Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,083)

Search Parameters:
Keywords = channel training

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 545 KiB  
Article
Signal Detection Based on Separable CNN for OTFS Communication Systems
by Ying Wang, Zixu Zhang, Hang Li, Tao Zhou and Zhiqun Cheng
Entropy 2025, 27(8), 839; https://doi.org/10.3390/e27080839 - 7 Aug 2025
Abstract
This paper proposes a low-complexity signal detection method for orthogonal time frequency space (OTFS) communication systems, based on a separable convolutional neural network (SeCNN), termed SeCNN-OTFS. A novel SeparableBlock architecture is introduced, which integrates residual connections and a channel attention mechanism to enhance [...] Read more.
This paper proposes a low-complexity signal detection method for orthogonal time frequency space (OTFS) communication systems, based on a separable convolutional neural network (SeCNN), termed SeCNN-OTFS. A novel SeparableBlock architecture is introduced, which integrates residual connections and a channel attention mechanism to enhance feature discrimination and training stability under high Doppler conditions. By decomposing standard convolutions into depthwise and pointwise operations, the model achieves a substantial reduction in computational complexity. To validate its effectiveness, simulations are conducted under a standard OTFS configuration with 64-QAM modulation, comparing the proposed SeCNN-OTFS with conventional CNN-based models and classical linear estimators, such as least squares (LS) and minimum mean square error (MMSE). The results show that SeCNN-OTFS consistently outperforms LS and MMSE, and when the signal-to-noise ratio (SNR) exceeds 12.5 dB, its bit error rate (BER) performance becomes nearly identical to that of 2D-CNN. Notably, SeCNN-OTFS requires only 19% of the parameters compared to 2D-CNN, making it highly suitable for resource-constrained environments such as satellite and IoT communication systems. For scenarios where higher accuracy is required and computational resources are sufficient, the CNN-OTFS model—with conventional convolutional layers replacing the separable convolutional layers—can be adopted as a more precise alternative. Full article
Show Figures

Figure 1

19 pages, 8922 KiB  
Article
A Two-Stage Time-Domain Equalization Method for Mitigating Nonlinear Distortion in Single-Carrier THz Communication Systems
by Yunchuan Liu, Hongcheng Yang, Ziqi Liu, Minghan Jia, Shang Li, Jiajie Li, Jingsuo He, Zhe Yang and Cunlin Zhang
Sensors 2025, 25(15), 4825; https://doi.org/10.3390/s25154825 - 6 Aug 2025
Abstract
Terahertz (THz) communication is regarded as a key technology for achieving high-speed data transmission and wireless communication due to its ultra-high frequency and large bandwidth characteristics. In this study, we focus on a single-carrier THz communication system and propose a two-stage deep learning-based [...] Read more.
Terahertz (THz) communication is regarded as a key technology for achieving high-speed data transmission and wireless communication due to its ultra-high frequency and large bandwidth characteristics. In this study, we focus on a single-carrier THz communication system and propose a two-stage deep learning-based time-domain equalization method, specifically designed to mitigate the nonlinear distortions in such systems, thereby enhancing communication reliability and performance. The method adopts a progressive learning strategy, whereby global characteristics are initially captured before progressing to local levels. This enables the effective identification and equalization of channel characteristics, particularly in the mitigation of nonlinear distortion and random interference, which can otherwise negatively impact communication quality. In an experimental setting at a frequency of 230 GHz and a channel distance of 2.1 m, this method demonstrated a substantial reduction in the system’s bit error rate (BER), exhibiting particularly noteworthy performance enhancements in comparison to before equalization. To validate the model’s generalization capability, data collection and testing were also conducted at a frequency of 310 GHz and a channel distance of 1.5 m. Experimental results show that the proposed time-domain equalizer, trained using the two-stage DL framework, achieved significant BER reductions of approximately 92.15% at 230 GHz (2.1 m) and 83.33% at 310 GHz (1.5 m), compared to the system’s performance prior to equalization. The method exhibits stable performance under varying conditions, supporting its use in future THz communication studies. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

