Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = chemical deterrents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2808 KiB  
Article
Enhancement of Bioactivity of Common Ash and Manna Ash Leaf Extracts Against Spongy Moth Larvae Using a Chitosan–Gelatin Biopolymer Matrix
by Nemanja Simović, Jovan Dobrosavljević, Ivan Lj. Milenković, Zorica Branković, Jovana Ćirković, Aleksandar Radojković, Sanja Perać, Jelena Jovanović, Vanja Tadić, Ana Žugić, Goran Branković and Slobodan D. Milanović
Forests 2025, 16(5), 774; https://doi.org/10.3390/f16050774 - 2 May 2025
Viewed by 503
Abstract
This study investigated the bioactivity of common ash (Fraxinus excelsior L.) and manna ash (Fraxinus ornus L.) leaf extracts, both in the crude form and incorporated into a biopolymer matrix, against spongy moth (Lymantria dispar L.) larvae. Chemical analysis revealed [...] Read more.
This study investigated the bioactivity of common ash (Fraxinus excelsior L.) and manna ash (Fraxinus ornus L.) leaf extracts, both in the crude form and incorporated into a biopolymer matrix, against spongy moth (Lymantria dispar L.) larvae. Chemical analysis revealed that both species were abundant in polyphenolic compounds, with common ash containing significant quantities of p-hydroxycinnamic acid derivatives and verbascoside, while manna ash was rich in coumarins, particularly aesculetin and aesculin. This study evaluated the feeding deterrent activity, contact and digestive toxicity, effects on larval nutritional indices, and larval development. Chitosan–gelatin-based biopolymer matrices containing the leaf extracts exhibited strong feeding deterrent activity at all tested concentrations, while crude leaf extracts showed moderate deterrence. The biopolymer matrices influenced spongy moth behavior only after digestion, resulting in reduced consumption and growth, as well as a prolonged duration of the third larval instar. No contact toxicity was observed for the biopolymer matrices. Incorporating leaf extracts into the chitosan–gelatin biopolymer matrix significantly enhanced their bioactivity against spongy moth larvae compared with crude leaf extracts. The results suggest that biopolymer matrices containing common ash and manna ash leaf extracts are promising environmentally friendly bioproducts for forest insect control, offering an innovative approach to managing spongy moth populations and protecting forest ecosystems. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

18 pages, 4789 KiB  
Article
Mineralogical and Chemical Characterization of Greek Natural Zeolite-Rich Rocks and Their Oviposition Deterrent Effect on the Olive Fruit Fly Bactrocera oleae (Rossi) (Diptera: Tephritidae)
by Soultana Kyriaki Kovaiou, Anastasia Kokkari, Christina Mytiglaki, Nikos A. Kouloussis, Anestis Filippidis, Nikolaos Kantiranis and Dimitrios Koveos
Minerals 2025, 15(5), 458; https://doi.org/10.3390/min15050458 - 28 Apr 2025
Viewed by 484
Abstract
High quality natural zeolites may have insecticidal effects and could be used for pest control. We determined the mineralogical and chemical composition of four representative samples of zeolite-rich rocks (zeot1–zeot4) collected from north-eastern Greece and their oviposition deterrent effect for the olive fruit [...] Read more.
High quality natural zeolites may have insecticidal effects and could be used for pest control. We determined the mineralogical and chemical composition of four representative samples of zeolite-rich rocks (zeot1–zeot4) collected from north-eastern Greece and their oviposition deterrent effect for the olive fruit fly Bactrocera oleae (Rossi) (Diptera: Tephritidae). Samples zeot1–zeot4 contain 54–70 wt.% clinoptilolite (HEU-type zeolite) and are free of fibrous minerals. Regarding the chemical composition, samples zeot1–zeot4 contain SiO2 between 64.29 (zeot4) and 68.03 wt.% (zeot3). The values of the sorption ability ranged from 134 to 195 meq/100 g, and the specific surface area ranged from 6.5 to 8.4 cm2/g. In addition, the concentration of toxic heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, V, and Zn) is very low and within the acceptable limits for the food sector. When females of the olive fruit fly had access to olive fruits treated with aqueous suspensions of zeot1–zeot4, a significant oviposition deterrent effect was observed. The highest oviposition deterrent effect was observed after the application of zeot3 on the olive fruits, i.e., the mean number of eggs laid by 5 females on the treated and non-treated (control) olive fruits after 8 days was 43.1 and 172.3, respectively. Among the tested zeolites, zeot3 had the highest levels of HEU-type zeolite (clinoptilolite), SiO2, Si, and Ca and the strongest sorption ability and specific surface area. The zeolites oviposition deterrent effect found in our experiments can be attributed to the creation of a thin layer (hymen) of natural zeolite on the surface of the olive fruits which inhibits females landing and egg laying. The oviposition deterrent effect of high-quality Greek zeolites with unique characteristics, if verified with field experiments, could improve the effective control of the olive fruit fly. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

