Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = charged-lepton flavor violation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 577 KiB  
Communication
Search for R-Parity-Violation-Induced Charged Lepton Flavor Violation at Future Lepton Colliders
by Xunye Cai, Jingshu Li, Ran Ding, Meng Lu, Zhengyun You and Qiang Li
Universe 2024, 10(6), 243; https://doi.org/10.3390/universe10060243 - 31 May 2024
Cited by 3 | Viewed by 1160
Abstract
Interest in searches for Charged Lepton Flavor Violation (CLFV) has continued in the past few decades since the observation of CLFV would indicate a new physics Beyond the Standard Model (BSM). As several future lepton colliders with high luminosity have been proposed, the [...] Read more.
Interest in searches for Charged Lepton Flavor Violation (CLFV) has continued in the past few decades since the observation of CLFV would indicate a new physics Beyond the Standard Model (BSM). As several future lepton colliders with high luminosity have been proposed, the search for CLFV will reach an unprecedented level of precision. Many BSM models allow CLFV processes at the tree level, such as the R-parity-violating (RPV) Minimal Supersymmetric Standard Model (MSSM), which is a good choice for benchmarking. In this paper, we perform a detailed fast Monte Carlo simulation study on RPV-induced CLFV processes at future lepton colliders, including a 240 GeV circular electron positron collider (CEPC) and a 6 or 14 TeV Muon Collider. As a result, we found that the upper limits on the τ-related RPV couplings will be significantly improved, while several new limits on RPV couplings can be set, which are inaccessible by low-energy experiments. Full article
(This article belongs to the Special Issue Search for New Physics at the LHC and Future Colliders)
Show Figures

Figure 1

22 pages, 617 KiB  
Review
Neutrino Flavor Model Building and the Origins of Flavor and CP Violation
by Yahya Almumin, Mu-Chun Chen, Murong Cheng, Víctor Knapp-Pérez, Yulun Li, Adreja Mondol, Saúl Ramos-Sánchez, Michael Ratz and Shreya Shukla
Universe 2023, 9(12), 512; https://doi.org/10.3390/universe9120512 - 12 Dec 2023
Cited by 15 | Viewed by 2588
Abstract
The neutrino sector offers one of the most sensitive probes of new physics beyond the Standard Model of Particle Physics (SM). The mechanism of neutrino mass generation is still unknown. The observed suppression of neutrino masses hints at a large scale, conceivably of [...] Read more.
The neutrino sector offers one of the most sensitive probes of new physics beyond the Standard Model of Particle Physics (SM). The mechanism of neutrino mass generation is still unknown. The observed suppression of neutrino masses hints at a large scale, conceivably of the order of the scale of a rand unified theory (GUT), which is a unique feature of neutrinos that is not shared by the charged fermions. The origin of neutrino masses and mixing is part of the outstanding puzzle of fermion masses and mixings, which is not explained ab initio in the SM. Flavor model building for both quark and lepton sectors is important in order to gain a better understanding of the origin of the structure of mass hierarchy and flavor mixing, which constitute the dominant fraction of the SM parameters. Recent activities in neutrino flavor model building based on non-Abelian discrete flavor symmetries and modular flavor symmetries have been shown to be a promising direction to explore. The emerging models provide a framework that has a significantly reduced number of undetermined parameters in the flavor sector. In addition, such a framework affords a novel origin of CP violation from group theory due to the intimate connection between physical CP transformation and group theoretical properties of non-Abelian discrete groups. Model building based on non-Abelian discrete flavor symmetries and their modular variants enables the particle physics community to interpret the current and anticipated upcoming data from neutrino experiments. Non-Abelian discrete flavor symmetries and their modular variants can result from compactification of a higher-dimensional theory. Pursuit of flavor model building based on such frameworks thus also provides the connection to possible UV completions: in particular, to string theory. We emphasize the importance of constructing models in which the uncertainties of theoretical predictions are smaller than, or at most compatible with, the error bars of measurements in neutrino experiments. While there exist proof-of-principle versions of bottom-up models in which the theoretical uncertainties are under control, it is remarkable that the key ingredients of such constructions were discovered first in top-down model building. We outline how a successful unification of bottom-up and top-down ideas and techniques may guide us towards a new era of precision flavor model building in which future experimental results can give us crucial insights into the UV completion of the SM. Full article
(This article belongs to the Special Issue CP Violation and Flavor Physics)
Show Figures