25 pages, 3310 KiB  
Article
Real-Time Signal Quality Assessment and Power Adaptation of FSO Links Operating Under All-Weather Conditions Using Deep Learning Exploiting Eye Diagrams
by Somia A. Abd El-Mottaleb and Ahmad Atieh
Photonics 2025, 12(8), 789; https://doi.org/10.3390/photonics12080789 - 4 Aug 2025
Viewed by 97
Abstract
This paper proposes an intelligent power adaptation framework for Free-Space Optics (FSO) communication systems operating under different weather conditions exploiting a deep learning (DL) analysis of received eye diagram images. The system incorporates two Convolutional Neural Network (CNN) architectures, LeNet and Wide Residual [...] Read more.
This paper proposes an intelligent power adaptation framework for Free-Space Optics (FSO) communication systems operating under different weather conditions exploiting a deep learning (DL) analysis of received eye diagram images. The system incorporates two Convolutional Neural Network (CNN) architectures, LeNet and Wide Residual Network (Wide ResNet) algorithms to perform regression tasks that predict received signal quality metrics such as the Quality Factor (Q-factor) and Bit Error Rate (BER) from the received eye diagram. These models are evaluated using Mean Squared Error (MSE) and the coefficient of determination (R2 score) to assess prediction accuracy. Additionally, a custom CNN-based classifier is trained to determine whether the BER reading from the eye diagram exceeds a critical threshold of 104; this classifier achieves an overall accuracy of 99%, correctly detecting 194/195 “acceptable” and 4/5 “unacceptable” instances. Based on the predicted signal quality, the framework activates a dual-amplifier configuration comprising a pre-channel amplifier with a maximum gain of 25 dB and a post-channel amplifier with a maximum gain of 10 dB. The total gain of the amplifiers is adjusted to support the operation of the FSO system under all-weather conditions. The FSO system uses a 15 dBm laser source at 1550 nm. The DL models are tested on both internal and external datasets to validate their generalization capability. The results show that the regression models achieve strong predictive performance, and the classifier reliably detects degraded signal conditions, enabling the real-time gain control of the amplifiers to achieve the quality of transmission. The proposed solution supports robust FSO communication under challenging atmospheric conditions including dry snow, making it suitable for deployment in regions like Northern Europe, Canada, and Northern Japan. Full article
Show Figures

Figure 1

27 pages, 1766 KiB  
Article
A Novel Optimized Hybrid Deep Learning Framework for Mental Stress Detection Using Electroencephalography
by Maithili Shailesh Andhare, T. Vijayan, B. Karthik and Shabana Urooj
Brain Sci. 2025, 15(8), 835; https://doi.org/10.3390/brainsci15080835 - 4 Aug 2025
Viewed by 188
Abstract
Mental stress is a psychological or emotional strain that typically occurs because of threatening, challenging, and overwhelming conditions and affects human behavior. Various factors, such as professional, environmental, and personal pressures, often trigger it. In recent years, various deep learning (DL)-based schemes using [...] Read more.
Mental stress is a psychological or emotional strain that typically occurs because of threatening, challenging, and overwhelming conditions and affects human behavior. Various factors, such as professional, environmental, and personal pressures, often trigger it. In recent years, various deep learning (DL)-based schemes using electroencephalograms (EEGs) have been proposed. However, the effectiveness of DL-based schemes is challenging because of the intricate DL structure, class imbalance problems, poor feature representation, low-frequency resolution problems, and complexity of multi-channel signal processing. This paper presents a novel hybrid DL framework, BDDNet, which combines a deep convolutional neural network (DCNN), bidirectional long short-term memory (BiLSTM), and deep belief network (DBN). BDDNet provides superior spectral–temporal feature depiction and better long-term dependency on the local and global features of EEGs. BDDNet accepts multiple EEG features (MEFs) that provide the spectral and time-domain features of EEGs. A novel improved crow search algorithm (ICSA) was presented for channel selection to minimize the computational complexity of multichannel stress detection. Further, the novel employee optimization algorithm (EOA) is utilized for the hyper-parameter optimization of hybrid BDDNet to enhance the training performance. The outcomes of the novel BDDNet were assessed using a public DEAP dataset. The BDDNet-ICSA offers improved recall of 97.6%, precision of 97.6%, F1-score of 97.6%, selectivity of 96.9%, negative predictive value NPV of 96.9%, and accuracy of 97.3% to traditional techniques. Full article
Show Figures