13 pages, 279 KiB  
Article
Control Effectiveness of Kaolin Clay and Neem on Agonoscena pistaciae in Pistachio Orchards
by Halil Dilmen, Mehmet Salih Özgökçe, Cevdet Kaplan and Hilmi Kara
Agronomy 2025, 15(4), 854; https://doi.org/10.3390/agronomy15040854 - 29 Mar 2025
Viewed by 974
Abstract
The pistachio psyllid (Agonoscena pistaciae) is a major pest threatening pistachio production in Siirt province, Türkiye. This study evaluated the efficacy of a clay mineral, kaolin, and a botanical insecticide, neem extract, in managing this pest, aiming to reduce the reliance [...] Read more.
The pistachio psyllid (Agonoscena pistaciae) is a major pest threatening pistachio production in Siirt province, Türkiye. This study evaluated the efficacy of a clay mineral, kaolin, and a botanical insecticide, neem extract, in managing this pest, aiming to reduce the reliance on chemical pesticides. Field experiments were conducted to compare the performance of these treatments with that of the synthetic insecticide spirotetramat SC 100 at various application rates. The results demonstrated that kaolin significantly reduced oviposition rates, achieving up to 100% deterrence, while neem extract exhibited substantial nymph mortality rates of up to 84.75%. These findings highlight the potential of mineral- and plant-based alternatives as effective components of integrated pest management strategies for pistachio psyllid control, offering sustainable and environmentally friendly solutions for minimizing economic losses and pesticide residues in pistachio production. Full article
18 pages, 1140 KiB  
Article
Effect of Schinus areira L. Essential Oil on Attraction, Reproductive Behavior, and Survival of Ceratitis capitata Wiedemann
by Flavia Jofré Barud, María Pía Gomez, María Josefina Ruiz, Guillermo Bachmann, Diego Fernando Segura, María Teresa Vera and María Liza López
Plants 2025, 14(5), 794; https://doi.org/10.3390/plants14050794 - 4 Mar 2025
Viewed by 744
Abstract
The essential oil (EO) of Schinus areira exhibits a chemical composition dominated by monoterpene and sesquiterpene hydrocarbons, with α-phellandrene, limonene, α-pinene, and p-cymene as major constituents. This study aimed to evaluate the effects of S. areira EO on the biology and behavior of [...] Read more.
The essential oil (EO) of Schinus areira exhibits a chemical composition dominated by monoterpene and sesquiterpene hydrocarbons, with α-phellandrene, limonene, α-pinene, and p-cymene as major constituents. This study aimed to evaluate the effects of S. areira EO on the biology and behavior of the Mediterranean fruit fly, Ceratitis capitata, particularly its attraction to the EO and the impact on its reproductive behavior and survival. Females were attracted at the initial choice and the time spent in the arm of the Y-tube olfactometer with the EO was longer, while males were attracted at the final choice, indicating the attractive potential of S. areira EO for both sexes of C. capitata. Within the context of the sterile insect technique (SIT), the better performance of released sterile males allows more copulations with wild females in competition with wild males, increasing the efficacy of the SIT. Exposure of tsl sterile males to the EO did not enhance their sexual competitiveness and increased latency to initiate copulation, indicating potential adverse effects. In addition, in oviposition assays, only a low concentration of the EO stimulated egg-laying on treated substrates, possibly due to the absence of deterrent compounds such as linalool. Finally, the LD50 of the EO was <25 µg/fly for both females and males, at 72 h post-treatment. These findings highlight the potential of EOs as biopesticides that influence the behaviors of C. capitata and emphasize the need for further studies to optimize their application in integrated pest management strategies, including the SIT. Full article
(This article belongs to the Special Issue Emerging Topics in Botanical Biopesticides—2nd Edition)
Show Figures

