CI 2.27–32.22 and OR 5.83; 95% CI 1.12–30.4, respectively). The association of a higher admission CSF o-Tyr/Phe ratio with a better course and outcome for pediatric BM points to a beneficial effect of OS. Full article
(This article belongs to the Special Issue Antioxidants in Human Health and Disease)
8 pages, 739 KiB  
Opinion
Age-Related Diseases and Foods Generating Chlorinative Stress
by Eleonora Di Salvo, Marco Casciaro, Concetto Mario Giorgianni, Nicola Cicero and Sebastiano Gangemi
Antioxidants 2023, 12(2), 249; https://doi.org/10.3390/antiox12020249 - 22 Jan 2023
Cited by 3 | Viewed by 1558
Abstract
Background: Aging is a slow and inexorable process affecting all life beings and is characterised by age-related worsening in adaptation to external changes. Several factors contribute to such a process, and oxidative stress due to external damages is one key player. Of particular [...] Read more.
Background: Aging is a slow and inexorable process affecting all life beings and is characterised by age-related worsening in adaptation to external changes. Several factors contribute to such a process, and oxidative stress due to external damages is one key player. Of particular interest is the oxidative stress generated from halogen compounds such as chloride. Hypochlorus acid is produced starting from MPO’s interaction with hydrogen peroxide. We focused on the oxidation of tyrosine residues by HOCl, which leads as a result to the formation of 3-chlorotyrosine (3-ClTyr). This molecule, due to its stability, is considered a marker for MPO activity. Results: We collected data from literature research articles evaluating chlorinative stress and the effects of 3-ClTyr on chronic diseases linked to aging. As diseases are not the only source of 3-ClTyr in people, we also focused on other origins of chlorinative stress, such as food intake. Discussion: Oxidation and halogenation are caused by infectious diseases and by pathologies characterised by inflammation. Moreover, diet could negatively or positively influence chlorinative stress. Comparing 3-ClTyr levels in the oldest and youngest old with age-related diseases and comparing data between different geographic areas with different pesticide rules could be the next challenge. Full article
Show Figures

Graphical abstract

24 pages, 5214 KiB  
Article
Krüppel-like Factor 9 (KLF9) Suppresses Hepatocellular Carcinoma (HCC)-Promoting Oxidative Stress and Inflammation in Mice Fed High-Fat Diet
by Adam R. Brown, Iad Alhallak, Rosalia C. M. Simmen, Stepan B. Melnyk, Melissa E. Heard-Lipsmeyer, Maria Theresa E. Montales, Daniel Habenicht, Trang T. Van and Frank A. Simmen
Cancers 2022, 14(7), 1737; https://doi.org/10.3390/cancers14071737 - 29 Mar 2022
Cited by 14 | Viewed by 3335
Abstract
Obesity, oxidative stress, and inflammation are risk factors for hepatocellular carcinoma (HCC). We examined, in mice, the effects of Krüppel-like factor 9 (KLF9) knockout on: adiposity, hepatic and systemic oxidative stress, and hepatic expression of pro-inflammatory and NOX/DUOX family genes, in a high-fat [...] Read more.
Obesity, oxidative stress, and inflammation are risk factors for hepatocellular carcinoma (HCC). We examined, in mice, the effects of Krüppel-like factor 9 (KLF9) knockout on: adiposity, hepatic and systemic oxidative stress, and hepatic expression of pro-inflammatory and NOX/DUOX family genes, in a high-fat diet (HFD) context. Male and female Klf9+/+ (wild type, WT) and Klf9−/− (knockout, KO) mice were fed HFD (beginning at age 35 days) for 12 weeks, after which liver and adipose tissues were obtained, and serum adiponectin and leptin levels, liver fat content, and markers of oxidative stress evaluated. Klf9−/− mice of either sex did not exhibit significant alterations in weight gain, adipocyte size, adipokine levels, or liver fat content when compared to WT counterparts. However, Klf9−/− mice of both sexes had increased liver weight/size (hepatomegaly). This was accompanied by increased hepatic oxidative stress as indicated by decreased GSH/GSSG ratio and increased homocysteine, 3-nitrotyrosine, 3-chlorotyrosine, and 4HNE content. Decreased GSH to GSSG ratio and a trend toward increased homocysteine levels were observed in the corresponding Klf9−/− mouse serum. Gene expression analysis showed a heightened pro-inflammatory state in livers from Klf9−/− mice. KLF9 suppresses hepatic oxidative stress and inflammation, thus identifying potential mechanisms for KLF9 suppression of HCC and perhaps cancers of other tissues. Full article
Show Figures

