Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = cereal processing by-products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1115 KB  
Review
Sustainable Cellulose Production from Agro-Industrial Waste: A Comprehensive Review
by Akmaral Darmenbayeva, Reshmy Rajasekharan, Zhanat Idrisheva, Roza Aubakirova, Zukhra Dautova, Gulzhan Abylkassova, Manira Zhamanbayeva, Irina Afanasenkova and Bakytgul Massalimova
Polymers 2026, 18(2), 153; https://doi.org/10.3390/polym18020153 - 6 Jan 2026
Viewed by 269
Abstract
The growing demand for sustainable and renewable materials has intensified interest in agro-industrial waste as an alternative source of cellulose. This review critically examines current approaches to cellulose production from major agro-industrial residues, including cereal straw, corn residues, rice waste, sugarcane bagasse, and [...] Read more.
The growing demand for sustainable and renewable materials has intensified interest in agro-industrial waste as an alternative source of cellulose. This review critically examines current approaches to cellulose production from major agro-industrial residues, including cereal straw, corn residues, rice waste, sugarcane bagasse, and oilseed by-products. Emphasis is placed on the relationship between feedstock composition and extraction efficiency, highlighting how lignin distribution, hemicellulose content, and mineral impurities influence pretreatment severity, cellulose yield, and process sustainability. The review systematically analyzes chemical, enzymatic, and mechanical processing routes, with particular attention being paid to pretreatment strategies, fibrillation intensity, and yield variability. Beyond cellulose recovery, key sustainability indicators—such as energy demand, water and chemical consumption, waste generation, and chemical recovery—are evaluated to provide a system-level perspective on process efficiency. The analysis demonstrates that cellulose yield alone is an insufficient criterion for sustainable process design and must be considered alongside environmental and techno-economic metrics. Advanced applications of agro-waste-derived cellulose are discussed using a feedstock-driven approach, showing that high functional performance can often be achieved with moderately processed cellulose tailored to specific end uses. Finally, the review addresses challenges related to feedstock heterogeneity, mineral management, standardization, and industrial scale-up, underscoring the importance of biorefinery integration, closed-loop resource management, and harmonized quality descriptors. These insights provide a foundation for the development of scalable and sustainable cellulose production pathways based on agro-industrial waste. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

38 pages, 647 KB  
Review
Future Directions for Sustainable Poultry Feeding and Product Quality: Alternatives from Insects, Algae and Agro-Industrial Fermented By-Products
by Petru Alexandru Vlaicu, Raluca Paula Turcu, Mihaela Dumitru, Arabela Elena Untea and Alexandra Gabriela Oancea
Agriculture 2026, 16(1), 25; https://doi.org/10.3390/agriculture16010025 - 21 Dec 2025
Viewed by 473
Abstract
Due to global increases in poultry meat and egg production, consumers request sustainable agricultural practices, requiring alternative solutions for future feeding. Global egg production increased by over 41% between 2000 and 2020, from 51 to 87 million tonnes, at an average increasing rate [...] Read more.
Due to global increases in poultry meat and egg production, consumers request sustainable agricultural practices, requiring alternative solutions for future feeding. Global egg production increased by over 41% between 2000 and 2020, from 51 to 87 million tonnes, at an average increasing rate of 3%. Similarly, the production of poultry meat reached 145 million tonnes in 2023 and continues to increase, which amplifies the pressure on sustainable alternative feed solutions. Commercial poultry diets are typically based on a cereal (corn or wheat) as an energy source and a quality protein source, especially soybean meal (SBM), to provide essential amino acids. Soybean production is associated with deforesting and land use in several countries, sensitiveness to supply chains and price volatility. As a response to these challenges over the last decade, research and commercial innovation have intensively focused on alternative and novel feed resources that can be integrated into both broiler and layer diets. Some future candidate ingredients are insect meal, algae, agro-industrial by-products such as distiller’s dried grains with solubles (DDGS), brewery spent grains (BSG) and fermented feedstuffs (oilseed cakes/meals). Literature data showed that moderate inclusion of these alternative ingredients can be partly integrated in poultry diets, without compromising egg or meat quality. In some cases, studies showed improvements of productive performances and specific quality traits (yolk color, fatty acids and antioxidant compounds), offering potential to valorize waste streams, improve local circularity and provide functional ingredients for animals and humans. However, challenges still remain, especially in terms of nutrient variability, digestibility limitations, higher processing costs and still-evolving regulations which constrain mainstream adoption of some of these potential future alternatives. Full article
Show Figures

