Mineralogical and Chemical Characterization of Greek Natural Zeolite-Rich Rocks and Their Oviposition Deterrent Effect on the Olive Fruit Fly Bactrocera oleae (Rossi) (Diptera: Tephritidae)
Abstract
:1. Introduction
2. Material and Methods
2.1. Mineralogical and Chemical Characterization
2.1.1. Sampling and Mineralogical Characterization
2.1.2. Sorption Ability and Binding Capacity
2.1.3. Specific Surface Area
2.1.4. Chemical Analysis
2.1.5. X-Ray Fluorescence Study (XRF)
2.2. Determination of Oviposition Deterrent Effect
2.3. Statistical Analysis
3. Results
3.1. Mineralogical and Chemical Characterization
3.1.1. Mineralogical Characterization
3.1.2. Sorption Ability and Binding Capacity
3.1.3. Specific Surface Area
3.1.4. Chemical Analysis
Major Oxides (wt.%) | Formula Based on 72 Oxygens | ||||||||
---|---|---|---|---|---|---|---|---|---|
Samples | zeot1 | zeot2 | zeot3 | zeot4 | Samples | zeot1 | zeot2 | zeot3 | zeot4 |
SiO2 | 65.09 | 66.68 | 68.03 | 64.29 | Si | 29.87 | 29.75 | 30.80 | 29.52 |
Al2O3 | 13.11 | 12.85 | 12.31 | 12.22 | Al | 6.51 | 6.40 | 6.77 | 6.67 |
Fe2O3tot | 0.01 | 0.01 | 0.01 | 0.01 | Fe3+ | <0.01 | <0.01 | <0.01 | <0.01 |
MnO | 0.02 | 0.01 | 0.02 | 0.03 | Mn | <0.01 | <0.01 | <0.01 | <0.01 |
MgO | 0.18 | 0.92 | 0.14 | 0.09 | Mg | 0.13 | 0.66 | 0.63 | 0.02 |
CaO | 0.96 | 3.60 | 3.50 | 1.89 | Ca | 0.56 | 1.55 | 1.78 | 0.79 |
SrO | 0.01 | 0.01 | 0.01 | 0.01 | Sr | <0.01 | <0.01 | <0.01 | <0.01 |
BaO | 0.01 | 0.01 | 0.01 | 0.01 | Ba | <0.01 | <0.01 | <0.01 | <0.01 |
Na2O | 2.15 | 0.61 | 0.35 | 1.44 | Na | 2.01 | 0.47 | 0.63 | 1.34 |
K2O | 4.48 | 2.20 | 2.54 | 5.10 | K | 2.85 | 1.21 | 1.21 | 2.96 |
H2O | 13.96 | 13.07 | 13.00 | 14.85 | H2O | 22.23 | 19.30 | 19.99 | 23.23 |
Total | 99.98 | 99.97 | 99.92 | 99.94 | Si/Al | 4.58 | 4.64 | 4.54 | 4.42 |
3.1.5. X-Ray Fluorescence Study (XRF)
3.2. Oviposition Deterrent Effect of zeot1–zeot4
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holmes, D. Industrial Minerals and Rocks; Braun-Brumfield, Inc.: Ann Arbor, MI, USA, 1994; pp. 1129–1158. [Google Scholar]
- Asgar Pour, Z.; Abu Zeitoun, E.; Alassmy, Y.A.; El Hariri El Nokab, M.; Van Steenberge, P.H.M.; Sebakhy, K.O. Impact of Synthesis Parameters on the Crystallinity of Macroscopic Zeolite Y Spheres Shaped Using Resin Hard Templates. Crystals 2024, 14, 1051. [Google Scholar] [CrossRef]
- Asgar Pour, Z.; Abduljawad, M.M.; Alassmy, Y.A.; Alnafisah, M.S.; El Hariri El Nokab, M.; Van Steenberge, P.H.M.; Sebakhy, K.O. Synergistic Catalytic Effects of Alloys of Noble Metal Nanoparticles Supported on Two Different Supports: Crystalline Zeolite Sn-Beta and Carbon Nanotubes for Glycerol Conversion to Methyl Lactate. Catalysts 2023, 13, 1486. [Google Scholar] [CrossRef]
- Meier, W.M. Zeolites and zeolite-like materials. Pure Appl. Chem. 1986, 58, 1323–1328. [Google Scholar] [CrossRef]
- Rehakova, M.; Čuvanová, S.; Dzivak, M.; Rimár, J.; Gaval’Ová, Z. Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Curr. Opin. Solid State Mater. Sci. 2004, 8, 397–404. [Google Scholar] [CrossRef]
- Jha, B.; Singh, D.N. A review on synthesis, characterization and industrial applications of fly-ash zeolites. J. Mater. Educ. 2011, 33, 65. [Google Scholar] [CrossRef]
- Król, M. Natural vs. synthetic zeolites. Crystals 2020, 10, 622. [Google Scholar] [CrossRef]