Figure 1

16 pages, 2164 KiB  
Review
Review of Flavor Anomalies
by Seema Bahinipati
Symmetry 2023, 15(10), 1963; https://doi.org/10.3390/sym15101963 - 23 Oct 2023
Viewed by 1634
Abstract
Lepton flavor universality exists in the Standard Model, and hence any observation of the violation of this universality will be a hint for new physics. Recent experimental searches for processes violating this symmetry have attracted much attention among theorists and experimentalists alike. In [...] Read more.
Lepton flavor universality exists in the Standard Model, and hence any observation of the violation of this universality will be a hint for new physics. Recent experimental searches for processes violating this symmetry have attracted much attention among theorists and experimentalists alike. In recent years, such hints have been observed in flavor changing neutral current weak processes such as bsll and charged current weak processes such as bclν processes by collider experiments like Belle, Belle II, BaBar, LHCb, ATLAS, and CMS collaborations, where b,s,c are the bottom, strange, and charm quarks, respectively, and l,ν stand for lepton and the corresponding lepton neutrino, respectively. This article is a review of some of the interesting anomalies observed in the B-sector and includes decays of Bs mesons. Full article
(This article belongs to the Special Issue Symmetry in Hadron and Quark Models)
Show Figures

Figure 1

6 pages, 2717 KiB  
Proceeding Paper
DeeMe—Muon–Electron Conversion Search Experiment
by Kazuhiro Yamamoto
Phys. Sci. Forum 2023, 8(1), 39; https://doi.org/10.3390/psf2023008039 - 16 Aug 2023
Viewed by 1029
Abstract
This experiment to search for the one of the charged lepton flavor-violating processes, muon-electron conversion, DeeMe, is being conducted at the J-PARC MLF H-Line in Japan. This experiment utilizes a pulsed proton beam from the Rapid Cycling Synchrotron (RCS). A graphite target is [...] Read more.
This experiment to search for the one of the charged lepton flavor-violating processes, muon-electron conversion, DeeMe, is being conducted at the J-PARC MLF H-Line in Japan. This experiment utilizes a pulsed proton beam from the Rapid Cycling Synchrotron (RCS). A graphite target is bombarded with a pulsed proton beam, negative pion production and pion-in-flight-decay to negative muon; then, the creation of muonic atoms is caused in the same pion production target. A converted electron is expected to be emitted after 1 ∼ 2 micro second-delayed timing. And two-body reaction of the new process, μ+(A,Z)e+(A,Z), results in 105 MeV monoenergetic electron. Thus, 1 ∼ 2 micro second-delayed 105 MeV monoenergetic electron is a searched signal. Electrons around 105 MeV are transported by the H-Line and analyzed using the dipole magnet (0.4 T) and four multi-wire proportional chambers (MWPCs). However, the burst pulse reaching 108 charged particles/pulse attributable to the RCS pulse leads to significant dead time for the MWPC. Thus, the HV switching scheme is introduced to handle the prompt burst. The target single event sensitivity is 1013. The H-Line construction was completed, and commissioning went well. The overview of the experiment and the current status are described in this article. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

6 pages, 2474 KiB  
Proceeding Paper
Status of the MEG II Experiment and Performance Results from the First Year’s Data Taking
by Dylan Palo
Phys. Sci. Forum 2023, 8(1), 6; https://doi.org/10.3390/psf2023008006 - 29 Jun 2023
Viewed by 1210
Abstract
We report on the MEG II experiment, a search for the charged lepton flavor violating (CLFV) decay μ+e+γ. The experiment is designed to improve upon the most sensitive search for the decay, i.e., the MEG experiment, by [...] Read more.
We report on the MEG II experiment, a search for the charged lepton flavor violating (CLFV) decay μ+e+γ. The experiment is designed to improve upon the most sensitive search for the decay, i.e., the MEG experiment, by an order of magnitude. The MEG II experiment aims to reach a final sensitivity of 6×1014 at the 90% confidence level. The experiment completed its first year of data collection in 2021. This proceedings discusses preliminary positron and photon data-driven kinematic resolution measurements and compares them to those of the MEG experiment and the MEG II design expectation. Preliminary estimates of the first year and final experiment sensitivity are presented. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