Figure 1

25 pages, 8556 KB  
Review
A Review of Recent Advances in the Application of Cereal Straw for Decarbonization of Construction Materials and Applications
by Nathalie Santamaría-Herrera, Jorge Otaegi and Iñigo Rodríguez-Vidal
Sustainability 2026, 18(1), 65; https://doi.org/10.3390/su18010065 - 20 Dec 2025
Viewed by 409
Abstract
The construction sector accounts for 39% of GHG emissions, being the main contributor to embodied carbon emissions of building materials, and operational energy consumption for indoor thermal comfort. Cereal straw, an agricultural by-product, is emerging as a low-carbon alternative due to its thermal [...] Read more.
The construction sector accounts for 39% of GHG emissions, being the main contributor to embodied carbon emissions of building materials, and operational energy consumption for indoor thermal comfort. Cereal straw, an agricultural by-product, is emerging as a low-carbon alternative due to its thermal performance and negative embodied carbon. This paper aims to review recent advances of cereal straw as a building material for decarbonization of construction, analyzing its thermal properties, embodied carbon, and large-scale applications. A literature review focused on European-certified straw-based materials, grouped into four categories: straw bales, blown-in insulation, modular systems, and bio-composites. Twelve Product Environmental Declarations (EPDs) and technical specifications were examined to evaluate manufacturing processes, material properties, and Global Warming Potential (GWP) for cradle-to-gate stages (A1–A3), as well as their use in large-scale projects over the past five years. Thermal conductivity ranged from 0.043 to 0.068 W/m·K, while embodied carbon varied between –101.2 and –146.5 kg CO2 eq/m3. Straw bales remain prevalent in small-scale housing, blown-in insulation supports retrofitting, and modular systems offer the most balanced performance, enabling high-rise or extensive built surfaces. The study concludes that straw products have the potential to decarbonize opaque elements of the envelope, reducing operational and embodied energy of buildings. Full article
(This article belongs to the Special Issue Advances in Green and Sustainable Construction Materials)
Show Figures

Figure 1

36 pages, 932 KB  
Review
From Ancient Fermentations to Modern Biotechnology: Historical Evolution, Microbial Mechanisms, and the Role of Natural and Commercial Starter Cultures in Shaping Organic and Sustainable Food Systems
by Yasmin Muhammed Refaie Muhammed, Fabio Minervini and Ivana Cavoski
Foods 2025, 14(24), 4240; https://doi.org/10.3390/foods14244240 - 10 Dec 2025
Cited by 1 | Viewed by 2183
Abstract
From the first spontaneous fermentations of early civilizations to the precision of modern biotechnology, natural starter cultures have remained at the heart of fermented food and beverage production. Composed of complex microbial communities of lactic acid bacteria, yeasts, and filamentous fungi, these starters [...] Read more.
From the first spontaneous fermentations of early civilizations to the precision of modern biotechnology, natural starter cultures have remained at the heart of fermented food and beverage production. Composed of complex microbial communities of lactic acid bacteria, yeasts, and filamentous fungi, these starters transform raw materials into products with distinctive sensory qualities, extended shelf life, and enhanced nutritional value. Their high microbial diversity underpins both their functional resilience and their cultural significance, yet also introduces variability and safety challenges. This review traces the historical development of natural starters, surveys their global applications across cereals, legumes, dairy, vegetables, beverages, seafood, and meats, and contrasts them with commercial starter cultures designed for consistency, scalability, and safety. Within the context of organic food production, natural starters offer opportunities to align fermentation with principles of sustainability, biodiversity conservation, and minimal processing, but regulatory frameworks—currently focused largely on yeasts—pose both challenges and opportunities for broader certification. Emerging innovations, including omics-driven strain selection, synthetic biology, valorization of agro-industrial byproducts, and automation, offer new pathways to improve safety, stability, and functionality without eroding the authenticity of natural starter cultures. By bridging traditional artisanal knowledge with advanced science and sustainable practices, natural starters can play a pivotal role in shaping the next generation of organic and eco-conscious fermented products. Full article
Show Figures

