Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = charge trapping (CT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4725 KiB  
Article
Total Ionizing Dose Effects in Advanced 28 nm Charge Trapping 3D NAND Flash Memory
by Xuesong Zheng, Yuhang Wang, Rigen Mo, Chaoming Liu, Tianqi Wang, Mingxue Huo and Liyi Xiao
Electronics 2025, 14(3), 473; https://doi.org/10.3390/electronics14030473 - 24 Jan 2025
Cited by 1 | Viewed by 1278
Abstract
The impacts of total ionizing dose (TID) were investigated in 28 nm 3D charge trapping (CT) NAND Flash memories. This study focused on the variations in the raw bit error rate (RBER) of irradiated flash across different operational modes and bias states. It [...] Read more.
The impacts of total ionizing dose (TID) were investigated in 28 nm 3D charge trapping (CT) NAND Flash memories. This study focused on the variations in the raw bit error rate (RBER) of irradiated flash across different operational modes and bias states. It was observed that the data pattern stored in Flash influences the bit error count after irradiation. The experimental findings demonstrated a dose-dependent relationship with standby current, read operation current, and threshold voltage shifts. Additionally, TID was found to affect the time required for erasure and programming operations. These results were then bench-marked against similar NAND Flash devices, revealing superior resistance to TID effects. Full article
(This article belongs to the Special Issue Semiconductors and Memory Technologies)
Show Figures

Figure 1

16 pages, 3144 KiB  
Article
Photoconductive Dynamics of Photorefractive Poly((4-Diphenylamino)benzyl Acrylate)-Based Composites Sensitized by Perylene Bisimide
by Naoto Tsutsumi, Takafumi Sassa, Tam Van Nguyen, Ha Ngoc Giang, Sho Tsujimura, Boaz Jessie Jackin, Kenji Kinashi and Wataru Sakai
Polymers 2025, 17(1), 96; https://doi.org/10.3390/polym17010096 - 1 Jan 2025
Viewed by 1049
Abstract
The transient dynamics of photocurrents for poly((4-diphenylamino)benzyl acrylate) (PDAA)-based photorefractive (PR) polymers sensitized with perylene bisimide derivative N,N′-diisopropylphenyl-1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxyl bisimide (PBI) at various composition ratios were studied. The PR polymer included (4-(diphenylamino)phenyl)methanol (TPAOH) photoconductive plasticizer and (4-(azepan-1-yl)-benzylidene) malononitrile nonlinear optical dye as well, which [...] Read more.
The transient dynamics of photocurrents for poly((4-diphenylamino)benzyl acrylate) (PDAA)-based photorefractive (PR) polymers sensitized with perylene bisimide derivative N,N′-diisopropylphenyl-1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxyl bisimide (PBI) at various composition ratios were studied. The PR polymer included (4-(diphenylamino)phenyl)methanol (TPAOH) photoconductive plasticizer and (4-(azepan-1-yl)-benzylidene) malononitrile nonlinear optical dye as well, which are needed for inducing PR effects. All the photocurrents measured at 640 nm were well simulated by a two-trapping site model considering photocarrier generation and recombination processes of the charge transfer (CT) complex between PBI and PDAA. The process of photocurrent simulation allowed for analyses of the dependences of hole mobility, quantum efficiency (QE) of photocarrier generation, trapping parameters, and recombination coefficient on the PDAA/TPAOH content. Finally, the PDAA content dependences of the trapping and recombination properties were compared with those of the PR parameters of the optical diffraction efficiency, optical gain, and response time. Full article
Show Figures

Figure 1

10 pages, 3480 KiB  
Article
Impact of Program–Erase Operation Intervals at Different Temperatures on 3D Charge-Trapping Triple-Level-Cell NAND Flash Memory Reliability
by Xuesong Zheng, Yifan Wu, Haitao Dong, Yizhi Liu, Pengpeng Sang, Liyi Xiao and Xuepeng Zhan
Micromachines 2024, 15(9), 1060; https://doi.org/10.3390/mi15091060 - 23 Aug 2024
Cited by 2 | Viewed by 1912
Abstract
Three-dimensional charge-trapping (CT) NAND flash memory has attracted extensive attention owing to its unique merits, including huge storage capacities, large memory densities, and low bit cost. The reliability property is becoming an important factor for NAND flash memory with multi-level-cell (MLC) modes like [...] Read more.
Three-dimensional charge-trapping (CT) NAND flash memory has attracted extensive attention owing to its unique merits, including huge storage capacities, large memory densities, and low bit cost. The reliability property is becoming an important factor for NAND flash memory with multi-level-cell (MLC) modes like triple-level-cell (TLC) or quad-level-cell (QLC), which is seriously affected by the intervals between program (P) and erase (E) operations during P/E cycles. In this work, the impacts of the intervals between P&E cycling under different temperatures and P/E cycles were systematically characterized. The results are further analyzed in terms of program disturb (PD), read disturb (RD), and data retention (DR). It was found that fail bit counts (FBCs) during the high temperature (HT) PD process are much smaller than those of the room temperature (RT) PD process. Moreover, upshift error and downshift error dominate the HT PD and RT PD processes, respectively. To improve the memory reliability of 3D CT TLC NAND, different intervals between P&E operations should be adopted considering the operating temperatures. These results could provide potential insights to optimize the lifetime of NAND flash-based memory systems. Full article
(This article belongs to the Special Issue Emerging Memory Materials and Devices)
Show Figures