Figure 1

19 pages, 1987 KiB  
Article
Elevated Urinary Biomarkers of Oxidative Damage in Photocopier Operators following Acute and Chronic Exposures
by Yipei Zhang, Anila Bello, David K. Ryan, Philip Demokritou and Dhimiter Bello
Nanomaterials 2022, 12(4), 715; https://doi.org/10.3390/nano12040715 - 21 Feb 2022
Cited by 11 | Viewed by 2884
Abstract
Inhalation exposures to nanoparticles (NPs) from printers and photocopiers have been associated with upper airway and systemic inflammation, increased blood pressure, and cases of autoimmune and respiratory disorders. In this study we investigate oxidative stress induced by exposures to copier-emitted nanoparticles using a [...] Read more.
Inhalation exposures to nanoparticles (NPs) from printers and photocopiers have been associated with upper airway and systemic inflammation, increased blood pressure, and cases of autoimmune and respiratory disorders. In this study we investigate oxidative stress induced by exposures to copier-emitted nanoparticles using a panel of urinary oxidative stress (OS) biomarkers representing DNA damage (8-hydroxydeoxyguanosine, 8-OHdG; 8-hydroxyguanosine, 8-OHG; 5-hydroxymethyl uracil 5-OHMeU), lipid peroxidation (8-isoprostane; 4-hydroxynonenal, HNE), and protein oxidation biomarkers (o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine) under conditions of acute (single 6 h exposure, 9 volunteers, 110 urine samples) and chronic exposures (6 workers, 11 controls, 81 urine samples). Urinary biomarkers were quantified with liquid chromatography–tandem mass spectrometry after solid phase extraction sample cleanup. 8-OHdG, 8-OHG, 8-isoprostane, and HNE were significantly elevated in both the acute and chronic exposure study participants relative to the controls. In the acute exposure study, the geometric mean ratios post-/pre-exposure were 1.42, 1.10, 2.0, and 2.25, respectively. Urinary 8-OHG and HNE increased with time to at least 36 h post-exposure (post-/pre-exposure GM ratios increased to 3.94 and 2.33, respectively), suggesting slower generation and/or urinary excretion kinetics for these biomarkers. In chronically exposed operators, the GM ratios of urinary biomarkers relative to controls ranged from 1.52 to 2.94, depending on the biomarker. O-Tyrosine and 5-OHMeU biomarkers were not significantly different from the controls. 3-chlorotyrosine and 3-nitrotyrosine were not detected in the urine samples. We conclude that NPs from photocopiers induce systemic oxidative stress by damaging DNA, RNA, and lipids. Urinary levels of 8-OHdG, 8-OHG, HNE, and 8-isoprostane were orders of magnitude higher than in nanocomposite processing workers, comparable to nano titanium dioxide and fiberglass manufacturing workers, but much lower than in shipyard welding and carbon nanotube synthesis workers. Biomarkers 8-OHdG, 8-OHG, 8-isoprostane, and HNE appear to be more sensitive and robust urinary biomarkers for monitoring oxidative stress to NPs from photocopiers. Full article
Show Figures