Figure 1

33 pages, 912 KB  
Review
Green Extraction of Bioactive Compounds from Plant-Based Agri-Food Residues: Advances Toward Sustainable Valorization
by Samanta Shiraishi Kagueyam, José Rivaldo dos Santos Filho, Alex Graça Contato, Cristina Giatti Marques de Souza, Rafael Castoldi, Rúbia Carvalho Gomes Corrêa, Carlos Adam Conte Junior, Natália Ueda Yamaguchi, Adelar Bracht and Rosane Marina Peralta
Plants 2025, 14(23), 3597; https://doi.org/10.3390/plants14233597 - 25 Nov 2025
Cited by 1 | Viewed by 1135
Abstract
Agri-food residues have accumulated globally at unprecedented scales, generating environmental pressures and resource inefficiencies, a core problem addressed in this review, while simultaneously representing rich, underutilized reservoirs of health-promoting phytochemicals. This review synthesizes recent advances (2016–2025) in the green extraction, characterization, and biological [...] Read more.
Agri-food residues have accumulated globally at unprecedented scales, generating environmental pressures and resource inefficiencies, a core problem addressed in this review, while simultaneously representing rich, underutilized reservoirs of health-promoting phytochemicals. This review synthesizes recent advances (2016–2025) in the green extraction, characterization, and biological validation of phytochemicals from plant-based residues, including polyphenols, flavonoids, carotenoids, alkaloids, and dietary fibers from key sources such as grape pomace, citrus peels, coffee silverskin, pomegranate peel, cereal brans, and tropical fruit by-products. Emphasis is placed on sustainable extraction methods: ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized liquid extraction (PLE), supercritical CO2 extraction (SFE), and natural deep eutectic solvents (NADES), which enable efficient recovery while minimizing environmental impact. In vitro, in vivo, and clinical studies demonstrate that residue-derived compounds exert antioxidant, anti-inflammatory, metabolic-regulating, and prebiotic effects, contributing to health in general and gut microbiota modulation. Integrating these bioactives into functional foods and nutraceuticals supports sustainable nutrition and circular bioeconomy goals by reducing food waste and promoting health-oriented valorization. Regulatory advances, including approvals from the European Food Safety Authority (EFSA) and the U.S. Food and Drug Administration (FDA) for ingredients such as olive phenolics, citrus flavanones, and coffee cascara, further illustrate increasing translational readiness. The convergence of green chemistry, biorefinery design, and nutritional science positions agri-food residues as pivotal resources for future health-promoting and environmentally responsible diets. Remaining challenges include scaling cost-effective green processes, harmonizing life cycle assessment protocols, expanding toxicological datasets, and conducting longer-term clinical trials to support safe and evidence-based commercialization. Full article
Show Figures

Graphical abstract

30 pages, 7520 KB  
Review
From Agricultural Residues to Sustainable Boards: Complex Network Analysis of Binderless Composites
by Lucia Rossi, Luis A. Miccio, Emiliano M. Ciannamea and Pablo M. Stefani
Polymers 2025, 17(22), 3082; https://doi.org/10.3390/polym17223082 - 20 Nov 2025
Viewed by 1081
Abstract
The transition toward sustainable panel technologies is driving intensive research on binderless boards and self-bonded lignocellulosic composites. Particleboard, an engineered wood composite made by hot pressing wood particles with synthetic adhesives, is among the most widely produced wood-based panels due to cost-effectiveness and [...] Read more.
The transition toward sustainable panel technologies is driving intensive research on binderless boards and self-bonded lignocellulosic composites. Particleboard, an engineered wood composite made by hot pressing wood particles with synthetic adhesives, is among the most widely produced wood-based panels due to cost-effectiveness and versatility. However, pressure on forest-derived raw materials and concern over formaldehyde emissions are accelerating the search for renewable resources and greener routes. Residues and underutilized materials from agro-industrial, food, and forestry sectors (such as cereal straws, sugarcane bagasse, brewer’s spent grain, and fruit-processing by-products) offer a sustainable alternative, enabling waste valorization, lowering environmental burdens, and supporting circular bioeconomy models. Binderless boards, produced without adhesives, exploit natural bonding among lignocellulosic components, including lignin softening, thermoplasticization, and covalent crosslinking during hot pressing. This review adopts a complex network approach to systematically map and analyze the scientific landscape of binderless board production. Using citation-based networks from curated seed papers and their first- and second-degree neighbors, we identify thematic clusters, with cluster “A” as the research core. The examination of this cluster, complemented by word-cloud analysis of titles and abstracts, highlights prevalent raw materials and key research lines, like raw-material sources and lignocellulosic composition, processing parameters, and pretreatment strategies. Based on these findings, brewer’s spent grain is selected as a representative case study for cost analysis. This approach synthesizes the state of the art and reveals emerging directions, research gaps, and influential works, providing a data-driven foundation for advancing self-bonded lignocellulosic composites. Full article
Show Figures