Figure 1

15 pages, 1708 KiB  
Article
Oviposition Deterrents from Extracts of Eryngium foetidum Against Potato Tuber Moth Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae)
by Yanfen Ma, Xinzhou Yang, Mei Wu, Yunjiao Guo, Wenxia Dong, Rui Tang and Chun Xiao
Insects 2025, 16(2), 158; https://doi.org/10.3390/insects16020158 - 4 Feb 2025
Viewed by 861
Abstract
The potato tuber moth Phthorimaea operculella is a serious boring pest of potato. An integrated ecological approach to sustainable pest management is necessary for the control of this species. This study investigated the effects of minced leaves and plant extracts of Eryngium foetidum [...] Read more.
The potato tuber moth Phthorimaea operculella is a serious boring pest of potato. An integrated ecological approach to sustainable pest management is necessary for the control of this species. This study investigated the effects of minced leaves and plant extracts of Eryngium foetidum on the oviposition behavior of PTM females. The behavioral regulatory components of PTM females in response to the extracts were determined using chemical analyses and electrophysiological tests. Individual electroantennographic detection (EAD)-active compounds and mixtures were evaluated using oviposition choice bioassays. The results indicate that minced leaves had a deterrent effect on oviposition. The extracts at low dosages had an attraction effect, while high dosages had a repellent effect on the oviposition of PTM adult females. The dominant compounds of the extracts were trans-2-dodecenal and trans-2-tridecenal and showed EAD activity. trans-2-dodecenal, trans-2-tridecenal and their mixtures showed significant oviposition-repellent effects toward the PTM. The oviposition stimulation indices (OSIs) of trans-2-dodecenal and trans-2-tridecenal were −100% and −94.03% at 10 mg/mL, respectively. The OSIs of mixtures at natural ratios of 10 mg/mL and 5 mg/mL were −95.11% and −90.96%, respectively. The results can be used for the further development of ecological control strategies for this pest species. Full article
(This article belongs to the Special Issue Advances in Chemical Ecology of Plant–Insect Interactions)
Show Figures

