Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = cereal biodiversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4846 KiB  
Article
The Plant Landscape of the “Conca d’Oro” of Palermo (NW Sicily, Italy) and Its Evolution
by Gianniantonio Domina, Giulio Barone, Enrico Bajona, Emilio Di Gristina, Giuseppe Venturella and Raimondo Pardi
Plants 2025, 14(6), 938; https://doi.org/10.3390/plants14060938 - 17 Mar 2025
Viewed by 1133
Abstract
The Conca d’Oro of Palermo, a plain in NW Sicily of significant historical and agricultural importance, has undergone significant landscape alterations due to agricultural strengthening and urbanization. This paper analyses the evolution of the plant landscape from early human settlements to the present [...] Read more.
The Conca d’Oro of Palermo, a plain in NW Sicily of significant historical and agricultural importance, has undergone significant landscape alterations due to agricultural strengthening and urbanization. This paper analyses the evolution of the plant landscape from early human settlements to the present by integrating historical records, cartographic analysis, and floristic surveys. Three key periods of change were identified: Roman-era deforestation for cereal cultivation, the expansion of irrigated agriculture under Arab rule, and the dominance of citrus monoculture in the 19th century. Post-World War II urban expansion led to the loss of agricultural land and natural habitats, particularly wetlands and coastal dunes. Spatial analysis revealed a drastic reduction in semi-natural areas, with agricultural land giving way to urban sprawl. Floristic studies showed the persistence of endemic plant species in fragmented natural habitats alongside the local extinction of wetlands and coastal vegetation. The Oreto River, a river with a basin that extends into the territories of the municipalities of Altofonte, Monreale, and Palermo, remains a critical biodiversity reservoir, and most other natural ecosystems have been degraded. This research provides insights into the long-term interactions between human activities and biodiversity and offers a foundation for sustainable conservation strategies in Mediterranean urban and peri-urban environments. Full article
Show Figures

Figure 1

25 pages, 1943 KiB  
Review
Towards Sustainable Productivity of Greenhouse Vegetable Soils: Limiting Factors and Mitigation Strategies
by Bofang Yan, Tenghaobo Deng and Liangliang Shi
Plants 2024, 13(20), 2885; https://doi.org/10.3390/plants13202885 - 15 Oct 2024
Cited by 5 | Viewed by 2722
Abstract
Greenhouse vegetable production has become increasingly important in meeting the increasing global food demand. Yet, it faces severe challenges in terms of how to maintain soil productivity from a long-term perspective. This review discusses the main soil productivity limiting factors for vegetables grown [...] Read more.
Greenhouse vegetable production has become increasingly important in meeting the increasing global food demand. Yet, it faces severe challenges in terms of how to maintain soil productivity from a long-term perspective. This review discusses the main soil productivity limiting factors for vegetables grown in greenhouses and identifies strategies that attempt to overcome these limitations. The main processes leading to soil degradation include physical (e.g., compaction), chemical (e.g., salinization, acidification, and nutrient imbalances), and biological factors (e.g., biodiversity reduction and pathogen buildup). These processes are often favored by intensive greenhouse cultivation. Mitigation strategies involve managing soil organic matter and mineral nutrients and adopting crop rotation. Future research should focus on precisely balancing soil nutrient supply with vegetable crop demands throughout their life cycle and using targeted organic amendments to manage specific soil properties. To ensure the successful adoption of recommended strategies, socioeconomic considerations are also necessary. Future empirical research is required to adapt socioeconomic frameworks, such as Science and Technology Backyard 2.0, from cereal production systems to greenhouse vegetable production systems. Addressing these issues will enable the productivity of greenhouse vegetable soils that meet growing vegetable demand to be sustained using limited soil resources. Full article
(This article belongs to the Special Issue Soil Fertility Management for Plant Growth and Development)
Show Figures