Figure 1

16 pages, 1984 KB  
Article
Upcycling Oat Hulls via Solid-State Fermentation Using Edible Filamentous Fungi: A Co-Culture Approach with Neurospora intermedia and Rhizopus oryzae
by Laura Georgiana Radulescu, Mikael Terp, Christian Enrico Rusbjerg-Weberskov, Niels Thomas Eriksen and Mette Lübeck
J. Fungi 2025, 11(11), 810; https://doi.org/10.3390/jof11110810 - 14 Nov 2025
Viewed by 1076
Abstract
The global challenge of food insecurity requires innovative approaches for sustainable food production and waste valorization. This study investigates the valorization of oat hulls, an abundant lignocellulosic by-product from oat manufacturing, by solid-state fermentation using edible filamentous fungi. Oat hulls sourced from oatmeal [...] Read more.
The global challenge of food insecurity requires innovative approaches for sustainable food production and waste valorization. This study investigates the valorization of oat hulls, an abundant lignocellulosic by-product from oat manufacturing, by solid-state fermentation using edible filamentous fungi. Oat hulls sourced from oatmeal industrial side-streams were used as the sole substrate in co-cultures of Neurospora intermedia and Rhizopus oryzae. The fermentation process was optimized and upscaled, with fungal growth monitored via CO2 efflux and modeled to assess substrate utilization. Comprehensive analyses revealed a significant increase in protein concentration (p < 0.05) in the fermented oat hulls compared to the non-fermented controls. The resulting product was successfully incorporated into granola bars, which underwent sensory evaluation and received positive feedback, demonstrating its potential as a value-added food ingredient. These findings highlight the feasibility of using edible fungi to upcycle cereal processing by-products into nutritionally enhanced alternative protein sources, supporting both food system sustainability and circular bioeconomy objectives. Full article
(This article belongs to the Special Issue Fungi in Focus: Fungal Enzyme and Fungal Metabolism)
Show Figures

Figure 1

16 pages, 948 KB  
Article
Valorization of Local Agricultural Byproducts for the Development of Functional Oat-Based Milk Formulations
by Diana De Santis, Riccardo Frisoni, Alice Rossi, Serena Ferri and Margherita Modesti
Foods 2025, 14(8), 1436; https://doi.org/10.3390/foods14081436 - 21 Apr 2025
Cited by 1 | Viewed by 1471
Abstract
Background: Consumer demand for plant-based milk alternatives, particularly oat-based milk, has increased due to perceived health benefits and environmental sustainability. However, challenges remain in improving their nutritional profile and physical stability while promoting the use of local agricultural resources and reducing food waste. [...] Read more.
Background: Consumer demand for plant-based milk alternatives, particularly oat-based milk, has increased due to perceived health benefits and environmental sustainability. However, challenges remain in improving their nutritional profile and physical stability while promoting the use of local agricultural resources and reducing food waste. Methods: This study developed and evaluated fortified oat-based milk formulations using locally sourced oats cultivated in central Italy. Two valorization strategies were tested: (i) the addition of raspberry powder derived from juice processing byproducts and (ii) the substitution of water with infusions of raspberry and olive leaves. The nutritional composition, antioxidant activity, physical stability, and sensory properties were assessed. Results: Replacing water with leaf infusions significantly increased total polyphenol content (up to 688 mg GAE/100 g DW) and antioxidant activity but compromised physical stability, resulting in higher separation indexes during refrigerated storage. Conversely, adding raspberry powder moderately enhanced antioxidant properties while maintaining emulsion stability. Sensory evaluation showed that enriched formulations reduced undesirable attributes (e.g., floury and cereal notes), although higher concentrations of leaf infusions increased astringency and bitterness. Conclusions: The fortification of oat-based milk with locally sourced raspberry powders and leaf infusions effectively enhances its nutritional and antioxidant properties while influencing its physical and sensory characteristics. This strategy supports the valorization of local agricultural byproducts and promotes the development of sustainable, functional plant-based beverages. Full article
Show Figures