9 pages, 1211 KiB  
Proceeding Paper
The Future of Experimental Muon Physics
by Kevin Lynch
Phys. Sci. Forum 2023, 8(1), 3; https://doi.org/10.3390/psf2023008003 - 27 Jun 2023
Viewed by 1653
Abstract
In this talk, I discuss a possible future for the global muon physics program. I focus on the future of flavor studies, precision measurements and searches that can be pursued with a new class of muonium beam sources, and emerging practical applications of [...] Read more.
In this talk, I discuss a possible future for the global muon physics program. I focus on the future of flavor studies, precision measurements and searches that can be pursued with a new class of muonium beam sources, and emerging practical applications of muons in the industrial, academic, and government sectors. Full article
(This article belongs to the Proceedings of The 23rd International Workshop on Neutrinos from Accelerators)
Show Figures

Figure 1

10 pages, 506 KiB  
Review
Tests of Charge–Parity Symmetry and Lepton Flavor Conservation in the Top Quark Sector
by Kai-Feng Chen and Reza Goldouzian
Universe 2023, 9(2), 62; https://doi.org/10.3390/universe9020062 - 20 Jan 2023
Viewed by 1338
Abstract
The Standard Model (SM) of particle physics is the most general renormalizable theory which is built on a few general principles and fundamental symmetries with the given particle content. However, multiple symmetries are not built into the model and are simply consequences of [...] Read more.
The Standard Model (SM) of particle physics is the most general renormalizable theory which is built on a few general principles and fundamental symmetries with the given particle content. However, multiple symmetries are not built into the model and are simply consequences of renormalizabilty, gauge invariance, and particle content of the theory. It is crucial to test the validity of these types of symmetries and related conservation laws experimentally. The CERN LHC provides the highest sensitivity for testing the SM symmetries at high energy scales involving heavy particles such as the top quark. In this article, we are going to review the recent experimental searches of charge–parity and charged-lepton flavor violation in the top quark sector. Full article
(This article belongs to the Special Issue Top Quark at the New Physics Frontier)
Show Figures

Figure 1

39 pages, 8404 KiB  
Review
Introduction to Charged Lepton Flavor Violation
by Marco Ardu and Gianantonio Pezzullo
Universe 2022, 8(6), 299; https://doi.org/10.3390/universe8060299 - 25 May 2022
Cited by 16 | Viewed by 3231
Abstract
Neutrino masses are evidence of lepton flavor violation, but no violation in the interactions among the charged leptons has been observed yet. Many models of Physics Beyond the Standard Model (BSM) predict Charged Lepton Flavor Violation (CLFV) in a wide spectrum of processes [...] Read more.
Neutrino masses are evidence of lepton flavor violation, but no violation in the interactions among the charged leptons has been observed yet. Many models of Physics Beyond the Standard Model (BSM) predict Charged Lepton Flavor Violation (CLFV) in a wide spectrum of processes with rates in reach of upcoming experiments. The experimental searches that provide the current best limits on the CLFV searches are reviewed, with a particular emphasis on the muon-based experiments that give the most stringent constraints on the BSM parameter space. The next generation of muon-based experiments (MEG-II, Mu2e, COMET, Mu3e) aims to reach improvements by many orders of magnitude with respect to the current best limits, thanks to several technological advancements. We review popular heavy BSM theories, and we present the calculations of the predicted CLFV branching ratios, focusing on the more sensitive μe sector. Full article
(This article belongs to the Special Issue Charged Lepton Flavor Violation)
Show Figures