Figure 1

23 pages, 4728 KiB  
Article
A Web-Deployed, Explainable AI System for Comprehensive Brain Tumor Diagnosis
by Serra Aksoy, Pinar Demircioglu and Ismail Bogrekci
Neurol. Int. 2025, 17(8), 121; https://doi.org/10.3390/neurolint17080121 - 4 Aug 2025
Viewed by 104
Abstract
Background/Objectives: Accurate diagnosis of brain tumors is one of the most important challenges in neuro-oncology since tumor classification and volumetric segmentation inform treatment planning. Two-dimensional classification and three-dimensional segmentation deep learning models can augment radiological workflows, particularly if paired with explainable AI techniques [...] Read more.
Background/Objectives: Accurate diagnosis of brain tumors is one of the most important challenges in neuro-oncology since tumor classification and volumetric segmentation inform treatment planning. Two-dimensional classification and three-dimensional segmentation deep learning models can augment radiological workflows, particularly if paired with explainable AI techniques to improve model interpretability. The objective of this research was to develop a web-based brain tumor segmentation and classification diagnosis platform. Methods: A diagnosis system was developed combining 2D tumor classification and 3D volumetric segmentation. Classification employed a fine-tuned MobileNetV2 model trained on a glioma, meningioma, pituitary tumor, and normal control dataset. Segmentation employed a SegResNet model trained on BraTS multi-channel MRI with synthetic no-tumor data. A meta-classifier MLP was used for binary tumor detection from volumetric features. Explainability was offered using XRAI maps for 2D predictions and Gaussian overlays for 3D visualizations. The platform was incorporated into a web interface for clinical use. Results: MobileNetV2 2D model recorded 98.09% classification accuracy for tumor classification. 3D SegResNet obtained Dice coefficients around 68–70% for tumor segmentations. The MLP-based tumor detection module recorded 100% detection accuracy. Explainability modules could identify the area of the tumor, and saliency and overlay maps were consistent with real pathological features in both 2D and 3D. Conclusions: Deep learning diagnosis system possesses improved brain tumor classification and segmentation with interpretable outcomes by utilizing XAI techniques. Deployment as a web tool and a user-friendly interface made it suitable for clinical usage in radiology workflows. Full article
(This article belongs to the Section Brain Tumor and Brain Injury)
Show Figures

Figure 1

14 pages, 2532 KiB  
Article
Machine Learning for Spatiotemporal Prediction of River Siltation in Typical Reach in Jiangxi, China
by Yong Fu, Jin Luo, Die Zhang, Lingjia Liu, Gan Luo and Xiaofang Zu
Appl. Sci. 2025, 15(15), 8628; https://doi.org/10.3390/app15158628 - 4 Aug 2025
Viewed by 118
Abstract
Accurate forecasting of river siltation is essential for ensuring inland waterway navigability and guiding sustainable sediment management. This study investigates the downstream reach of the Shihutang navigation power hub along the Ganjiang River in Jiangxi Province, China, an area characterized by pronounced seasonal [...] Read more.
Accurate forecasting of river siltation is essential for ensuring inland waterway navigability and guiding sustainable sediment management. This study investigates the downstream reach of the Shihutang navigation power hub along the Ganjiang River in Jiangxi Province, China, an area characterized by pronounced seasonal sedimentation and hydrological variability. To enable fine-scale prediction, we developed a data-driven framework using a random forest regression model that integrates high-resolution bathymetric surveys with hydrological and meteorological observations. Based on the field data from April to July 2024, the model was trained to forecast monthly siltation volumes at a 30 m grid scale over a six-month horizon (July–December 2024). The results revealed a marked increase in siltation from July to September, followed by a decline during the winter months. The accumulation of sediment, combined with falling water levels, was found to significantly reduce the channel depth and width, particularly in the upstream sections, posing a potential risk to navigation safety. This study presents an initial, yet promising attempt to apply machine learning for spatially explicit siltation prediction in data-constrained river systems. The proposed framework provides a practical tool for early warning, targeted dredging, and adaptive channel management. Full article
Show Figures