Figure 1

16 pages, 1306 KiB  
Article
Chemical Composition of Essential Oil from Apium graveolens L. and Its Biological Activities Against Sitophilus zeamais Motschulsky (Coleoptera: Dryophthoridae)
by Ruchuon Wanna, Darika Bunphan, Benjapon Kunlanit, Phirayot Khaengkhan, Parinda Khaengkhan and Hakan Bozdoğan
Plants 2025, 14(3), 347; https://doi.org/10.3390/plants14030347 - 24 Jan 2025
Viewed by 1220
Abstract
The use of essential oils from certain herbal plants offers a promising alternative to synthetic insecticides for controlling the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Dryophthoridae), a major pest that causes significant damage to stored grains. Essential oils, particularly from aromatic herbs in [...] Read more.
The use of essential oils from certain herbal plants offers a promising alternative to synthetic insecticides for controlling the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Dryophthoridae), a major pest that causes significant damage to stored grains. Essential oils, particularly from aromatic herbs in the Apiaceae family, are widely used in medicinal, cosmetic, and food industries and provided insecticidal properties to mitigate the environmental and health hazards associated with synthetic insecticides. This research aimed to investigate the insecticidal and repellent effects of Apium graveolens L. (celery) seed essential oil against S. zeamais. Chemical analysis of the commercially produced essential oil from A. graveolens seeds was conducted using a gas chromatograph–mass spectrometer (GC-MS), and the biological activity of the essential oil was determined by ingestion, contact, fumigation, and repellent tests. The analysis identified D-limonene (64.21%) and α-humulene (17.46%) as primary components of the oil. Toxicity assays revealed an observable contact toxicity, with higher concentrations and prolonged exposure increasing its effectiveness. The contact toxicity assays reported an LC50 of 19.83 nL/adult after 72 h. Additionally, the essential oil displayed repellent effects, effectively deterring weevils at concentrations above 16 µL/L air, but its feeding deterrence was weak. The essential oil’s strong insecticidal and repellent properties, which were concentration- and time-dependent, highlighted its potential as a sustainable alternative to synthetic pesticides for integrated pest management. Full article
(This article belongs to the Special Issue Green Insect Control: The Potential Impact of Plant Essential Oils)
Show Figures

Figure 1

17 pages, 1859 KiB  
Article
Genistein and Aphid Probing Behavior: Case Studies on Polyphagous Aphid Species
by Anna Wróblewska-Kurdyk, Bożena Kordan, Katarzyna Stec, Jan Bocianowski and Beata Gabryś
Molecules 2024, 29(23), 5715; https://doi.org/10.3390/molecules29235715 - 3 Dec 2024
Viewed by 927
Abstract
(1) Background: Genistein is a naturally occurring flavonoid with a rich spectrum of biological activities, including plant-herbivore interactions. The aim of the study was to evaluate the effect of exogenous application of genistein on aphid behavior during probing in plant tissues. (2) Methods: [...] Read more.
(1) Background: Genistein is a naturally occurring flavonoid with a rich spectrum of biological activities, including plant-herbivore interactions. The aim of the study was to evaluate the effect of exogenous application of genistein on aphid behavior during probing in plant tissues. (2) Methods: Vicia faba, Brassica rapa ssp. pekinensis, and Avena sativa were treated transepidermally with a 0.1% ethanolic solution of genistein, and the probing behavior of generalist aphid species Aphis fabae, Myzus persicae, and Rhopalosiphum padi was monitored on their respective treated and untreated host plants using electropenetrography (=electrical penetration graph technique, EPG); (3) Results: Genistein did not deter aphid probing activities in non-phloem tissues. In A. fabae and R. padi, a trend towards reduction and in M. persicae a trend towards increase in phloem sap ingestion occurred on genistein-treated plants, but these trends were not statistically significant. (4) Conclusions: Genistein is not a deterrent chemical against generalist aphid species studied; therefore, it is not recommended for practical application. Full article
Show Figures