Figure 1

16 pages, 964 KiB  
Review
Muon to Positron Conversion
by MyeongJae Lee and Michael MacKenzie
Universe 2022, 8(4), 227; https://doi.org/10.3390/universe8040227 - 7 Apr 2022
Cited by 7 | Viewed by 2802
Abstract
Lepton-flavor violation (LFV) has been discovered in the neutrino sector by neutrino oscillation experiments. The minimal extension of the Standard Model (SM) to include neutrino masses allows LFV in the charged sector (CLFV) at the loop level, but at rates that are too [...] Read more.
Lepton-flavor violation (LFV) has been discovered in the neutrino sector by neutrino oscillation experiments. The minimal extension of the Standard Model (SM) to include neutrino masses allows LFV in the charged sector (CLFV) at the loop level, but at rates that are too small to be experimentally observed. Lepton-number violation (LNV) is explicitly forbidden even in the minimally extended SM, so the observation of an LNV process would be unambiguous evidence of physics beyond the SM. The search for the LNV and CLFV process μ+N(A,Z)e++N(A,Z2) (referred to as μe+) complements 0νββ decay searches, and is sensitive to potential flavor effects in the neutrino mass-generation mechanism. A theoretical motivation for μe+ is presented along with a review of the status of past μe+ experiments and future prospects. Special attention is paid to an uncertain and potentially dominant background for these searches, namely, radiative muon capture (RMC). The RMC high energy photon spectrum is theoretically understudied and existing measurements insufficiently constrain this portion of the spectrum, leading to potentially significant impacts on current and future μe+ work. Full article
(This article belongs to the Special Issue Charged Lepton Flavor Violation)
Show Figures

Figure 1

17 pages, 7303 KiB  
Review
Search for Muon-to-Electron Conversion with the COMET Experiment
by Manabu Moritsu
Universe 2022, 8(4), 196; https://doi.org/10.3390/universe8040196 - 22 Mar 2022
Cited by 11 | Viewed by 3436
Abstract
Charged Lepton Flavor Violation is expected to be one of the most powerful tools to reveal physics beyond the Standard Model. The COMET experiment aims to search for the neutrinoless coherent transition of a muon into an electron in the field of a [...] Read more.
Charged Lepton Flavor Violation is expected to be one of the most powerful tools to reveal physics beyond the Standard Model. The COMET experiment aims to search for the neutrinoless coherent transition of a muon into an electron in the field of a nucleus. Muon-to-electron conversion has never been observed, and can be, and would be, clear evidence of new physics if discovered. The experimental sensitivity of this process, defined as the ratio of the muon-to-electron conversion rate to the total muon capture rate, is expected to be significantly improved by a factor of 100 to 10,000 in the coming decade. The COMET experiment will take place at J-PARC with single event sensitivities of the orders of 10−15 and 10−17 in Phase-I and Phase-II, respectively. The ambitious goal of the COMET experiment is achieved by realizing a high-quality pulsed beam and an unprecedentedly powerful muon source together with an excellent detector apparatus that can tolerate a severe radiation environment. The construction of a new beam line, superconducting magnets, detectors and electronics is in progress towards the forthcoming Phase-I experiment. We present the experimental methods, sensitivity and backgrounds along with recent status and prospects. Full article
(This article belongs to the Special Issue Charged Lepton Flavor Violation)
Show Figures

Figure 1

19 pages, 1718 KiB  
Review
Charged Lepton Flavor Violation at the High-Energy Colliders: Neutrino Mass Relevant Particles
by Yongchao Zhang
Universe 2022, 8(3), 164; https://doi.org/10.3390/universe8030164 - 6 Mar 2022
Cited by 1 | Viewed by 2983
Abstract
We summarize the potential charged lepton flavor violation (LFV) from neutrino mass relevant models, for instance the seesaw mechanisms. In particular, we study, in a model-dependent way, the LFV signals at the high-energy hadron and lepton colliders originating from the beyond standard model [...] Read more.
We summarize the potential charged lepton flavor violation (LFV) from neutrino mass relevant models, for instance the seesaw mechanisms. In particular, we study, in a model-dependent way, the LFV signals at the high-energy hadron and lepton colliders originating from the beyond standard model (BSM) neutral scalar H, doubly charged scalar H±±, heavy neutrino N, heavy WR boson, and the Z boson. For the neutral scalar, doubly charged scalar and Z boson, the LFV signals originate from the (effective) LFV couplings of these particles to the charged leptons, while for the heavy neutrino N and WR boson, the LFV effects are from flavor mixing in the neutrino sector. We consider current limits on these BSM particles and estimate their prospects at future high-energy hadron and lepton colliders. Full article
(This article belongs to the Special Issue Charged Lepton Flavor Violation)
Show Figures