Figure 1

30 pages, 2928 KiB  
Article
Unsupervised Multimodal Community Detection Algorithm in Complex Network Based on Fractal Iteration
by Hui Deng, Yanchao Huang, Jian Wang, Yanmei Hu and Biao Cai
Fractal Fract. 2025, 9(8), 507; https://doi.org/10.3390/fractalfract9080507 - 2 Aug 2025
Viewed by 181
Abstract
Community detection in complex networks plays a pivotal role in modern scientific research, including in social network analysis and protein structure analysis. Traditional community detection methods face challenges in integrating heterogeneous multi-source information, capturing global semantic relationships, and adapting to dynamic network evolution. [...] Read more.
Community detection in complex networks plays a pivotal role in modern scientific research, including in social network analysis and protein structure analysis. Traditional community detection methods face challenges in integrating heterogeneous multi-source information, capturing global semantic relationships, and adapting to dynamic network evolution. This paper proposes a novel unsupervised multimodal community detection algorithm (UMM) based on fractal iteration. The core idea is to design a dual-channel encoder that comprehensively considers node semantic features and network topological structures. Initially, node representation vectors are derived from structural information (using feature vectors when available, or singular value decomposition to obtain feature vectors for nodes without attributes). Subsequently, a parameter-free graph convolutional encoder (PFGC) is developed based on fractal iteration principles to extract high-order semantic representations from structural encodings without requiring any training process. Furthermore, a semantic–structural dual-channel encoder (DC-SSE) is designed, which integrates semantic encodings—reduced in dimensionality via UMAP—with structural features extracted by PFGC to obtain the final node embeddings. These embeddings are then clustered using the K-means algorithm to achieve community partitioning. Experimental results demonstrate that the UMM outperforms existing methods on multiple real-world network datasets. Full article
Show Figures

Figure 1

19 pages, 2359 KiB  
Article
Research on Concrete Crack Damage Assessment Method Based on Pseudo-Label Semi-Supervised Learning
by Ming Xie, Zhangdong Wang and Li’e Yin
Buildings 2025, 15(15), 2726; https://doi.org/10.3390/buildings15152726 - 1 Aug 2025
Viewed by 237
Abstract
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to [...] Read more.
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to solve two core tasks: one is binary classification of pixel-level cracks, and the other is multi-category assessment of damage state based on crack morphology. Using three-channel RGB images as input, a dual-path collaborative training framework based on U-Net encoder–decoder architecture is constructed, and a binary segmentation mask of the same size is output to achieve the accurate segmentation of cracks at the pixel level. By constructing a dual-path collaborative training framework and employing a dynamic pseudo-label refinement mechanism, the model achieves an F1-score of 0.883 using only 50% labeled data—a mere 1.3% decrease compared to the fully supervised benchmark DeepCrack (F1 = 0.896)—while reducing manual annotation costs by over 60%. Furthermore, a quantitative correlation model between crack fractal characteristics and structural damage severity is established by combining a U-Net segmentation network with the differential box-counting algorithm. The experimental results demonstrate that under a cyclic loading of 147.6–221.4 kN, the fractal dimension monotonically increases from 1.073 (moderate damage) to 1.189 (failure), with 100% accuracy in damage state identification, closely aligning with the degradation trend of macroscopic mechanical properties. In complex crack scenarios, the model attains a recall rate (Re = 0.882), surpassing U-Net by 13.9%, with significantly enhanced edge reconstruction precision. Compared with the mainstream models, this method effectively alleviates the problem of data annotation dependence through a semi-supervised strategy while maintaining high accuracy. It provides an efficient structural health monitoring solution for engineering practice, which is of great value to promote the application of intelligent detection technology in infrastructure operation and maintenance. Full article
Show Figures