Figure 1

13 pages, 1689 KiB  
Article
M2 Monocyte Polarization in Dialyzed Patients Is Associated with Increased Levels of M-CSF and Myeloperoxidase-Associated Oxidative Stress: Preliminary Results
by Valérie Pireaux, Cédric Delporte, Alexandre Rousseau, Jean-Marc Desmet, Pierre Van Antwerpen, Martine Raes and Karim Zouaoui Boudjeltia
Biomedicines 2021, 9(1), 84; https://doi.org/10.3390/biomedicines9010084 - 16 Jan 2021
Cited by 7 | Viewed by 2742
Abstract
Cardiovascular diseases represent a major issue in terms of morbidity and mortality for dialysis patients. This morbidity is due to the accelerated atherosclerosis observed in these patients. Atherosclerosis is a chronic inflammatory disease characterized by key players such as monocytes, macrophages, or oxidized [...] Read more.
Cardiovascular diseases represent a major issue in terms of morbidity and mortality for dialysis patients. This morbidity is due to the accelerated atherosclerosis observed in these patients. Atherosclerosis is a chronic inflammatory disease characterized by key players such as monocytes, macrophages, or oxidized LDLs. Monocytes-macrophages are classified into subsets of polarized cells, with M1 and M2 macrophages considered, respectively, as pro- and anti-inflammatory. (1) Methods: The monocyte subsets and phenotypes were analyzed by flow cytometry. These data were completed by the quantification of plasma M-CSF, IL-8, CRP, Mox-LDLs, Apo-B, Apo-AI, chloro-tyrosine, and homocitrulline concentrations. The statistical differences and associations between two continuous variables were assessed using the Mann–Whitney U test and Spearman’s correlation coefficient, respectively. (2) Results: Hemodialyzed patients showed a significant increase in their concentrations of CRP, M-CSF, and IL-8 (inflammation biomarkers), as well as chloro-tyrosine and homocitrulline (myeloperoxidase-associated oxidative stress biomarkers). Moreover, we observed a higher percentage of M2 monocytes in the plasma of hemodialysis patients as compared to the controls. (3) Conclusions: Our data suggest that oxidative stress and an inflammatory environment, which is amplified in hemodialysis patients, seems to favor an increase in the concentration of circulating M-CSF, therefore leading to an increase in M2 polarization among circulating monocytes. Full article
(This article belongs to the Special Issue Macrophages in Health and Non-infectious Disease)
Show Figures

Figure 1

22 pages, 4549 KiB  
Article
Nitroxides Mitigate Neutrophil-Mediated Damage to the Myocardium after Experimental Myocardial Infarction in Rats
by Mary El Kazzi, Han Shi, Sally Vuong, Xiaosuo Wang, Belal Chami, Yuyang Liu, Benjamin S. Rayner and Paul K. Witting
Int. J. Mol. Sci. 2020, 21(20), 7650; https://doi.org/10.3390/ijms21207650 - 16 Oct 2020
Cited by 6 | Viewed by 3898
Abstract
Reperfusion therapy increases survival post-acute myocardial infarction (AMI) while also stimulating secondary oxidant production and immune cell infiltration. Neutrophils accumulate within infarcted myocardium within 24 h post-AMI and release myeloperoxidase (MPO) that catalyses hypochlorous acid (HOCl) production while increasing oxidative stress and inflammation, [...] Read more.
Reperfusion therapy increases survival post-acute myocardial infarction (AMI) while also stimulating secondary oxidant production and immune cell infiltration. Neutrophils accumulate within infarcted myocardium within 24 h post-AMI and release myeloperoxidase (MPO) that catalyses hypochlorous acid (HOCl) production while increasing oxidative stress and inflammation, thereby enhancing ventricular remodelling. Nitroxides inhibit MPO-mediated HOCl production, potentially ameliorating neutrophil-mediated damage. Aim: Assess the cardioprotective ability of nitroxide 4-methoxyTEMPO (4MetT) within the setting of AMI. Methods: Male Wistar rats were separated into 3 groups: SHAM, AMI/R, and AMI/R + 4MetT (15 mg/kg at surgery via oral gavage) and subjected to left descending coronary artery ligation for 30 min to generate an AMI, followed by reperfusion. One cohort of rats were sacrificed at 24 h post-reperfusion and another 28 days post-surgery (with 4MetT (15 mg/kg) administration twice daily). Results: 3-chlorotyrosine, a HOCl-specific damage marker, decreased within the heart of animals in the AMI/R + 4-MetT group 24 h post-AMI, indicating the drug inhibited MPO activity; however, there was no evident difference in either infarct size or myocardial scar size between the groups. Concurrently, MPO, NfκB, TNFα, and the oxidation marker malondialdehyde increased within the hearts, with 4-MetT only demonstrating a trend in decreasing MPO and TNF levels. Notably, 4MetT provided a significant improvement in cardiac function 28 days post-AMI, as assessed by echocardiography, indicating potential for 4-MetT as a treatment option, although the precise mechanism of action of the compound remains unclear. Full article
(This article belongs to the Special Issue Role for the Enzyme Myeloperoxidase to Elicit Pathologies)
Show Figures