Figure 1

34 pages, 490 KiB  
Review
Evaluating the Effects of Flavonoids on Insects: Implications for Managing Pests Without Harming Beneficials
by Eric Wellington Riddick
Insects 2024, 15(12), 956; https://doi.org/10.3390/insects15120956 - 1 Dec 2024
Cited by 6 | Viewed by 3279
Abstract
Flavonoids have multiple functions, including host-plant defense against attacks from herbivorous insects. This manuscript reviewed and analyzed the scientific literature to test the hypothesis that flavonoids can be utilized to manage pests without causing significant harm to beneficials. The methodology involved using recognized [...] Read more.
Flavonoids have multiple functions, including host-plant defense against attacks from herbivorous insects. This manuscript reviewed and analyzed the scientific literature to test the hypothesis that flavonoids can be utilized to manage pests without causing significant harm to beneficials. The methodology involved using recognized literature databases, e.g., Web of Science, Scopus, and CAB Abstracts, via the USDA-ARS, National Agricultural Library, DigiTop literature retrieval system. Data were compiled in tables and subjected to statistical analysis, when appropriate. Flavonoids were generally harmful to true bugs and true flies but harmless to honey bees. Flavonoid glycosides showed a tendency to harm true bugs (Heteroptera) and true flies (Diptera). Flavonoid glycosides were harmless to sawflies. Flavonoids and flavonoid glycosides produced a mixture of harmful and harmless outcomes to herbivorous beetles, depending on the species. Flavonoid glycosides were harmless to butterflies. In conclusion, specific flavonoids could function as feeding stimulants or deterrents, oviposition stimulants or deterrents, chemical protectants from pesticides, mating attractants, less-toxic insecticides, and other functions. Flavonoids could manage some insect pests without causing significant harm to beneficials (e.g., honey bees). Flavonoid-based insecticides could serve as environmentally benign alternatives to broad-spectrum insecticides against some pests, but field testing is necessary. Full article
(This article belongs to the Section Insect Pest and Vector Management)
9 pages, 618 KiB  
Communication
Olfactory Repellents in Road Ecology: What We Know and What to Focus on in the Future
by Zdeněk Keken, Lenka Wimmerová, Olga Šolcová, Tomáš Kušta and Petra Dvořáková
Sustainability 2024, 16(14), 5920; https://doi.org/10.3390/su16145920 - 11 Jul 2024
Viewed by 1707
Abstract
Road transport systems kill millions of animals on every inhabited continent each year, and thousands of human lives are lost. Odour repellents (ORE) are a WVC mitigation measure which have been extensively applied across central Europe to prevent or minimise the number of [...] Read more.
Road transport systems kill millions of animals on every inhabited continent each year, and thousands of human lives are lost. Odour repellents (ORE) are a WVC mitigation measure which have been extensively applied across central Europe to prevent or minimise the number of ungulate–vehicle collisions (UVCs). OREs aim to increase the vigilance of ungulates near roads and therefore change their behaviour in areas where vehicle collisions may occur. Despite many scientific papers on the topic of odour repellent effectiveness, a lack of behavioural studies means there is still little understanding of the mechanism of ORE functionality. OREs are applied as an area repellent, so their effectiveness is influenced by multiple factors, and constantly discussed by both academics and the lay public. This paper summarises the state of knowledge about application and effectiveness of odour repellents in road ecology, and suggests research questions to fill information gaps. Full article
Show Figures

Figure 1

16 pages, 1017 KiB  
Article
Leaf and Flower Extracts from the Dwarf Elder (Sambucus ebulus): Toxicity and Repellence against Cosmopolitan Mosquito-Borne Diseases Vectors
by Priscilla Farina, Claudia Pisuttu, Camilla Tani, Stefano Bedini, Cristina Nali, Marco Landi, Giulia Lauria, Barbara Conti and Elisa Pellegrini
Insects 2024, 15(7), 482; https://doi.org/10.3390/insects15070482 - 28 Jun 2024
Viewed by 1344
Abstract
As there has been no scientific evidence of the bioactivity of Sambucus ebulus (Adoxaceae) extracts against insects, we chemically characterized S. ebulus leaves and flowers extracted in methanol and water. The crude extracts, phenolic compounds, and amino acids isolated were tested as larvicides [...] Read more.
As there has been no scientific evidence of the bioactivity of Sambucus ebulus (Adoxaceae) extracts against insects, we chemically characterized S. ebulus leaves and flowers extracted in methanol and water. The crude extracts, phenolic compounds, and amino acids isolated were tested as larvicides against the fourth-instar larvae of Aedes albopictus and Culex pipiens (Diptera: Culicidae). To understand their mode of action, we evaluated the in vitro acetylcholinesterase (AChE) inhibitor effect of the crude extracts on the two mosquito larvae through a colorimetric method. Furthermore, the deterrent effect of the crude extracts against ovipositing Ae. albopictus females was assessed in the open field. Twelve phenylpropanoids and fourteen amino acids were detected in the extracts, with a prevalence of hydroxycinnamic acids and nonaromatic amino acids. The most toxic compound to Ae. albopictus larvae after 24 h was gallic acid, followed by the crude S. ebulus leaf extract; on Cx. pipiens, it was the crude flower extract. The AChE test showed higher inhibition on both mosquito species exerted by the leaf extract if compared to the flower extract, and it also deterred oviposition by Ae. albopictus females starting from the third day. The results indicated that vegetal extracts could effectively help in the integrated vector management of mosquitoes. Full article
Show Figures