Figure 1

28 pages, 6624 KiB  
Article
YoloMal-XAI: Interpretable Android Malware Classification Using RGB Images and YOLO11
by Chaymae El Youssofi and Khalid Chougdali
J. Cybersecur. Priv. 2025, 5(3), 52; https://doi.org/10.3390/jcp5030052 - 1 Aug 2025
Viewed by 322
Abstract
As Android malware grows increasingly sophisticated, traditional detection methods struggle to keep pace, creating an urgent need for robust, interpretable, and real-time solutions to safeguard mobile ecosystems. This study introduces YoloMal-XAI, a novel deep learning framework that transforms Android application files into RGB [...] Read more.
As Android malware grows increasingly sophisticated, traditional detection methods struggle to keep pace, creating an urgent need for robust, interpretable, and real-time solutions to safeguard mobile ecosystems. This study introduces YoloMal-XAI, a novel deep learning framework that transforms Android application files into RGB image representations by mapping DEX (Dalvik Executable), Manifest.xml, and Resources.arsc files to distinct color channels. Evaluated on the CICMalDroid2020 dataset using YOLO11 pretrained classification models, YoloMal-XAI achieves 99.87% accuracy in binary classification and 99.56% in multi-class classification (Adware, Banking, Riskware, SMS, and Benign). Compared to ResNet-50, GoogLeNet, and MobileNetV2, YOLO11 offers competitive accuracy with at least 7× faster training over 100 epochs. Against YOLOv8, YOLO11 achieves comparable or superior accuracy while reducing training time by up to 3.5×. Cross-corpus validation using Drebin and CICAndMal2017 further confirms the model’s generalization capability on previously unseen malware. An ablation study highlights the value of integrating DEX, Manifest, and Resources components, with the full RGB configuration consistently delivering the best performance. Explainable AI (XAI) techniques—Grad-CAM, Grad-CAM++, Eigen-CAM, and HiRes-CAM—are employed to interpret model decisions, revealing the DEX segment as the most influential component. These results establish YoloMal-XAI as a scalable, efficient, and interpretable framework for Android malware detection, with strong potential for future deployment on resource-constrained mobile devices. Full article
Show Figures

Figure 1

19 pages, 1517 KiB  
Article
Continuous Estimation of sEMG-Based Upper-Limb Joint Angles in the Time–Frequency Domain Using a Scale Temporal–Channel Cross-Encoder
by Xu Han, Haodong Chen, Xinyu Cheng and Ping Zhao
Actuators 2025, 14(8), 378; https://doi.org/10.3390/act14080378 - 31 Jul 2025
Viewed by 146
Abstract
Surface electromyographic (sEMG) signal-driven joint-angle estimation plays a critical role in intelligent rehabilitation systems, as its accuracy directly affects both control performance and rehabilitation efficacy. This study proposes a continuous elbow joint angle estimation method based on time–frequency domain analysis. Raw sEMG signals [...] Read more.
Surface electromyographic (sEMG) signal-driven joint-angle estimation plays a critical role in intelligent rehabilitation systems, as its accuracy directly affects both control performance and rehabilitation efficacy. This study proposes a continuous elbow joint angle estimation method based on time–frequency domain analysis. Raw sEMG signals were processed using the Short-Time Fourier Transform (STFT) to extract time–frequency features. A Scale Temporal–Channel Cross-Encoder (STCCE) network was developed, integrating temporal and channel attention mechanisms to enhance feature representation and establish the mapping from sEMG signals to elbow joint angles. The model was trained and evaluated on a dataset comprising approximately 103,000 samples collected from seven subjects. In the single-subject test set, the proposed STCCE model achieved an average Mean Absolute Error (MAE) of 2.96±0.24, Root Mean Square Error (RMSE) of 4.41±0.45, Coefficient of Determination (R2) of 0.9924±0.0020, and Correlation Coefficient (CC) of 0.9963±0.0010. It achieved a MAE of 3.30, RMSE of 4.75, R2 of 0.9915, and CC of 0.9962 on the multi-subject test set, and an average MAE of 15.53±1.80, RMSE of 21.72±2.85, R2 of 0.8141±0.0540, and CC of 0.9100±0.0306 on the inter-subject test set. These results demonstrated that the STCCE model enabled accurate joint-angle estimation in the time–frequency domain, contributing to a better motion intent perception for upper-limb rehabilitation. Full article
Show Figures