Figure 1

45 pages, 8996 KiB  
Review
High-Resolution Frequency-Domain Spectroscopic and Modeling Studies of Photosystem I (PSI), PSI Mutants and PSI Supercomplexes
by Valter Zazubovich and Ryszard Jankowiak
Int. J. Mol. Sci. 2024, 25(7), 3850; https://doi.org/10.3390/ijms25073850 - 29 Mar 2024
Viewed by 1451
Abstract
Photosystem I (PSI) is one of the two main pigment–protein complexes where the primary steps of oxygenic photosynthesis take place. This review describes low-temperature frequency-domain experiments (absorption, emission, circular dichroism, resonant and non-resonant hole-burned spectra) and modeling efforts reported for PSI in recent [...] Read more.
Photosystem I (PSI) is one of the two main pigment–protein complexes where the primary steps of oxygenic photosynthesis take place. This review describes low-temperature frequency-domain experiments (absorption, emission, circular dichroism, resonant and non-resonant hole-burned spectra) and modeling efforts reported for PSI in recent years. In particular, we focus on the spectral hole-burning studies, which are not as common in photosynthesis research as the time-domain spectroscopies. Experimental and modeling data obtained for trimeric cyanobacterial Photosystem I (PSI3), PSI3 mutants, and PSI3–IsiA18 supercomplexes are analyzed to provide a more comprehensive understanding of their excitonic structure and excitation energy transfer (EET) processes. Detailed information on the excitonic structure of photosynthetic complexes is essential to determine the structure–function relationship. We will focus on the so-called “red antenna states” of cyanobacterial PSI, as these states play an important role in photochemical processes and EET pathways. The high-resolution data and modeling studies presented here provide additional information on the energetics of the lowest energy states and their chlorophyll (Chl) compositions, as well as the EET pathways and how they are altered by mutations. We present evidence that the low-energy traps observed in PSI are excitonically coupled states with significant charge-transfer (CT) character. The analysis presented for various optical spectra of PSI3 and PSI3-IsiA18 supercomplexes allowed us to make inferences about EET from the IsiA18 ring to the PSI3 core and demonstrate that the number of entry points varies between sample preparations studied by different groups. In our most recent samples, there most likely are three entry points for EET from the IsiA18 ring per the PSI core monomer, with two of these entry points likely being located next to each other. Therefore, there are nine entry points from the IsiA18 ring to the PSI3 trimer. We anticipate that the data discussed below will stimulate further research in this area, providing even more insight into the structure-based models of these important cyanobacterial photosystems. Full article
(This article belongs to the Special Issue New Insights into Photosystem I)
Show Figures

Graphical abstract

16 pages, 4951 KiB  
Article
Effects of Charge Trapping on Memory Characteristics for HfO2-Based Ferroelectric Field Effect Transistors
by Jianjian Wang, Jinshun Bi, Yannan Xu, Gang Niu, Mengxin Liu and Viktor Stempitsky
Nanomaterials 2023, 13(4), 638; https://doi.org/10.3390/nano13040638 - 6 Feb 2023
Cited by 8 | Viewed by 5251
Abstract
A full understanding of the impact of charge trapping on the memory window (MW) of HfO2-based ferroelectric field effect transistors (FeFETs) will permit the design of program and erase protocols, which will guide the application of these devices and maximize their [...] Read more.
A full understanding of the impact of charge trapping on the memory window (MW) of HfO2-based ferroelectric field effect transistors (FeFETs) will permit the design of program and erase protocols, which will guide the application of these devices and maximize their useful life. The effects of charge trapping have been studied by changing the parameters of the applied program and erase pulses in a test sequence. With increasing the pulse amplitude and pulse width, the MW increases first and then decreases, a result attributed to the competition between charge trapping (CT) and ferroelectric switching (FS). This interaction between CT and FS is analyzed in detail using a single-pulse technique. In addition, the experimental data show that the conductance modulation characteristics are affected by the CT in the analog synaptic behavior of the FeFET. Finally, a theoretical investigation is performed in Sentaurus TCAD, providing a plausible explanation of the CT effect on the memory characteristics of the FeFET. This work is helpful to the study of the endurance fatigue process caused by the CT effect and to optimizing the analog synaptic behavior of the FeFET. Full article
Show Figures