Graphical abstract

31 pages, 2682 KB  
Review
The Vital Roles of Agricultural Crop Residues and Agro-Industrial By-Products to Support Sustainable Livestock Productivity in Subtropical Regions
by Ali Mujtaba Shah, Huiling Zhang, Muhammad Shahid, Huma Ghazal, Ali Raza Shah, Mujahid Niaz, Tehmina Naz, Keshav Ghimire, Naqash Goswami, Wei Shi, Dongxu Xia and Hongxia Zhao
Animals 2025, 15(8), 1184; https://doi.org/10.3390/ani15081184 - 21 Apr 2025
Cited by 23 | Viewed by 7470
Abstract
Sustainable livestock production is a critical component of global food security and environmental stewardship. Agricultural crop residues, such as cereal straws, stovers, and hulls, as well as agro-industrial by-products, including oilseed meals, distillery wastes, and fruit/vegetable processing residues, are generated in large quantities [...] Read more.
Sustainable livestock production is a critical component of global food security and environmental stewardship. Agricultural crop residues, such as cereal straws, stovers, and hulls, as well as agro-industrial by-products, including oilseed meals, distillery wastes, and fruit/vegetable processing residues, are generated in large quantities worldwide, and these residues can be used in the diet of the animals to reduce the feed production cost and sustainability. In this review, we found that the use of treated crop residues in the diet of animals increased the production performance without causing any side effects on their health. Additionally, we also noticed that using these crop residues also mitigates the methane production in ruminants and feed costs, particularly for harvesting the feed crops. Traditionally, these materials have often been underutilized or even disposed of improperly, leading to wastage of valuable nutrients and potential environmental pollution. By incorporating these materials into animal feed formulations, livestock producers can benefit from several key advantages. The review further discusses the challenges and considerations involved in the effective utilization of these alternative feed resources, such as variability in nutrient composition, anti-nutritional factors, and the need for appropriate preprocessing and formulation strategies. Emerging technologies and innovative approaches to optimize the integration of crop residues and by-products into sustainable livestock production systems and also reduce global warming, particularly methane, CO2 and other particles that affect the environment after burning these crop residues, are also highlighted. By synthesizing the current knowledge and exploring the multifaceted benefits, this review underscores the vital roles that agricultural crop residues and agro-industrial by-products can play in fostering the sustainability and resilience of livestock production, ultimately contributing to global food security and environmental stewardship. Full article
(This article belongs to the Collection Use of Agricultural By-Products in Animal Feeding)
Show Figures

Figure 1

20 pages, 838 KB  
Review
A Review of Decontamination of Aspergillus spp. and Aflatoxin Control for Grains and Nuts with Atmospheric Cold Plasma
by Miral Javed, Wei Cao, Linyi Tang and Kevin M. Keener
Toxins 2025, 17(3), 129; https://doi.org/10.3390/toxins17030129 - 10 Mar 2025
Cited by 4 | Viewed by 4403
Abstract
Aspergillus spp. and their produced aflatoxins are responsible for contaminating 25–30% of the global food supply, including many grains, and nuts which when consumed are detrimental to human and animal health. Despite regulatory frameworks, Aspergillus spp. and aflatoxin contamination is still a global [...] Read more.
Aspergillus spp. and their produced aflatoxins are responsible for contaminating 25–30% of the global food supply, including many grains, and nuts which when consumed are detrimental to human and animal health. Despite regulatory frameworks, Aspergillus spp. and aflatoxin contamination is still a global challenge, especially in cereal-based matrices and their derived by-products. The methods for reducing Aspergillus spp. and aflatoxin contamination involve various approaches, including physical, chemical, and biological control strategies. Recently, a novel technology, atmospheric cold plasma (ACP), has emerged which can reduce mold populations and also degrade these toxins. ACP is a non-thermal technology that operates at room temperature and atmospheric pressure. It can reduce mold and toxins from grains and seeds without affecting food quality or leaving any chemical residue. ACP is the conversion of a gas, such as air, into a reactive gas. Specifically, an electrical charge is applied to the “working” gas (air) leading to the breakdown of diatomic oxygen, diatomic nitrogen, and water vapor into a mixture of radicals (e.g., atomic oxygen, atomic nitrogen, atomic hydrogen, hydroxyls), metastable species, and ions (e.g., nitrate, nitrite, peroxynitrate). In a cold plasma process, approximately 5% or less of the working gas is ionized. However, cold plasma treatment can generate over 1000 ppm of reactive gas species (RGS). The final result is a range of bactericidal and fungicidal molecules such as ozone, peroxides, nitrates, and many others. This review provides an overview of the mechanisms and chemistry of ACP and its application in inactivating Aspergillus spp. and degrading aflatoxins, serving as a novel treatment to enhance the safety and quality of grains and nuts. The final section of the review discusses the commercialization status of ACP treatment. Full article
(This article belongs to the Special Issue Aspergillus flavus and Aflatoxins (3rd Edition))
Show Figures