- Armbruster, T.; Gunter, M.E. Stepwise dehydration of heulandite-clinoptilolite from Succor Creek, Oregon, U.S.A.: A single-crystal X-ray study at 100 K. Am. Min. 1991, 76, 1872–1883. [Google Scholar]
- Gunter, M.E.; Armbruster, T.; Kohler, T.; Knowles, C.R. Crystal structure and optical properties of Na- and Pb-exchanged heulandite-group zeolites. Am. Min. 1994, 79, 675–682. [Google Scholar]
- Baerlocher, C.; McCusker, L.B.; Olson, D.H. Atlas of Zeolite Framework Types, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Colella, C. Natural zeolites. Stud. Surf. Sci. Catal. 2005, 157, 13–40. [Google Scholar] [CrossRef]
- Dyer, A. An Introduction to Zeolite Molecular Sieves; Surface and Interface Analysis; Wiley: Chichester, UK, 1988. [Google Scholar]
- Commission Implementing Regulation (EU). No 651/2013 of 9 July 2013 Concerning the Authorization of Clinoptilolite of Sedimentary Origin as a Feed Additive for All Animal Species and Amending Regulation (EC) No 1810/2005. Available online: https://eur-lex.europa.eu/eli/reg_impl/2013/651/oj/eng (accessed on 8 March 2025).
- Davis, J.M. In vivo assays to evaluate the pathogenic effects of minerals in rodents. In Health Effects of Mineral Dusts; Guthrie, G.D., Jr., Mossman, B.T., Eds.; Reviews in Mineralogy; Walter de Gruyter: Berlin, Germany, 1993; Volume 28, pp. 471–487. [Google Scholar]
- Driscoll, K.E. In vitro evaluation of mineral cytotoxicity and inflammatory activity. In Health Effects of Mineral Dusts; Guthrie, G.D., Jr., Mossman, B.T., Eds.; Reviews in Mineralogy; Walter de Gruyter: Berlin, Germany, 1993; Volume 28, pp. 489–511. [Google Scholar]
- Ross, M.; Nolan, R.; Langer, A.; Cooper, W. Health effects of various mineral dusts other than asbestos. In Health Effects of Mineral Dusts; Guthrie, G.D., Jr., Mossman, B.T., Eds.; Reviews in Mineralogy; Walter de Gruyter: Berlin, Germany, 1993; Volume 28, pp. 361–407. [Google Scholar]
- International Agency for Research on Cancer. IARC Monographs: Arsenic, Metals, Fibers and Dusts. Volume 100C. A Review of Human Carcinogens; IARC: Lyon, France, 2017. [Google Scholar]
- Filippidis, A.; Tziritis, E.; Kantiranis, N.; Tzamos, E.; Gamaletsos, P.; Papastergios, G.; Filippidis, S. Application of Hellenic natural zeolite in Thessaloniki industrial area wastewater treatment. Desal. Water Treat. 2016, 57, 19702–19712. [Google Scholar] [CrossRef]
- Tsitsishvili, G.V.; Andronikashvili, T.G.; Kirov, G.N. Natural Zeolites; Ellis Horwood Limited: Hertfordshire, UK, 1992. [Google Scholar]
- Filippidis, A.; Kantiranis, N. Experimental neutralization of lake and stream waters from N. Greece using domestic HEU-type rich natural zeolitic material. Desalination 2007, 213, 47–55. [Google Scholar] [CrossRef]
- Filippidis, A.; Apostolidis, N.; Paragios, I.; Filippidis, S. Zeolites clean up. Indust. Miner. 2008, 487, 68–71. [Google Scholar]
- Filippidis, A.; Papastergios, G.; Kantiranis, N.; Filippidis, S. Neutralization of dyeing industry wastewater and sludge by fixation of pollutants in very high quality HEU-type zeolitic rock. J. Ecol. Environ. 2015, 2, 221–226. [Google Scholar]
- Papastergios, G.; Kantiranis, N.; Filippidis, A.; Sikalidis, C.; Vogiatzis, D.; Tzamos, E. HEU-type zeolitic rock in fixed bed columns as decontaminating agent for liquid phases. Desalination Water Treat. 2017, 59, 94–98. [Google Scholar] [CrossRef]