Figure 1

18 pages, 4035 KiB  
Article
Mechanism of Ir(ppy)3 Guest Exciton Formation with the Exciplex-Forming TCTA:TPBI Cohost within a Phosphorescent Organic Light-Emitting Diode Environment
by Jae Whee Park, Kwang Hyun Cho and Young Min Rhee
Int. J. Mol. Sci. 2022, 23(11), 5940; https://doi.org/10.3390/ijms23115940 - 25 May 2022
Cited by 4 | Viewed by 3720
Abstract
Cohosts based on hole transporting and electron transporting materials often act as exciplexes in the form of intermolecular charge transfer complexes. Indeed, exciplex-forming cohosts have been widely developed as the host materials for efficient phosphorescent organic light-emitting diodes (OLEDs). In host–guest systems of [...] Read more.
Cohosts based on hole transporting and electron transporting materials often act as exciplexes in the form of intermolecular charge transfer complexes. Indeed, exciplex-forming cohosts have been widely developed as the host materials for efficient phosphorescent organic light-emitting diodes (OLEDs). In host–guest systems of OLEDs, the guest can be excited by two competing mechanisms, namely, excitation energy transfer (EET) and charge transfer (CT). Experimentally, it has been reported that the EET mechanism is dominant and the excitons are primarily formed in the host first and then transferred to the guest in phosphorescent OLEDs based on exciplex-forming cohosts. With this, exciplex-forming cohosts are widely employed for avoiding the formation of trapped charge carriers in the phosphorescent guest. However, theoretical studies are still lacking toward elucidating the relative importance between EET and CT processes in exciting the guest molecules in such systems. Here, we obtain the kinetics of guest excitation processes in a few trimer model systems consisting of an exciplex-forming cohost pair and a phosphorescent guest. We adopt the Förster resonance energy transfer (FRET) rate constants for the electronic transitions between excited states toward solving kinetic master equations. The input parameters for calculating the FRET rate constants are obtained from density functional theory (DFT) and time-dependent DFT. The results show that while the EET mechanism is important, the CT mechanism may still play a significant role in guest excitations. In fact, the relative importance of CT over EET depends strongly on the location of the guest molecule relative to the cohost pair. This is understandable as both the coupling for EET and the interaction energy for CT are strongly influenced by the geometric constraints. Understanding the energy transfer pathways from the exciplex state of cohost to the emissive state of guest may provide insights for improving exciplex-forming materials adopted in OLEDs. Full article
(This article belongs to the Special Issue State-of-the-Art Physical Chemistry and Chemical Physics in Korea)
Show Figures

Figure 1

11 pages, 2354 KiB  
Article
Temperature Impacts on Endurance and Read Disturbs in Charge-Trap 3D NAND Flash Memories
by Fei Chen, Bo Chen, Hongzhe Lin, Yachen Kong, Xin Liu, Xuepeng Zhan and Jiezhi Chen
Micromachines 2021, 12(10), 1152; https://doi.org/10.3390/mi12101152 - 25 Sep 2021
Cited by 14 | Viewed by 7445
Abstract
Temperature effects should be well considered when designing flash-based memory systems, because they are a fundamental factor that affect both the performance and the reliability of NAND flash memories. In this work, aiming to comprehensively understanding the temperature effects on 3D NAND flash [...] Read more.
Temperature effects should be well considered when designing flash-based memory systems, because they are a fundamental factor that affect both the performance and the reliability of NAND flash memories. In this work, aiming to comprehensively understanding the temperature effects on 3D NAND flash memory, triple-level-cell (TLC) mode charge-trap (CT) 3D NAND flash memory chips were characterized systematically in a wide temperature range (−30~70 °C), by focusing on the raw bit error rate (RBER) degradation during program/erase (P/E) cycling (endurance) and frequent reading (read disturb). It was observed that (1) the program time showed strong dependences on the temperature and P/E cycles, which could be well fitted by the proposed temperature-dependent cycling program time (TCPT) model; (2) RBER could be suppressed at higher temperatures, while its degradation weakly depended on the temperature, indicating that high-temperature operations would not accelerate the memory cells’ degradation; (3) read disturbs were much more serious at low temperatures, while it helped to recover a part of RBER at high temperatures. Full article
(This article belongs to the Special Issue Flash Memory Devices)
Show Figures