Figure 1

24 pages, 6691 KB  
Article
Identification of Corn Chaff as an Optimal Substrate for the Production of Rhamnolipids in Pseudomonas aeruginosa Fermentations
by Adriana Bava, Sara Carnelli, Mentore Vaccari, Trello Beffa and Fabrizio Beltrametti
Fermentation 2025, 11(2), 74; https://doi.org/10.3390/fermentation11020074 - 3 Feb 2025
Cited by 1 | Viewed by 1665
Abstract
Waste biomass deriving from agricultural activities has different destinations depending on the possibility of applying it to specific processes. As the waste biomass is abundant, cheap, and generally safe, it can be used for several applications, biogas production being the most relevant from [...] Read more.
Waste biomass deriving from agricultural activities has different destinations depending on the possibility of applying it to specific processes. As the waste biomass is abundant, cheap, and generally safe, it can be used for several applications, biogas production being the most relevant from the quantitative point of view. In this study, we have used a set of agricultural by-products (agro-waste) deriving from the post-harvest treatment of cereals and legumes as the growth substrate for selected biosurfactant-producing microbial strains. The agricultural by-products were easily metabolized and highly effective for the growth of microorganisms and the production of rhamnolipids and surfactin by Pseudomonas aeruginosa and Bacillus subtilis, respectively. In particular, the use of corn chaff (“bee-wings”) was suitable for the production of rhamnolipids. Indeed, in corn-chaff-based media, rhamnolipids yields ranged from 2 to 18 g/L of fermentation broth. This study demonstrated that the use of waste raw materials could be applied to reduce the carbon footprint of the production of biosurfactants without compromising the possibility of having a suitable fermentation medium for industrial production. Full article
Show Figures