Graphical abstract

13 pages, 1604 KiB  
Article
Artemisia fragrans Willd. Essential Oil: Chemical Profile and Insecticidal Potential against the Confused Flour Beetle, Tribolium confusum du Val
by Asgar Ebadollahi, William N. Setzer and Franco Palla
Plants 2024, 13(13), 1725; https://doi.org/10.3390/plants13131725 - 21 Jun 2024
Cited by 1 | Viewed by 1712
Abstract
The confused flour beetle, Tribolium confusum du Val, is one of the cosmopolitan and polyphagous storage insect pests. The frequent application of chemical insecticides has resulted in several side effects, including threats to human health and non-target organisms and the resistance of insect [...] Read more.
The confused flour beetle, Tribolium confusum du Val, is one of the cosmopolitan and polyphagous storage insect pests. The frequent application of chemical insecticides has resulted in several side effects, including threats to human health and non-target organisms and the resistance of insect pests. In the current study, the fumigant toxicity and feeding deterrence potential of Artemisia fragrans Willd. essential oil on T. confusum adults were investigated. The essential oil was rich in terpenic compounds, in which α-thujone (27.8%) and 1,8-cineole (22.8%) were dominant. The essential oil displayed significant fumigant toxicity on T. confusum, where a concentration of 35.3 μL/L caused 100% mortality of the treated adults after 48 h. The LC30 and LC40 values (lethal concentrations to kill 30% and 40% of tested insects: 15.1 and 18.4 μL/L, respectively) significantly decreased the nutritional indices of the pest, including the consumption index, relative consumption rate, and relative growth rate. The feeding deterrence index of the essential oil were calculated as being 62.29 and 48.66% for the concentrations of 15.1 and 18.4 μL/L after 5 days, respectively. Accordingly, A. fragrans essential oil can be considered an efficient, available, and natural alternative to detrimental chemical pesticides in the management of T. confusum. Full article
Show Figures

Figure 1

16 pages, 3002 KiB  
Article
Volatile Semiochemicals Emitted by Beauveria bassiana Modulate Larval Feeding Behavior and Food Choice Preference in Spodoptera frugiperda (Lepidoptera: Noctuidae)
by Arturo Ramírez-Ordorica, Sandra Goretti Adame-Garnica, Hilda Eréndira Ramos-Aboites, Robert Winkler and Lourdes Macías-Rodríguez
J. Fungi 2024, 10(6), 438; https://doi.org/10.3390/jof10060438 - 20 Jun 2024
Cited by 2 | Viewed by 2336
Abstract
Beauveria bassiana is an entomopathogenic fungus that parasitizes and kills insects. The role of volatile organic compounds (VOCs) emitted by B. bassiana acting as semiochemicals during its interaction with lepidopterans is poorly explored. Here, we studied the effect of VOCs from B. bassiana [...] Read more.
Beauveria bassiana is an entomopathogenic fungus that parasitizes and kills insects. The role of volatile organic compounds (VOCs) emitted by B. bassiana acting as semiochemicals during its interaction with lepidopterans is poorly explored. Here, we studied the effect of VOCs from B. bassiana and 3-methylbutanol (as a single compound) on the feeding behavior of L2 larvae of Spodoptera frugiperda in sorghum plants. Additionally, we assessed whether fungal VOCs induce chemical modifications in the plants that affect larval food preferences. Metabolomic profiling of plant tissues was performed by mass spectrometry and bioassays in a dual-choice olfactometer. The results showed that the larval feeding behavior was affected by the B. bassiana strain AI2, showing that the insect response is strain-specific. Furthermore, 80 µg of 3-methylbutanol affected the number of bites. The larval feeding choice was dependent on the background context. Fragment spectra and a matching precursor ion mass of 165.882 m/z enabled the putative identification of 4-coumaric acid in sorghum leaves exposed to fungal VOCs, which may be associated with larval deterrent responses. These results provide valuable insights into the bipartite interaction of B. bassiana with lepidopterans through VOC emission, with the plant as a mediator of the interaction. Full article
(This article belongs to the Collection Entomopathogenic and Nematophagous Fungi)
Show Figures