- Allen, E.R.; Ming, D.W. Recent progress in the use of natural zeolites in agronomy and horticulture. In Natural Zeolites 93; Ming, D.W., Mumpton, F.A., Eds.; ICNZ: Brockport, NY, USA, 1995; pp. 477–490. [Google Scholar]
- Van Bekkum, H.; Flanigen, E.M.; Jansen, J.C. Introduction to Zeolite Science and Practice; Elsevier Science Publisher: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Colella, C. Application of natural zeolites. In Handbook of Porous Solids; Wiley: Hoboken, NJ, USA, 2002; Volume 2, pp. 1156–1189. [Google Scholar]
- Floros, G.D.; Kokkari, A.I.; Kouloussis, N.A.; Kantiranis, N.; Damos, P.; Filippidis, A.; Koveos, D.S. Evaluation of the natural zeolite lethal effects on adults of the bean weevil under different temperatures and relative humidity regimes. J. Econ. Entomol. 2018, 111, 482–490. [Google Scholar] [CrossRef]
- Glenn, D.M.; Puterka, G.J.; Drake, S.R.; Unruh, T.R.; Knight, A.L.; Baherle, P. Particle film application influences apple leaf physiology, fruit yield, and fruit quality. J. Amer. Soc. Hortic. Sci. 2001, 126, 175–181. [Google Scholar] [CrossRef]
- Andrić, G.G.; Marković, M.M.; Adamović, M.; Daković, A.; Golić, M.P.; Kljajić, P.J. Insecticidal potential of natural zeolite and diatomaceous earth formulations against rice weevil (Coleoptera: Curculionidae) and red flour beetle (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2012, 105, 670–678. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Sakka, M.; Berillis, P.; Athanassiou, C.G. Insecticidal potential of zeolite formulations against three stored-grain insects, particle size effect, adherence to kernels and influence on test weight of grains. J. Stored Prod. Res. 2016, 68, 93–101. [Google Scholar] [CrossRef]
- Haryadi, Y.; Syarief, R.; Hubeis, M.; Herawati, H. Effect of zeolite on the development of Sitophilus zeamais Motsch. In Stores Products Production, Proceedings of the 6th International Working Conference on Stored Product Protection, Canberra, Australia, 17–23 April 1994; CAB International: Wallingford, UK, 1994; pp. 17–23. [Google Scholar]
- Kljajić, P.; Andrić, G.; Adamović, M.; Bodroža-Solarov, M.; Marković, M.; Perić, I. Laboratory assessment of insecticidal effectiveness of natural zeolite and diatomaceous earth formulations against three stored-product beetle pests. J. Stored Prod. Res. 2010, 46, 1–6. [Google Scholar] [CrossRef]
- Tzanakakis, M.E.; Koveos, D.S. Inhibition of ovarian maturation in the olive fruit fly, Dacus oleae (Diptera: Tephritidae), under long photophase and an increase of temperature. Ann. Entomol. Soc. Am. 1986, 79, 15–18. [Google Scholar] [CrossRef]
- Daane, K.M.; Johnson, M.W. Olive fruit fly: Managing an ancient pest in modern times. Annu. Rev. Entomol. 2010, 55, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Koveos, D.S.; Tzanakakis, M.E. Effect of the presence of olive fruit on ovarian maturation in the olive fruit fly, Dacus oleae, under laboratory conditions. Entomol. Exp. Appl. 1990, 55, 161–168. [Google Scholar] [CrossRef]
- Pavlidi, N.; Gioti, A.; Wybouw, N.; Dermauw, W.; Ben-Yosef, M.; Yuval, B.; Vontas, J. Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding. Sci. Rep. 2017, 7, srep42633. [Google Scholar] [CrossRef]
- Koveos, D.S.; Tzanakakis, M.E. Diapause aversion in the adult olive fruit fly through effects of the host fruit, bacteria, and adult diet. Ann. Entomol. Soc. Am. 1993, 86, 668–673. [Google Scholar] [CrossRef]