Figure 1

11 pages, 219 KB  
Article
Development of Prediction Equations for Digestible and Metabolizable Energy in 15 Cereal Processing By-Products Fed to Growing Pigs
by Jinbiao Zhao, Qi Zhu, Xiaoming Song, Meiyu Yang and Ling Liu
Animals 2024, 14(21), 3101; https://doi.org/10.3390/ani14213101 - 28 Oct 2024
Viewed by 2120
Abstract
The study was conducted to determine the nutrient digestibility and digestible (DE) and metabolizable energy (ME) of 15 cereal processing by-products and to develop prediction equations for DE and ME based on the chemical composition in growing pigs. A total of 36 crossbred [...] Read more.
The study was conducted to determine the nutrient digestibility and digestible (DE) and metabolizable energy (ME) of 15 cereal processing by-products and to develop prediction equations for DE and ME based on the chemical composition in growing pigs. A total of 36 crossbred pigs were chosen and divided into three blocks according to a three 12 × 3 Youdin square experimental design. Twelve pigs in each block were allocated into six diets including a basal diet and five test diets. The feeding experiment included three periods, and each dietary treatment contained six replicates. Each period lasted 12 days, including 7 d of dietary adaption and 5 d of total feces and urine collection. The results showed that the coefficients of variation for EE, NDF, ADF, CP, and GE among 15 cereal processing by-products were 86.78%, 49.82%, 51.14%, 14.95%, and 6.26%, respectively. There were significant differences in DE, ME, and ME/DE (DM basis) among 15 cereal processing by-products (p < 0.05), ranging from 11.55 MJ/kg to 17.64 MJ/kg, from 10.90 MJ/kg to 17.40 MJ/kg, and from 89.41% to 98.63%, respectively. The digestibility of GE, DM, NDF, ADF, and CP showed a significant difference among 15 cereal processing by-products (p < 0.05). The DE and ME contents showed a negative correlation to NDF and ADF (p < 0.05), and the prediction equations for DE and ME (as-fed basis) were DE (MJ/kg) = −0.4597 × ADF (%) + 0.5988 × GE (MJ/kg) + 6.0138 (R2 = 0.74; p < 0.05) and ME (MJ/kg) = 1.0440 × DE (MJ/kg) − 1.1235 (R2 = 0.98; p < 0.05). On a DM basis, the optimal prediction equations for DE and ME were DE (MJ/kg DM) = −0.1451 × NDF (%) + 0.3026 × CP (%) + 13.8595 (R2 = 0.72; p < 0.05) and ME (MJ/kg DM) = 1.1155 × DE (MJ/kg DM) + 0.0363 × ADF (%) − 2.3412 (R2 = 0.99; p < 0.05). In conclusion, there were large variations in the chemical composition, nutrients digestibility, and available energy among the 15 different samples of cereal processing by-products. It is reasonable to develop prediction equations for DE and ME based on the chemical composition of cereal by-products for growing pigs. Full article
(This article belongs to the Section Pigs)
18 pages, 4313 KB  
Article
Solid-State Fermentation of Cereal Waste Improves the Bioavailability and Yield of Bacterial Cellulose Production by a Novacetimonas sp. Isolate
by Shriya Henry, Sushil Dhital, Huseyin Sumer and Vito Butardo
Foods 2024, 13(19), 3052; https://doi.org/10.3390/foods13193052 - 25 Sep 2024
Cited by 7 | Viewed by 3557
Abstract
Cereal wastes such as rice bran and cereal dust are valuable yet underutilised by-products of grain processing. This study aimed to bio-convert these wastes into bacterial cellulose (BC), an emerging sustainable and renewable biomaterial, via an inexpensive solid-state fermentation (SSF) pre-treatment using three [...] Read more.
Cereal wastes such as rice bran and cereal dust are valuable yet underutilised by-products of grain processing. This study aimed to bio-convert these wastes into bacterial cellulose (BC), an emerging sustainable and renewable biomaterial, via an inexpensive solid-state fermentation (SSF) pre-treatment using three mould isolates. Medium substitution by directly using untreated rice bran or cereal dust did not significantly increase the yield of bacterial cellulose produced by Novacetimonas sp. (NCBI accession number PP421219) compared to the standard Hestrin–Schramm (HS) medium. In contrast, rice bran fermented with Rhizopus oligosporus yielded the highest bacterial cellulose (1.55 ± 0.6 g/L dry weight) compared to the untreated control (0.45 ± 0.1 g/L dry weight), demonstrating an up to 22% increase in yield. Using the SSF process, the media production costs were reduced by up to 90% compared to the standard HS medium. Physicochemical characterisation using SEM, EDS, FTIR, XPS, XRD, and TGA was performed to gain insights into the internal structure, morphology, and chemical bonding of differently produced BC, which revealed comparable biopolymer properties between BC produced in standard and waste-based media. Hence, our findings demonstrate the effectiveness of fungal SSF for transforming abundant cereal waste into BC, providing a circular economy solution to reduce waste and convert it into by-products to enhance the sustainability of the cereal industry. Full article
Show Figures