Figure 1

19 pages, 3130 KiB  
Article
Deep Learning-Based Instance Segmentation of Galloping High-Speed Railway Overhead Contact System Conductors in Video Images
by Xiaotong Yao, Huayu Yuan, Shanpeng Zhao, Wei Tian, Dongzhao Han, Xiaoping Li, Feng Wang and Sihua Wang
Sensors 2025, 25(15), 4714; https://doi.org/10.3390/s25154714 - 30 Jul 2025
Viewed by 234
Abstract
The conductors of high-speed railway OCSs (Overhead Contact Systems) are susceptible to conductor galloping due to the impact of natural elements such as strong winds, rain, and snow, resulting in conductor fatigue damage and significantly compromising train operational safety. Consequently, monitoring the galloping [...] Read more.
The conductors of high-speed railway OCSs (Overhead Contact Systems) are susceptible to conductor galloping due to the impact of natural elements such as strong winds, rain, and snow, resulting in conductor fatigue damage and significantly compromising train operational safety. Consequently, monitoring the galloping status of conductors is crucial, and instance segmentation techniques, by delineating the pixel-level contours of each conductor, can significantly aid in the identification and study of galloping phenomena. This work expands upon the YOLO11-seg model and introduces an instance segmentation approach for galloping video and image sensor data of OCS conductors. The algorithm, designed for the stripe-like distribution of OCS conductors in the data, employs four-direction Sobel filters to extract edge features in horizontal, vertical, and diagonal orientations. These features are subsequently integrated with the original convolutional branch to form the FDSE (Four Direction Sobel Enhancement) module. It integrates the ECA (Efficient Channel Attention) mechanism for the adaptive augmentation of conductor characteristics and utilizes the FL (Focal Loss) function to mitigate the class-imbalance issue between positive and negative samples, hence enhancing the model’s sensitivity to conductors. Consequently, segmentation outcomes from neighboring frames are utilized, and mask-difference analysis is performed to autonomously detect conductor galloping locations, emphasizing their contours for the clear depiction of galloping characteristics. Experimental results demonstrate that the enhanced YOLO11-seg model achieves 85.38% precision, 77.30% recall, 84.25% AP@0.5, 81.14% F1-score, and a real-time processing speed of 44.78 FPS. When combined with the galloping visualization module, it can issue real-time alerts of conductor galloping anomalies, providing robust technical support for railway OCS safety monitoring. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