- Boskou, D.; Blekas, G.; Tsimidou, M. Olive oil composition. In Olive Oil; AOCS Press: Champaign, IL, USA, 2007; pp. 41–72. [Google Scholar]
- Kokkari, A.I.; Pliakou, O.D.; Floros, G.D.; Kouloussis, N.A.; Koveos, D.S. Effect of fruit volatiles and light intensity on the reproduction of Bactrocera (Dacus) oleae. J. Appl. Entomol. 2017, 141, 841–847. [Google Scholar] [CrossRef]
- Malheiro, R.; Casal, S.; Cunha, S.C.; Baptista, P.; Pereira, J.A. Olive volatiles from Portuguese cultivars Cobrançosa, Madural and Verdeal Transmontana: Role in oviposition preference of Bactrocera oleae (Rossi) (Diptera: Tephritidae). PLoS ONE 2015, 10, e0125070. [Google Scholar] [CrossRef]
- Kokkari, A.I.; Milonas, P.G.; Anastasaki, E.; Floros, G.D.; Kouloussis, N.A.; Koveos, D.S. Determination of volatile substances in olives and their effect on reproduction of the olive fruit fly. J. Appl. Entomol. 2021, 145, 841–855. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Vayias, B.J.; Dimizas, C.B.; Kavallieratos, N.G.; Papagregoriou, A.S.; Buchelos, C.T. Insecticidal efficacy of diatomaceous earth against Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Tribolium confusum du Val (Coleoptera: Tenebrionidae) on stored wheat: Influence of dose rate, temperature and exposure interval. J. Stored Prod. Res. 2005, 41, 47–55. [Google Scholar] [CrossRef]
- Baldassari, N.; Prioli, C.; Martini, A.; Trotta, V.; Barionio, P. Insecticidal efficacy of a diatomaceous earth formulation against a mixed age population of adults of Rhyzopertha dominica and Tribolium castaneum as function of different temperature and exposure time. Bull. Insectology 2008, 61, 355–360. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4743cfff8bc78d9f23d02cc53295e363fee54898 (accessed on 8 March 2025).
- Arthur, F.H. Immediate and delayed mortality of Oryzaephilus surinamensis (L.) exposed on wheat treated with diatomaceous earth: Effects of temperature, relative humidity, and exposure interval. J. Stor. Prod. Res. 2001, 37, 13–21. [Google Scholar] [CrossRef]
- Mewis, I.; Ulrichs, C. Action of amorphous diatomaceous earth against different stages of the stored product pests Tribolium confusum (Coleoptera: Tenebrionidae), Tenebrio molitor (Coleoptera: Tenebrionidae), Sitophilus granarius (Coleoptera: Curculionidae) and Plodia interpunctella (Lepidoptera: Pyralidae). J. Stored Prod. Res. 2001, 37, 153–164. [Google Scholar] [CrossRef]
- De Smedt, C.; Someus, E.; Spanoghe, P. Potential and actual uses of zeolites in crop protection. Pest Manag. Sci. 2015, 71, 1355–1367. [Google Scholar] [CrossRef] [PubMed]
- Puterka, G.J.; Glenn, D.M.; Sekutowski, D.G.; Unruh, T.R.; Jones, S.K. Progress toward liquid formulations of particle films for insect and disease control in pear. Environ. Entomol. 2000, 29, 329–339. [Google Scholar] [CrossRef]
- Mposkos, E. High-pressure metamorphism in gneisses and pelitic schists in the East Rhodope Zone (N. Greece). Miner. Petrol. 1989, 41, 25–39. [Google Scholar] [CrossRef]
- Mposkos, E.; Liati, A. Metamorphic evolution of metapelites in the high-pressure terrane of the Rhodope zone, Northern Greece. Can. Miner. 1993, 31, 401. [Google Scholar] [CrossRef]