Figure 1

23 pages, 2586 KB  
Article
Boosting Synergistic Antioxidant and Anti-Inflammatory Properties Blending Cereal-Based Nutraceuticals Produced Using Sprouting and Hydrolysis Tools
by Iván Jesús Jiménez-Pulido, Ana Belén Martín-Diana, Irene Tomé-Sánchez, Daniel de Luis, Cristina Martínez-Villaluenga and Daniel Rico
Foods 2024, 13(12), 1868; https://doi.org/10.3390/foods13121868 - 14 Jun 2024
Cited by 8 | Viewed by 2778
Abstract
Nutraceuticals obtained from sprouted wheat and oat grains and processing by-products (bran and hull, respectively) naturally containing antioxidant and anti-inflammatory compounds were evaluated. The objective of this study was the development of a cereal-based nutraceutical formula combining extracts from sprouts and by-products and [...] Read more.
Nutraceuticals obtained from sprouted wheat and oat grains and processing by-products (bran and hull, respectively) naturally containing antioxidant and anti-inflammatory compounds were evaluated. The objective of this study was the development of a cereal-based nutraceutical formula combining extracts from sprouts and by-products and the exploration for potential synergetic effects in their bioactive properties. The antioxidant and anti-inflammatory capacities, glycemic index, phytic acid, and β-glucan of individual wheat bran hydrolysate (EH-WB), sprouted wheat (SW), oat hull hydrolysate (EH-OH), sprouted oat (SO), and combined ingredients (CI 1, CI 2, and CI3) were used to tailor an optimal nutraceutical formula. The three blend ingredients (CI 1, CI2, and CI3) were formulated at different ratios (EH-WB:SW:EH-OH:SO; 1:1:1:1, 2:1:2:1, and 1:2:1:2, w:w:w:w, respectively). The resulting mixtures showed total phenol (TPs) content ranging from 412.93 to 2556.66 µmol GAE 100 g−1 and antioxidant capacity values from 808.14 to 22,152.54 µmol TE 100 g−1 (ORAC) and 1914.05 to 7261.32 µmol TE 100 g−1 (ABTS•+), with Fe3+ reducing ability from 734. 02 to 8674.51 mmol reduced Fe 100 g−1 (FRAP) for the individual ingredients produced from EH-WB and EH-OH, where high antioxidant activity was observed. However, the anti-inflammatory results exhibited an interesting behavior, with a potentially synergistic effect of the individual ingredients. This effect was observed in CI2 and CI3, resulting in a higher ability to inhibit IL-6 and TNF-α than expected based on the anti-inflammatory values of their individual ingredients. Similar to the antioxidant properties, oat-based ingredients significantly contributed more to the anti-inflammatory properties of the overall mixture. This contribution is likely associated with the β-glucans and avenanthramides present in oats. To ensure the bioaccessibility of these ingredients, further studies including simulated digestion protocols would be necessary. The ingredient formulated with a 2:1 hydrolysate-to-sprout ratio was the most effective combination, reaching higher biological characteristics. Full article
Show Figures

Figure 1

14 pages, 1313 KB  
Review
Insights into Grain Milling and Fractionation Practices for Improved Food Sustainability with Emphasis on Wheat and Peas
by El-Sayed M. Abdel-Aal
Foods 2024, 13(10), 1532; https://doi.org/10.3390/foods13101532 - 15 May 2024
Cited by 8 | Viewed by 4716
Abstract
Cereal grains and pulses are staple foods worldwide, being the primary supply of energy, protein, and fiber in human diets. The current practice of milling and fractionation yields large quantities of byproducts and waste, which are largely downgraded and end up as animal [...] Read more.
Cereal grains and pulses are staple foods worldwide, being the primary supply of energy, protein, and fiber in human diets. The current practice of milling and fractionation yields large quantities of byproducts and waste, which are largely downgraded and end up as animal feeds or fertilizers. This adversely affects food security and the environment, and definitely implies an urgent need for a sustainable grain processing system to rectify the current issues, particularly the management of waste and excessive use of water and energy. The current review intends to discuss the limitations and flaws of the existing practice of grain milling and fractionation, along with potential solutions to make it more sustainable, with an emphasis on wheat and peas as common fractionation crops. This review discusses a proposed sustainable grain processing system for the fractionation of wheat or peas into flour, protein, starch, and value-added components. The proposed system is a hybrid model that combines dry and wet fractionation processes in conjunction with the implementation of three principles, namely, integration, recycling, and upcycling, to improve component separation efficiency and value addition and minimize grain milling waste. The three principles are critical in making grain processing more efficient in terms of the management of waste and resources. Overall, this review provides potential solutions for how to make the grain processing system more sustainable. Full article
Show Figures

Figure 1

Back to TopTop