Figure 1

18 pages, 22360 KiB  
Article
Searching for the Muon Decay to Three Electrons with the Mu3e Experiment
by Cristina Martin Perez and Luigi Vigani
Universe 2021, 7(11), 420; https://doi.org/10.3390/universe7110420 - 3 Nov 2021
Cited by 3 | Viewed by 2810
Abstract
Mu3e is a dedicated experiment designed to find or exclude the charged lepton flavor violating μ eee decay at branching fractions above 1016. The search is pursued in two operational phases: Phase I uses an existing beamline at the [...] Read more.
Mu3e is a dedicated experiment designed to find or exclude the charged lepton flavor violating μ eee decay at branching fractions above 1016. The search is pursued in two operational phases: Phase I uses an existing beamline at the Paul Scherrer Institute (PSI), targeting a single event sensitivity of 2·1015, while the ultimate sensitivity is reached in Phase II using a high intensity muon beamline under study at PSI. As the μ eee decay is heavily suppressed in the Standard Model of particle physics, the observation of such a signal would be an unambiguous indication of the existence of new physics. Achieving the desired sensitivity requires a high rate of muons (108 stopped muons per second) along with a detector with large kinematic acceptance and efficiency, able to reconstruct the low momentum of the decay electrons and positrons. To achieve this goal, the Mu3e experiment is mounted with an ultra thin tracking detector based on monolithic active pixel sensors for excellent momentum and vertex resolution, combined with scintillating fibers and tiles for precise timing measurements. Full article
(This article belongs to the Special Issue Charged Lepton Flavor Violation)
Show Figures

Figure 1

13 pages, 633 KiB  
Article
The Search for μ+ → e+γ with 10–14 Sensitivity: The Upgrade of the MEG Experiment
by Alessandro M. Baldini, Vladimir Baranov, Michele Biasotti, Gianluigi Boca, Paolo W. Cattaneo, Gianluca Cavoto, Fabrizio Cei, Marco Chiappini, Gianluigi Chiarello, Alessandro Corvaglia, Federica Cuna, Giovanni dal Maso, Antonio de Bari, Matteo De Gerone, Marco Francesconi, Luca Galli, Giovanni Gallucci, Flavio Gatti, Francesco Grancagnolo, Marco Grassi, Dmitry N. Grigoriev, Malte Hildebrandt, Kei Ieki, Fedor Ignatov, Toshiyuki Iwamoto, Peter-Raymond Kettle, Nikolay Khomutov, Satoru Kobayashi, Alexander Kolesnikov, Nikolay Kravchuk, Victor Krylov, Nikolay Kuchinskiy, William Kyle, Terence Libeiro, Vladimir Malyshev, Manuel Meucci, Satoshi Mihara, William Molzon, Toshinori Mori, Alexander Mtchedlishvili, Mitsutaka Nakao, Donato Nicolò, Hajime Nishiguchi, Shinji Ogawa, Rina Onda, Wataru Ootani, Atsushi Oya, Dylan Palo, Marco Panareo, Angela Papa, Valerio Pettinacci, Alexander Popov, Francesco Renga, Stefan Ritt, Massimo Rossella, Aleksander Rozhdestvensky, Patrick Schwendimann, Kohei Shimada, Giovanni Signorelli, Alexey Stoykov, Giovanni F. Tassielli, Kazuki Toyoda, Yusuke Uchiyama, Masashi Usami, Cecilia Voena, Kosuke Yanai, Kensuke Yamamoto, Taku Yonemoto and Yury V. Yudinadd Show full author list remove Hide full author list
Symmetry 2021, 13(9), 1591; https://doi.org/10.3390/sym13091591 - 29 Aug 2021
Cited by 33 | Viewed by 5828
Abstract
The MEG experiment took data at the Paul Scherrer Institute in the years 2009–2013 to test the violation of the lepton flavor conservation law, which originates from an accidental symmetry that the Standard Model of elementary particle physics has, and published the most [...] Read more.
The MEG experiment took data at the Paul Scherrer Institute in the years 2009–2013 to test the violation of the lepton flavor conservation law, which originates from an accidental symmetry that the Standard Model of elementary particle physics has, and published the most stringent limit on the charged lepton flavor violating decay μ+e+γ: BR(μ+e+γ) <4.2×1013 at 90% confidence level. The MEG detector has been upgraded in order to reach a sensitivity of 6×1014. The basic principle of MEG II is to achieve the highest possible sensitivity using the full muon beam intensity at the Paul Scherrer Institute (7×107 muons/s) with an upgraded detector. The main improvements are better rate capability of all sub-detectors and improved resolutions while keeping the same detector concept. In this paper, we present the current status of the preparation, integration and commissioning of the MEG II detector in the recent engineering runs. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