- Tsirambides, A.; Filippidis, A.; Kassoli-Fournaraki, A. Zeolitic alteration of Eocene volcaniclastic sediments at Metaxades, Thrace, Greece. Appl. Clay Sci. 1993, 7, 509–526. [Google Scholar] [CrossRef]
- Koutles, T.; Kassoli-Fournaraki, A.; Filippidis, A.; Tsirambides, A. Geology and geochemistry of the Eocene zeolitic-bearing volcaniclastic sediments of Metaxades, Thrace, Greece. Estudios Geol. 1995, 51, 19–27. [Google Scholar] [CrossRef]
- Kirov, G.N.; Filippidis, A.; Tsirambides, A.; Tzvetanov, R.G.; Kassoli-Fournaraki, A. Zeolite-bearing rocks in Petrota area (Eastern Rhodope Massif, Greece). Geol. Rhodopica 1990, 2, 500–511. [Google Scholar]
- Aleksiev, B.; Djourova, E.G. On the origin of zeolite rocks. C. R. Acad. Bulg. Sci. 1975, 28, 517–520. [Google Scholar]
- Tsolis-Katagas, P.; Katagas, C. Zeolitic diagenesis of Oligocene pyroclastic rocks of the Metaxades area, Thrace, Greece. Miner. Mag. 1990, 54, 95–103. [Google Scholar] [CrossRef]
- Bish, D.; Post, J. Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. Am. Min. 1993, 78, 932–940. [Google Scholar]
- Bain, D.C.; Smith, B.F.L. Chemical analysis. In A Handbook of Determinative Methods in Clay Mineralogy; Wilson, M.J., Ed.; Blackie: Glasgow, UK, 1987; pp. 248–274. [Google Scholar]
- Kantiranis, N.; Stamatakis, M.; Filippidis, A.; Squires, C. The uptake ability of the clinoptilolitic rocks of Samos Island, Greece. Bull. Geol. Soc. Greece 2004, 36, 89–96. [Google Scholar] [CrossRef]
- Sposito, G. Distinguishing adsorption from surface precipitation. In Geochemical Processes of Mineral Surfaces; Davis, J.A., Hayes, K., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1986; Volume 323, pp. 217–228. [Google Scholar]
- Drakoulis, A.; Kantiranis, N.; Filippidis, A.; Sergiou, A. The uptake ability of amorphous-rich industrial materials from Milos Island. In Proceedings of the 2nd Conference of the Committee for Economic Geology, Mineralogy and Geochemistry, Thessaloniki, Greece, 7–9 October 2005; pp. 55–63. [Google Scholar]
- Sinha, P.; Datar, A.; Jeong, C.; Deng, X.; Chung, Y.G.; Lin, L.C. Surface area determination of porous materials using the Brunauer–Emmett–Teller (BET) method: Limitations and improvements. J. Phys. Chem. C 2019, 123, 20195–20209. [Google Scholar] [CrossRef]
- Mumpton, F.A. Mineralogy and Geology of Natural Zeolites; Mineralogical Society of America: Blacksburg, VA, USA, 1977; Volume 4. [Google Scholar]
- Gottardi, G.; Galli, E. General information on zeolites. Nat. Zeolites 1985, 1, 1–34. [Google Scholar] [CrossRef]
- Yin, Z.; Wen, Y.; Chen, W.; Han, F.; Chang, G.; Yao, C. Effects of important factors on determination of metals in soil samples using hand-held X-ray fluorescence. In Sustainable Development of Water and Environment. ICSDWE 2021; Jeon, H.Y., Ed.; Environmental Science and Engineering; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Kovaiou, S.K.; Kokkari, A.; Floros, G.; Kantiranis, N.; Kouloussis, N.A.; Filippidis, A.A.; Koveos, D. Oviposition deterrent effect of a high-quality natural zeolite for the olive fruit fly Bactrocera oleae, under different conditions of temperature and relative humidity. Insects 2024, 15, 256. [Google Scholar] [CrossRef]
- Cook, H.E.; Johnson, P.D.; Matti, J.C.; Zemmels, I. Methods of sample preparation and X-ray diffraction data analysis. In Initial Reports of the Deep-Sea Drilling Project; Hayes, D.E., Ed.; U.S. Government Printing Office: Washington, DC, USA, 1975; Volume 28, pp. 999–1007. [Google Scholar]