Figure 1

17 pages, 1801 KiB  
Article
Chemical Composition, Repellent, and Oviposition Deterrent Potential of Wild Plant Essential Oils against Three Mosquito Species
by Muhammad Ghazanfar Abbas, Muhammad Azeem, Muhammad Umar Bashir, Fawad Ali, Raimondas Mozūratis and Muhammad Binyameen
Molecules 2024, 29(11), 2657; https://doi.org/10.3390/molecules29112657 - 4 Jun 2024
Cited by 2 | Viewed by 3021
Abstract
In this study, the chemical composition, repellent, and oviposition deterrent effects of five plant essential oils (EOs) extracted from Lantana camara (Verbenaceae), Schinus terebinthifolia (Anacardiaceae), Callistemon viminalis (Myrtaceae), Helichrysum odoratissimum (Asteraceae), and Hyptis suaveolens (Lamiaceae) were evaluated against Aedes aegypti, Anopheles gambiae [...] Read more.
In this study, the chemical composition, repellent, and oviposition deterrent effects of five plant essential oils (EOs) extracted from Lantana camara (Verbenaceae), Schinus terebinthifolia (Anacardiaceae), Callistemon viminalis (Myrtaceae), Helichrysum odoratissimum (Asteraceae), and Hyptis suaveolens (Lamiaceae) were evaluated against Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus. When tested at 33.3 µg/cm2, L. camara, S. terebinthifolia, C. viminalis, and H. odoratissimum were effective repellents against Ae. aegypti (89%, 91%, 90%, and 51% repellency, respectively), but they were less repellent against An. gambiae (66%, 86%, 59%, and 49% repellency, respectively). Interestingly, L. camara, S. terebinthifolia, C. viminalis, and H. odoratissimum exhibited 100% repellency against Cx. quinquefasciatus at 33.3 μg/cm2. In time-span bioassays performed at 333 μg/cm2, the EO of L. camara exhibited 100% repellence against Ae. aegypti and An. gambiae for up to 15 min and against Cx. quinquefasciatus for 75 min. The oviposition bioassays revealed that L. camara exhibited the highest activity, showing 85%, 59%, and 89% oviposition deterrence against Ae. aegypti, An. gambiae, and Cx. quinquefasciatus, respectively. The major compounds of L. camara, S. terebinthifolia, and C. viminalis were trans-β-caryophyllene (16.7%), α-pinene (15.5%), and 1,8-cineole (38.1%), respectively. In conclusion, the L. camara and S. terebinthifolia EOs have the potential to be natural mosquito repellents. Full article
Show Figures