17 pages, 263 KiB  
Article
Tuberculosis-Related Knowledge, Attitudes, and Practices Among Healthcare Workers in Atlantic Canada: A Descriptive Study
by Harold Joonkeun Oh, Moira A. Law and Isdore Chola Shamputa
Trop. Med. Infect. Dis. 2025, 10(8), 214; https://doi.org/10.3390/tropicalmed10080214 - 30 Jul 2025
Viewed by 309
Abstract
Introduction: Despite the key role of healthcare workers (HCWs) in tuberculosis (TB) prevention and control, there is a lack of regional data on their knowledge, attitudes, and practices (KAPs) regarding the disease in Atlantic Canada. Objectives: To assess the KAPs of HCWs and [...] Read more.
Introduction: Despite the key role of healthcare workers (HCWs) in tuberculosis (TB) prevention and control, there is a lack of regional data on their knowledge, attitudes, and practices (KAPs) regarding the disease in Atlantic Canada. Objectives: To assess the KAPs of HCWs and identify targets for educational interventions to enhance TB care and control. Methods: A cross-sectional study was conducted among HCWs in Atlantic Canada aged 19 years from October 2023 to February 2024. Participants were recruited via multiple channels such as social media, collegiate email lists, and snowball sampling. Survey data were collected using an online platform and analyzed using IBM SPSS Statistics v29. KAPs were assessed using Likert-type scales and internal consistency was evaluated using Cronbach’s alpha. Results: A total of 157 HCWs participated in this study (age range: 19 to 69 years); most were women (n = 145, 92%), born in Canada (n = 134, 85.4%), with nearly three-quarters (n = 115, 73.2%) who had never lived outside of Canada. Study participants demonstrated moderately high knowledge (M = 29.32, SD = 3.25) and positive attitudes (M = 3.87, SD = 0.37) towards TB and strong practices (M = 4.24, SD = 0.69) in TB care; however, gaps were identified in HCW abilities to recognize less common TB symptoms (e.g., rash and nausea), as well as inconsistent practices in ventilation and pre-treatment initiation. Internal consistency analysis indicated suboptimal reliability across all three KAP domains, with Cronbach’s alpha values falling below 0.7, thwarting further planned analyses. Conclusions: This study found overall moderate-to-strong TB-related KAPs among HCWs in Atlantic Canada; however, critical gaps in knowledge and practice were noted. This new information can now guide future educational initiatives and targeted training to enhance TB preparedness and ensure equitable care for patients in the region. Full article
25 pages, 8472 KiB  
Article
Harnessing the Power of Pre-Trained Models for Efficient Semantic Communication of Text and Images
by Emrecan Kutay and Aylin Yener
Entropy 2025, 27(8), 813; https://doi.org/10.3390/e27080813 - 29 Jul 2025
Viewed by 211
Abstract
This paper investigates point-to-point multimodal digital semantic communications in a task-oriented setup, where messages are classified at the receiver. We employ a pre-trained transformer model to extract semantic information and propose three methods for generating semantic codewords. First, we propose semantic quantization that [...] Read more.
This paper investigates point-to-point multimodal digital semantic communications in a task-oriented setup, where messages are classified at the receiver. We employ a pre-trained transformer model to extract semantic information and propose three methods for generating semantic codewords. First, we propose semantic quantization that uses quantized embeddings of source realizations as a codebook. We investigate the fixed-length coding, considering the source semantic structure and end-to-end semantic distortion. We propose a neural network-based codeword assignment mechanism incorporating codeword transition probabilities to minimize the expected semantic distortion. Second, we present semantic compression that clusters embeddings, exploiting the inherent semantic redundancies to reduce the codebook size, i.e., further compression. Third, we introduce a semantic vector-quantized autoencoder (VQ-AE) that learns a codebook through training. In all cases, we follow this semantic source code with a standard channel code to transmit over the wireless channel. In addition to classification accuracy, we assess pre-communication overhead via a novel metric we term system time efficiency. Extensive experiments demonstrate that our proposed semantic source-coding approaches provide comparable accuracy and better system time efficiency compared to their learning-based counterparts. Full article
(This article belongs to the Special Issue Semantic Information Theory)
Show Figures