- Moore, D.C.; Reynolds, R.C. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK, 1997; pp. 1–378. [Google Scholar]
- Kantiranis, N.; Stergiou, A.; Filippidis, A.; Drakoulis, A. Calculation of the percentage of amorphous material using PXRD patterns. Bull. Geol. Soc. Greece 2004, 36, 446–453. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock Forming Minerals, 2nd ed.; Longman: London, UK, 1992. [Google Scholar]
- Kantiranis, N.; Sikalidis, K.; Godelitsas, A.; Squires, C.; Papastergios, G.; Filippidis, A. Extra-framework cation release from heulandite-type rich tuffs on exchange with NH4+. J. Environ. Manag. 2011, 92, 1569–1576. [Google Scholar] [CrossRef]
- Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is the BET equation applicable to microporous adsorbents? Stud. Surf. Sci. Catal. 2007, 160, 49–56. [Google Scholar] [CrossRef]
- Boles, J.R.; Surdam, R.C. Diagenesis of volcanogenic sediments in a Tertiary saline lake; Wagon Bed Formation, Wyoming. Am. J. Sci. 1979, 279, 832–853. [Google Scholar] [CrossRef]
- Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, J.D.; Liebau, F.; Mandarino, J.A.; Minato, H.; et al. Recommended nomenclature for zeolite minerals: Report of the Subcommittee on Zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Canad. Miner. 1997, 35, 1571–1606. [Google Scholar]
- Commission Implementing Regulation (EU). No 915/2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Available online: https://eur-lex.europa.eu/eli/reg/2023/915/oj/eng (accessed on 8 March 2025).
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar] [CrossRef]
- Kovaiou, S.K.; Kokkari, A.; Mytiglaki, C.; Kouloussis, N.A.; Kantiranis, N. Zeolites in agriculture: Oviposition deterrent effect of Greek analcime-rich zeolite rock against the olive fruit fly Bactrocera oleae. In Proceedings of the International Conference of European Clay Groups Association-EUROCLAY 2023, Bari, Italy, 24–27 July 2023; Volume 9, pp. 25–30. [Google Scholar] [CrossRef]
- Katsoyannos, B.I.; Kouloussis, N.A. Captures of the olive fruit fly Bactrocera oleae on spheres of different colours. Entomol. Exp. Appl. 2001, 100, 165–172. [Google Scholar] [CrossRef]
- Eroglu, N.; Sakka, M.K.; Emekci, M.; Athanassiou, C.G. Effects of zeolite formulations on the mortality and progeny production of Sitophilus oryzae and Oryzaephilus surinamensis at different temperature and relative humidity levels. J. Stored Prod. Res. 2019, 81, 40–45. [Google Scholar] [CrossRef]
- Korunić, Z. Review: Diatomaceous earths, a group of natural insecticides. J. Stored Prod. Res. 1998, 34, 87–97. [Google Scholar] [CrossRef]
- Subramanyam, B.; Roesli, R. Inert dusts. In Alternatives to Pesticides in Stored-Product IPM; Subramanyam, B., Hagstrum, D.W., Eds.; Kluwer Academic Publishers: Boston, MA, USA, 2000; pp. 321–380. [Google Scholar]
- Vayias, B.J.; Athanassiou, C.G.; Korunic, Z.; Rozman, V. Evaluation of natural diatomaceous earth deposits from south-eastern Europe for stored-grain protection: The effect of particle size. Pest Manag. Sci. 2009, 65, 1118–1123. [Google Scholar] [CrossRef]
- Lü, J.; Sehgal, B.; Subramanyam, B. Insecticidal potential of a synthetic zeolite against the cowpea weevil, Callosobruchus maculatus (Fabricius) (Coleoptera: Bruchidae). J. Stored Prod. Res. 2017, 72, 28–34. [Google Scholar] [CrossRef]