Figure 1

13 pages, 278 KiB  
Article
Oviposition-Deterrent Effect of a High-Quality Natural Zeolite on the Olive Fruit Fly Bactrocera oleae, under Different Conditions of Temperature and Relative Humidity
by Soultana Kyriaki Kovaiou, Anastasia Kokkari, George Floros, Nikolaos Kantiranis, Nikos A. Kouloussis, Anestis A. Filippidis and Dimitrios S. Koveos
Insects 2024, 15(4), 256; https://doi.org/10.3390/insects15040256 - 8 Apr 2024
Cited by 4 | Viewed by 2057
Abstract
In recent years, the number of available chemical pesticides has been dramatically reduced, urging the need for the discovery of alternatives to chemical pesticide products such as, among others, natural zeolites (zeolitic rocks). We determined the mineralogical and chemical composition of a specific [...] Read more.
In recent years, the number of available chemical pesticides has been dramatically reduced, urging the need for the discovery of alternatives to chemical pesticide products such as, among others, natural zeolites (zeolitic rocks). We determined the mineralogical and chemical composition of a specific and continuous layer of zeolitic rock sample (ZeotP) from Petrota, Evros, Greece, and evaluated its oviposition-deterrent effect on the olive fruit fly Bactrocera oleae Gmelin (Diptera: Terphritidae). The tested natural zeolite contained 70 wt. % clinoptilolite, 18 wt. % amorphous material, 7 wt. % feldspars, 4 wt. % cristobalite, and 1 wt. % quartz. We tested the oviposition-deterrent effect of ZeotP mixed or not with an emulsifier adjuvant, NU-FILM-P®, in water and applied it to the surface of olive fruits. The ZeotP oviposition-deterrent effect on the olive fly was very high under a series of tested temperatures (17 °C, 20 °C, 25 °C, and 30 °C) and RHs (23%, 33%, 55%, 75%, and 94%). In addition, the ZeotP residual deterrent effect after equable water spraying was high, like the respective effect of the pyrethroid insecticide Decis® (deltamethrin). Our results may contribute to the effective control of the olive fruit fly using an alternative to chemical pesticides: natural zeolite (zeolitic rocks) products. Full article
(This article belongs to the Section Insect Pest and Vector Management)
18 pages, 10253 KiB  
Article
Silica and Selenium Nanoparticles Attract or Repel Scale Insects by Altering Physicochemical Leaf Traits
by Siyi Gao and Midori Tuda
Plants 2024, 13(7), 952; https://doi.org/10.3390/plants13070952 - 25 Mar 2024
Cited by 6 | Viewed by 2175
Abstract
Although nanoparticles have gained attention as efficient alternatives to conventional agricultural chemicals, there is limited knowledge regarding their effects on herbivorous insect behavior and plant physicochemistry. Here, we investigated the effects of foliar applications of nano-silica (SiO2NPs) and nano-selenium (SeNPs), and [...] Read more.
Although nanoparticles have gained attention as efficient alternatives to conventional agricultural chemicals, there is limited knowledge regarding their effects on herbivorous insect behavior and plant physicochemistry. Here, we investigated the effects of foliar applications of nano-silica (SiO2NPs) and nano-selenium (SeNPs), and bulk-size silica (SiO2) on the choice behavior of the arrowhead scale insect on mandarin orange plants. One leaf of a bifoliate pair was treated with one of the three chemicals, while the other was treated with water (control). The respective SiO2, SeO2, calcium (Ca), and carbon (C) content levels in the leaf epidermis and mesophyll were quantified using SEM–EDX (or SEM–EDS); leaf toughness and the arrowhead scale density and body size were measured. First-instar nymphs preferred silica-treated leaves and avoided SeNP-treated leaves. SiO2 content did not differ between control and SiO2NP-treated leaves, but was higher in bulk-size SiO2-treated leaves. The SiO2 level in the control leaves was higher in the SiO2NP treatment compared with that in the control leaves in the bulk-size SiO2 treatment. Silica-treated leaves increased in toughness, but SeNP-treated leaves did not; leaf toughness increased with mesophyllic SiO2 content. The insect density per leaf increased with leaf toughness, SiO2 content and, in the SiO2NP treatment, with epidermal C content. There was no correlation between SeO2 content and insect density. This study highlights the potential uses of SeNPs as an insect deterrent and of silica for enhancing leaf toughness and attracting scale insects. Full article
(This article belongs to the Special Issue Embracing Systems Thinking in Crop Protection Science)
Show Figures

Figure 1

Back to TopTop