Figure 1

29 pages, 36251 KiB  
Article
CCDR: Combining Channel-Wise Convolutional Local Perception, Detachable Self-Attention, and a Residual Feedforward Network for PolSAR Image Classification
by Jianlong Wang, Bingjie Zhang, Zhaozhao Xu, Haifeng Sima and Junding Sun
Remote Sens. 2025, 17(15), 2620; https://doi.org/10.3390/rs17152620 - 28 Jul 2025
Viewed by 232
Abstract
In the task of PolSAR image classification, effectively utilizing convolutional neural networks and vision transformer models with limited labeled data poses a critical challenge. This article proposes a novel method for PolSAR image classification that combines channel-wise convolutional local perception, detachable self-attention, and [...] Read more.
In the task of PolSAR image classification, effectively utilizing convolutional neural networks and vision transformer models with limited labeled data poses a critical challenge. This article proposes a novel method for PolSAR image classification that combines channel-wise convolutional local perception, detachable self-attention, and a residual feedforward network. Specifically, the proposed method comprises several key modules. In the channel-wise convolutional local perception module, channel-wise convolution operations enable accurate extraction of local features from different channels of PolSAR images. The local residual connections further enhance these extracted features, providing more discriminative information for subsequent processing. Additionally, the detachable self-attention mechanism plays a pivotal role: it facilitates effective interaction between local and global information, enabling the model to comprehensively perceive features across different scales, thereby improving classification accuracy and robustness. Subsequently, replacing the conventional feedforward network with a residual feedforward network that incorporates residual structures aids the model in better representing local features, further enhances the capability of cross-layer gradient propagation, and effectively alleviates the problem of vanishing gradients during the training of deep networks. In the final classification stage, two fully connected layers with dropout prevent overfitting, while softmax generates predictions. The proposed method was validated on the AIRSAR Flevoland, RADARSAT-2 San Francisco, and RADARSAT-2 Xi’an datasets. The experimental results demonstrate that the proposed method can attain a high level of classification performance even with a limited amount of labeled data, and the model is relatively stable. Furthermore, the proposed method has lower computational costs than comparative methods. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

19 pages, 1977 KiB  
Article
Knowledge, Perception, and Attitude of Veterinarians About Q Fever from South Spain
by Francisco Pérez-Pérez, Rafael Jesús Astorga-Márquez, Ángela Galán-Relaño, Carmen Tarradas-Iglesias, Inmaculada Luque-Moreno, Lidia Gómez-Gascón, Juan Antonio De Luque-Ibáñez and Belén Huerta-Lorenzo
Microorganisms 2025, 13(8), 1759; https://doi.org/10.3390/microorganisms13081759 - 28 Jul 2025
Viewed by 392
Abstract
Q Fever is a zoonosis caused by Coxiella burnetii that affects domestic and wild ruminants, leading to reproductive disorders. In humans, the disease can manifest with acute and chronic clinical manifestations. Veterinarians, as healthcare professionals in close contact with animals, serve both as [...] Read more.
Q Fever is a zoonosis caused by Coxiella burnetii that affects domestic and wild ruminants, leading to reproductive disorders. In humans, the disease can manifest with acute and chronic clinical manifestations. Veterinarians, as healthcare professionals in close contact with animals, serve both as the first line of defence in preventing infection at the animal–human interface and as an important sentinel group for the rapid detection of outbreaks. The aim of this study was to assess the knowledge, perception, and attitude of veterinarians in Southern Spain regarding Q Fever. To this end, an online survey was designed, validated, and conducted among veterinarians in the province of Malaga, with a final participation of 97 individuals, predominantly from the private sector (clinic, livestock, agri-food, etc.). The data obtained reflected a general lack of knowledge about the disease, particularly concerning its epidemiology and infection prevention. Regarding perception and attitude, a significant percentage of respondents stated they did not use protective equipment when handling susceptible animals and only sought information about the disease in response to outbreak declarations. The study emphasised the significance of promoting training in zoonotic diseases during and after graduation, the relevance of official channels in occupational risk prevention, and the utility of epidemiological surveys as a tool to identify and address potential gaps in knowledge related to this disease. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

Back to TopTop