Graphical abstract

11 pages, 637 KiB  
Article
Protein Oxidation Biomarkers and Myeloperoxidase Activation in Cerebrospinal Fluid in Childhood Bacterial Meningitis
by Emilie Rugemalira, Irmeli Roine, Julia Kuligowski, Ángel Sánchez-Illana, José David Piñeiro-Ramos, Sture Andersson, Heikki Peltola, Manuel Leite Cruzeiro, Tuula Pelkonen and Máximo Vento
Antioxidants 2019, 8(10), 441; https://doi.org/10.3390/antiox8100441 - 1 Oct 2019
Cited by 10 | Viewed by 3612
Abstract
The immunological response in bacterial meningitis (BM) causes the formation of reactive oxygen and nitrogen species (ROS, RNS) and activates myeloperoxidase (MPO), an inflammatory enzyme. Thus, structural oxidative and nitrosative damage to proteins and DNA occurs. We aimed to asses these events in [...] Read more.
The immunological response in bacterial meningitis (BM) causes the formation of reactive oxygen and nitrogen species (ROS, RNS) and activates myeloperoxidase (MPO), an inflammatory enzyme. Thus, structural oxidative and nitrosative damage to proteins and DNA occurs. We aimed to asses these events in the cerebrospinal fluid (CSF) of pediatric BM patients. Phenylalanine (Phe), para-tyrosine (p-Tyr), nucleoside 2′-deoxiguanosine (2dG), and biomarkers of ROS/RNS-induced protein and DNA oxidation: ortho-tyrosine (o-Tyr), 3-chlorotyrosine (3Cl-Tyr), 3-nitrotyrosine (3NO₂-Tyr) and 8-oxo-2′-deoxyguanosine (8OHdG), concentrations were measured by liquid chromatography coupled to tandem mass spectrometry in the initial CSF of 79 children with BM and 10 without BM. All biomarkers, normalized with their corresponding precursors, showed higher median concentrations (p < 0.0001) in BM compared with controls, except 8OHdG/2dG. The ratios o-Tyr/Phe, 3Cl-Tyr/p-Tyr and 3NO₂-Tyr/p-Tyr were 570, 20 and 4.5 times as high, respectively. A significantly higher 3Cl-Tyr/p-Tyr ratio was found in BM caused by Streptococcus pneumoniae, than by Haemophilus influenzae type b, or Neisseria meningitidis (p = 0.002 for both). In conclusion, biomarkers indicating oxidative damage to proteins distinguished BM patients from non-BM, most clearly the o-Tyr/Phe ratio. The high 3Cl-Tyr/p-Tyr ratio in pneumococcal meningitis suggests robust inflammation because 3Cl-Tyr is a marker of MPO activation and, indirectly, of inflammation. Full article
(This article belongs to the Special Issue Modulation of Reactive Oxygen Species in Health and Disease)
Show Figures

Graphical abstract

19 pages, 2028 KiB  
Article
Catalase-Like Antioxidant Activity is Unaltered in Hypochlorous Acid Oxidized Horse Heart Myoglobin
by Gulfam Ahmad, Belal Chami, Mary El Kazzi, Xiaosuo Wang, Maria Tereza S. Moreira, Natasha Hamilton, Aung Min Maw, Thomas W. Hambly and Paul K. Witting
Antioxidants 2019, 8(9), 414; https://doi.org/10.3390/antiox8090414 - 18 Sep 2019
Cited by 5 | Viewed by 4931
Abstract
Activated neutrophils release myeloperoxidase that produces the potent oxidant hypochlorous acid (HOCl). Exposure of the oxygen transport protein horse heart myoglobin (hhMb) to HOCl inhibits Iron III (Fe(III))-heme reduction by cytochrome b5 to oxygen-binding Iron II (Fe(II))Mb. Pathological concentrations of HOCl yielded [...] Read more.
Activated neutrophils release myeloperoxidase that produces the potent oxidant hypochlorous acid (HOCl). Exposure of the oxygen transport protein horse heart myoglobin (hhMb) to HOCl inhibits Iron III (Fe(III))-heme reduction by cytochrome b5 to oxygen-binding Iron II (Fe(II))Mb. Pathological concentrations of HOCl yielded myoglobin oxidation products of increased electrophoretic mobility and markedly different UV/Vis absorbance. Mass analysis indicated HOCl caused successive mass increases of 16 a.m.u., consistent serial addition of molecular oxygen to the protein. By contrast, parallel analysis of protein chlorination by quantitative mass spectrometry revealed a comparatively minor increase in the 3-chlorotyrosine/tyrosine ratio. Pre-treatment of hhMb with HOCl affected the peroxidase reaction between the hemoprotein and H2O2 as judged by a HOCl dose-dependent decrease in spin-trapped tyrosyl radical detected by electron paramagnetic resonance (EPR) spectroscopy and the rate constant of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) oxidation. By contrast, Mb catalase-like antioxidant activity remained unchanged under the same conditions. Notably, HOCl-modification of Mb decreased the rate of ferric-to-ferrous Mb reduction by a cytochrome b5 reductase system. Taken together, these data indicate oxidizing HOCl promotes Mb oxidation but not chlorination and that oxidized Mb shows altered Mb peroxidase-like activity and diminished rates of one-electron reduction by cytochrome b5 reductase, possibly affecting oxygen storage and transport however, Mb-catalase-like antioxidant activity remains unchanged. Full article
(This article belongs to the Section Aberrant Oxidation of Biomolecules)
Show Figures