Figure 1

19 pages, 3499 KiB  
Article
Confinement Effect of Micro- and Mesoporous Materials on the Spectroscopy and Dynamics of a Stilbene Derivative Dye
by Maria Rosaria di Nunzio, Ganchimeg Perenlei and Abderrazzak Douhal
Int. J. Mol. Sci. 2019, 20(6), 1316; https://doi.org/10.3390/ijms20061316 - 15 Mar 2019
Cited by 9 | Viewed by 3459
Abstract
Micro- and mesoporous silica-based materials are a class of porous supports that can encapsulate different guest molecules. The formation of these hybrid complexes can be associated with significant alteration of the physico-chemical properties of the guests. Here, we report on a photodynamical study [...] Read more.
Micro- and mesoporous silica-based materials are a class of porous supports that can encapsulate different guest molecules. The formation of these hybrid complexes can be associated with significant alteration of the physico-chemical properties of the guests. Here, we report on a photodynamical study of a push–pull molecule, trans-4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), entrapped within faujasite-type zeolites (HY, NaX, and NaY) and MCM-41 in dichloromethane suspensions. The complex formation gives rise to caged monomers and H- and J-aggregates. Steady-state experiments show that the nanoconfinement provokes net blue shifts of both the absorption and emission spectra, which arise from preferential formation of H-aggregates concomitant with a distortion and/or protonation of the DCM structure. The photodynamics of the hybrid complexes are investigated by nano- to picosecond time-resolved emission experiments. The obtained fluorescence lifetimes are 65–99 ps and 350–400 ps for H- and J-aggregates, respectively, while those of monomers are 2.46–3.87 ns. Evidences for the presence of a charge-transfer (CT) process in trapped DCM molecules (monomers and/or aggregates) are observed. The obtained results are of interest in the interpretation of electron-transfer processes, twisting motions of analogues push–pull systems in confined media and understanding photocatalytic mechanisms using this type of host materials. Full article
Show Figures

Graphical abstract

15 pages, 6252 KiB  
Review
3D NAND Flash Based on Planar Cells
by Andrea Silvagni
Computers 2017, 6(4), 28; https://doi.org/10.3390/computers6040028 - 24 Oct 2017
Cited by 18 | Viewed by 27488
Abstract
In this article, the transition from 2D NAND to 3D NAND is first addressed, and the various 3D NAND architectures are compared. The article carries out a comparison of 3D NAND architectures that are based on a “punch-and-plug” process—with gate-all-around (GAA) cell devices—against [...] Read more.
In this article, the transition from 2D NAND to 3D NAND is first addressed, and the various 3D NAND architectures are compared. The article carries out a comparison of 3D NAND architectures that are based on a “punch-and-plug” process—with gate-all-around (GAA) cell devices—against architectures that are based on planar cell devices. The differences and similarities between the two classes of architectures are highlighted. The differences between architectures using floating-gate (FG) and charge-trap (CT) devices are also considered. Although the current production of 3D NAND is based on GAA cell devices, it is suggested that architectures with planar cell devices could also be viable for mass production. Full article
(This article belongs to the Special Issue 3D Flash Memories)
Show Figures

Figure 1

15 pages, 1348 KiB  
Article
Comparative Study of Charge Trapping Type SOI-FinFET Flash Memories with Different Blocking Layer Materials
by Yongxun Liu, Toshihide Nabatame, Takashi Matsukawa, Kazuhiko Endo, Shinichi O'uchi, Junichi Tsukada, Hiromi Yamauchi, Yuki Ishikawa, Wataru Mizubayashi, Yukinori Morita, Shinji Migita, Hiroyuki Ota, Toyohiro Chikyow and Meishoku Masahara
J. Low Power Electron. Appl. 2014, 4(2), 153-167; https://doi.org/10.3390/jlpea4020153 - 20 Jun 2014
Cited by 6 | Viewed by 17203
Abstract
The scaled charge trapping (CT) type silicon on insulator (SOI) FinFET flash memories with different blocking layer materials of Al2O3 and SiO2 have successfully been fabricated, and their electrical characteristics including short-channel effect (SCE) immunity, threshold voltage (Vt [...] Read more.
The scaled charge trapping (CT) type silicon on insulator (SOI) FinFET flash memories with different blocking layer materials of Al2O3 and SiO2 have successfully been fabricated, and their electrical characteristics including short-channel effect (SCE) immunity, threshold voltage (Vt) variability, and the memory characteristics have been comparatively investigated. It was experimentally found that the better SCE immunity and a larger memory window are obtained by introducing a high-k Al2O3 blocking layer instead of a SiO2 blocking layer. It was also confirmed that the variability of Vt before and after one program/erase (P/E) cycle is almost independent of the blocking layer materials. Full article
(This article belongs to the Special Issue Selected Papers from IEEE S3S Conference 2013)
Show Figures

Figure 1

Back to TopTop