15 pages, 765 KiB  
Article
Doubly Charged Higgs Bosons and Spontaneous Symmetry Breaking at eV and TeV Scales
by Janusz Gluza, Magdalena Kordiaczyńska and Tripurari Srivastava
Symmetry 2020, 12(1), 153; https://doi.org/10.3390/sym12010153 - 11 Jan 2020
Cited by 3 | Viewed by 3051
Abstract
In this paper, beyond standard models are considered with additional scalar triplets without modification of the gauge group (Higgs Triplet Model—HTM) and with an extended gauge group [...] Read more.
In this paper, beyond standard models are considered with additional scalar triplets without modification of the gauge group (Higgs Triplet Model—HTM) and with an extended gauge group S U ( 2 ) R S U ( 2 ) L U ( 1 ) (Left–Right Symmetric Model—LRSM). These models differ drastically in possible triplet vacuum expectation values (VEV). Within the HTM, we needed to keep the triplet VEV at most within the range of GeV to keep the electroweak ρ parameter strictly close to 1, down to electronvolts due to the low energy constraints on lepton flavor-violating processes and neutrino oscillation parameters. For LRSM, the scale connected with the S U ( 2 ) R triplet is relevant, and to provide proper masses of non-standard gauge bosons, VEV should at least be at the TeV level. Both models predict the existence of doubly charged scalar particles. In this paper, their production in the e + e collider is examined for making a distinction in the s- and t- channels between the two models in scenarios when masses of doubly charged scalars are the same. Full article
Show Figures

Figure 1

77 pages, 7529 KiB  
Article
Knots on a Torus: A Model of the Elementary Particles
by Jack S. Avrin
Symmetry 2012, 4(1), 39-115; https://doi.org/10.3390/sym4010039 - 9 Feb 2012
Cited by 9 | Viewed by 9714
Abstract
Two knots; just two rudimentary knots, the unknot and the trefoil. That’s all we need to build a model of the elementary particles of physics, one with fermions and bosons, hadrons and leptons, interactions weak and strong and the attributes of spin, isospin, [...] Read more.
Two knots; just two rudimentary knots, the unknot and the trefoil. That’s all we need to build a model of the elementary particles of physics, one with fermions and bosons, hadrons and leptons, interactions weak and strong and the attributes of spin, isospin, mass, charge, CPT invariance and more. There are no quarks to provide fractional charge, no gluons to sequester them within nucleons and no “colors” to avoid violating Pauli’s principle. Nor do we require the importation of an enigmatic Higgs boson to confer mass upon the particles of our world. All the requisite attributes emerge simply (and relativistically invariant) as a result of particle conformation and occupation in and of spacetime itself, a spacetime endowed with the imprimature of general relativity. Also emerging are some novel tools for systemizing the particle taxonomy as governed by the gauge group SU(2) and the details of particle degeneracy as well as connections to Hopf algebra, Dirac theory, string theory, topological quantum field theory and dark matter. One exception: it is found necessary to invoke the munificent geometry of the icosahedron in order to provide, as per the group “flavor” SU(3), a scaffold upon which to organize the well-known three generations—no more, no less—of the particle family tree. Full article
(This article belongs to the Special Issue Symmetry and Beauty of Knots)
Show Figures

Figure 1

Back to TopTop