Graphical abstract

23 pages, 6462 KiB  
Article
NanoTiO2 Sunscreen Does Not Prevent Systemic Oxidative Stress Caused by UV Radiation and a Minor Amount of NanoTiO2 is Absorbed in Humans
by Daniela Pelclova, Tomas Navratil, Tereza Kacerova, Blanka Zamostna, Zdenka Fenclova, Stepanka Vlckova and Petr Kacer
Nanomaterials 2019, 9(6), 888; https://doi.org/10.3390/nano9060888 - 17 Jun 2019
Cited by 41 | Viewed by 7390
Abstract
The present pilot study tested the efficiency of nanoTiO2 sunscreen to prevent the oxidative stress/inflammation caused by ultraviolet (UV) radiation using biomarkers in subjects’ blood, urine, and exhaled breath condensate (EBC). In addition, the skin absorption of nanoTiO2 was studied. Six [...] Read more.
The present pilot study tested the efficiency of nanoTiO2 sunscreen to prevent the oxidative stress/inflammation caused by ultraviolet (UV) radiation using biomarkers in subjects’ blood, urine, and exhaled breath condensate (EBC). In addition, the skin absorption of nanoTiO2 was studied. Six identical subjects participated in three tests: (A) nanoTiO2 sunscreen, (B) UV radiation, and (C) sunscreen + UV. The first samples were collected before the test and the second after sunscreen application and/or UV exposure. On day 4, the third samples were collected, and the sunscreen was washed off, and the fourth samples were collected on day 11. The following biomarkers were measured: malondialdehyde, 4-hydroxy-trans-hexenal, 4-hydroxy-trans-nonenal, aldehydes C6-C12, 8-iso-Prostaglandin F2α, o-tyrosine, 3-chlorotyrosine, 3-nitrotyrosine, 8-hydroxy-2-deoxyguanosine, 8-hydroxyguanosine, 5-hydroxymethyl uracil, and leukotrienes, using liquid chromatography-electrospray ionisation-tandem mass spectrometry. Titania was measured using inductively coupled plasma mass spectrometry and TiO2 nanoparticles by transmission and scanning electron microscopy. Sunscreen alone did not elevate the markers, but UV increased the biomarkers in the plasma, urine, and EBC. The sunscreen prevented skin redness, however it did not inhibit the elevation of oxidative stress/inflammatory markers. Titania and nanoTiO2 particles were found in the plasma and urine (but not in the EBC) in all sunscreen users, suggesting their skin absorption. Full article
Show Figures

Graphical abstract

34 pages, 1315 KiB  
Review
Mass Spectrometry-Based Methods for Identifying Oxidized Proteins in Disease: Advances and Challenges
by Ivan Verrastro, Sabah Pasha, Karina Tveen Jensen, Andrew R. Pitt and Corinne M. Spickett
Biomolecules 2015, 5(2), 378-411; https://doi.org/10.3390/biom5020378 - 14 Apr 2015
Cited by 89 | Viewed by 15084
Abstract
Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs) of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential [...] Read more.
Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs) of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease. Full article
(This article belongs to the Special Issue Oxidative Stress and Oxygen Radicals)
Show Figures

Graphical abstract

Back to TopTop