Samples | zeot1 | zeot2 | zeot3 | zeot4 |
---|---|---|---|---|
HEU-type zeolite (clinoptilolite) | 62 | 54 | 70 | 67 |
Mica + clay minerals | 3 | 3 | 2 | 4 |
Total microporous minerals | 65 | 57 | 72 | 71 |
Quartz + Cristobalite | 9 | 7 | 7 | 8 |
Feldspars (K-feldspar + Plagioclase) | 8 | 13 | 7 | 8 |
Total non-microporous minerals | 17 | 20 | 14 | 16 |
Amorphous | 17 | 23 | 14 | 13 |
Total | 100 | 100 | 100 | 100 |
Sorption ability (meq/100 g) | 160 | 134 | 195 | 179 |
Specific surface area (cm2/g) | 7.8 | 6.5 | 8.4 | 8.1 |
Samples | Theoretical CEC (meq/100 g) | Expected CEC (meq/100 g) | Measured Sorption Ability (meq/100 g) | Cpt Content wt.% |
---|---|---|---|---|
zeot1 | 1.58 | 1.41 | 1.6 | 65 |
zeot2 | 1.38 | 1.25 | 1.34 | 57 |
zeot3 | 1.78 | 1.72 | 1.95 | 72 |
zeot4 | 1.71 | 1.44 | 1.79 | 71 |
Heavy Metals (mg/kg) | zeot1 | zeot2 | zeot3 | zeot4 | Detection Limits (mg/kg) |
---|---|---|---|---|---|
As | <2 | 7 | <2 | 5 | 2 |
Cd | <4 | <4 | <4 | <4 | 4 |
Cr | 63 | 77 | 51 | 112 | 17 |
Cu | 6 | 4 | 6 | 7 | 4 |
Hg | <1 | <1 | <1 | <1 | 1 |
Ni | <5 | <5 | <5 | 21 | 5 |
Pb | 27 | 55 | 61 | 7 | 4 |
Se | 3 | 2 | 3 | 3 | 2 |
V | <20 | <2.0 | <20 | <20 | 20 |
Zn | 33 | 46 | 34 | 44 | 2 |
Treatment | Mean (±SE) Number of Oviposition Holes After | |||
---|---|---|---|---|
2 | 4 | 6 | 8 | |
Days | ||||
Control | 57.3 ± 6.9 a* | 104.5 ± 19.6 a | 149.4 ± 24.1 a | 172.3 ± 22.1 a |
zeot1 | 31.2 ± 18.9 bc | 48.9 ± 30.9 b | 60.5 ± 36.4 b | 71.5 ± 32.4 ab |
zeot2 | 30.7 ± 17.1 bc | 62.7 ± 33.2 bc | 92.3 ± 29.8 ac | 95.5 ± 27.6 b |
zeot3 | 11.6 ± 9.9 d | 23.2 ± 10.4 d | 31.9 ± 16.5 d | 43.1 ± 11.7 c |
zeot4 | 22.2 ± 11.8 c | 65.1 ± 15.3 c | 84.4 ± 6.2 bc | 97.2 ± 7.5 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovaiou, S.K.; Kokkari, A.; Mytiglaki, C.; Kouloussis, N.A.; Filippidis, A.; Kantiranis, N.; Koveos, D. Mineralogical and Chemical Characterization of Greek Natural Zeolite-Rich Rocks and Their Oviposition Deterrent Effect on the Olive Fruit Fly Bactrocera oleae (Rossi) (Diptera: Tephritidae). Minerals 2025, 15, 458. https://doi.org/10.3390/min15050458
Kovaiou SK, Kokkari A, Mytiglaki C, Kouloussis NA, Filippidis A, Kantiranis N, Koveos D. Mineralogical and Chemical Characterization of Greek Natural Zeolite-Rich Rocks and Their Oviposition Deterrent Effect on the Olive Fruit Fly Bactrocera oleae (Rossi) (Diptera: Tephritidae). Minerals. 2025; 15(5):458. https://doi.org/10.3390/min15050458
Chicago/Turabian StyleKovaiou, Soultana Kyriaki, Anastasia Kokkari, Christina Mytiglaki, Nikos A. Kouloussis, Anestis Filippidis, Nikolaos Kantiranis, and Dimitrios Koveos. 2025. "Mineralogical and Chemical Characterization of Greek Natural Zeolite-Rich Rocks and Their Oviposition Deterrent Effect on the Olive Fruit Fly Bactrocera oleae (Rossi) (Diptera: Tephritidae)" Minerals 15, no. 5: 458. https://doi.org/10.3390/min15050458
APA StyleKovaiou, S. K., Kokkari, A., Mytiglaki, C., Kouloussis, N. A., Filippidis, A., Kantiranis, N., & Koveos, D. (2025). Mineralogical and Chemical Characterization of Greek Natural Zeolite-Rich Rocks and Their Oviposition Deterrent Effect on the Olive Fruit Fly Bactrocera oleae (Rossi) (Diptera: Tephritidae). Minerals, 15(5), 458. https://doi.org/10.3390/min15050458