Figure 1

18 pages, 493 KiB  
Article
Spelt in Diversified and Spelt-Based Crop Rotations: Grain Yield and Technological and Nutritional Quality
by Maria Wanic, Magdalena Jastrzębska, Marta K. Kostrzewska and Mariola Parzonka
Agriculture 2024, 14(7), 1123; https://doi.org/10.3390/agriculture14071123 - 11 Jul 2024
Cited by 4 | Viewed by 1327
Abstract
A properly designed crop rotation contributes to the equilibrium of the agro-ecosystem and the volume and quality of the yield. The cultivation of spelt in crop rotations enriches its biodiversity and provides grains with many different types of nutritional value. The aim of [...] Read more.
A properly designed crop rotation contributes to the equilibrium of the agro-ecosystem and the volume and quality of the yield. The cultivation of spelt in crop rotations enriches its biodiversity and provides grains with many different types of nutritional value. The aim of this current study was to investigate how the distribution of winter spelt in different positions and after different forecrops in four-field crop rotations would affect the technological quality of the grain, the nutrient content of the grain, and the grain yield. A 6-year field experiment, designed in a randomised block, was conducted from 2012 to 2018 in north-eastern Poland (53°35′47″ N, 19°51′20″ E). This study provides the results from a 6-year (2013–2018) field experiment. The spelt was cultivated in four crop rotations: CR1—winter rape + catch crop (blue tansy), spring barley, field pea and winter spelt; CR2,—winter rape, winter spelt + catch crop (blue tansy), field pea and winter spelt; CR3—winter rape + catch crop (blue tansy), field pea, winter spelt and winter spelt; and CR4—winter rape, winter spelt + catch crop (blue tansy), spring barley and winter spelt. This study evaluated grain yield and the following grain parameters: the total protein, wet gluten and starch contents, the Zeleny index, the falling number, the weight of 1000 grains, the N, P, K, Mg, Ca, Cu, Fe, Zn and Mn contents, and the grain yield. The results were assessed at the significance level p < 0.05. It was demonstrated that the cultivation of spelt in all four crop rotations after winter rape and after field pea was characterised by higher protein and wet gluten contents, Zeleny index value and falling number, a greater weight of 1000 grains, higher N, P, Fe and Zn contents, and greater grain yield than those harvested from the crop rotations CR3 and CR4 after spelt and after barley. It was demonstrated that the cultivation of spelt in crop rotations CR3 and CR4, in succession after spelt and after barley, caused deterioration in grain quality (lower protein and gluten contents, a lower Zeleny index value, a lower falling number, and a smaller weight of 1000 grains, and the N, P, Fe and Zn contents). In addition, a smaller grain yield was obtained from these crop rotation fields. Regardless of the type of crop rotation, the cultivation of spelt after winter rape and after pea produced a high yield and a good quality yield of this cereal. Due to the lower yield of grain and its lower quality, it is not recommended that winter spelt is grown after each other or after spring barley. Full article
Show Figures

Figure 1

10 pages, 250 KiB  
Commentary
Farm Animal Welfare—From the Farmers’ Perspective
by Clive J. C. Phillips
Animals 2024, 14(5), 671; https://doi.org/10.3390/ani14050671 - 21 Feb 2024
Cited by 10 | Viewed by 5620
Abstract
Improvements in the welfare of animals in the intensive production industries are increasingly being demanded by the public. Scientific methods of welfare improvement have been developed and are beginning to be used on farms, including those provided by precision livestock farming. The number [...] Read more.
Improvements in the welfare of animals in the intensive production industries are increasingly being demanded by the public. Scientific methods of welfare improvement have been developed and are beginning to be used on farms, including those provided by precision livestock farming. The number of welfare challenges that animals are facing in the livestock production industries is growing rapidly, and farmers are a key component in attempts to improve welfare because their livelihood is at stake. The challenges include climate change, which not only exposes animals to heat stress but also potentially reduces forage and water availability for livestock production systems. Heat-stressed animals have reduced welfare, and it is important to farmers that they convert feed to products for human consumption less efficiently, their immune system is compromised, and both the quality of the products and the animals’ reproduction are adversely affected. Livestock farmers are also facing escalating feed and fertiliser costs, both of which may jeopardise feed availability for the animals. The availability of skilled labour to work in livestock industries is increasingly limited, with rural migration to cities and the succession of older farmers uncertain. In future, high-energy and protein feeds are unlikely to be available in large quantities when required for the expanding human population. It is expected that livestock farming will increasingly be confined to marginal land offering low-quality pasture, which will favour ruminant livestock, at the expense of pigs and poultry unable to readily digest coarse fibre in plants. Farmers also face disease challenges to their animals’ welfare, as the development of antibiotic resistance in microbes has heralded an era when we can no longer rely on antibiotics to control disease or improve the feed conversion efficiency of livestock. Farmers can use medicinal plants, pro-, pre- and synbiotics and good husbandry to help maintain a high standard of health in their animals. Loss of biodiversity in livestock breeds reduces the availability of less productive genotypes that survive better on nutrient-poor diets than animals selected for high productivity. Farmers have a range of options to help address these challenges, including changing to less intensive diets, diversification from livestock farming to other enterprises, such as cereal and pseudocereal crops, silvopastoral systems and using less highly selected breeds. These options may not always produce good animal welfare, but they will help to give farm animals a better life. Full article
23 pages, 6115 KiB  
Article
Buckwheat (Fagopyrum esculentum) Hulls Are a Rich Source of Fermentable Dietary Fibre and Bioactive Phytochemicals
by Zhihong Zhang, Songtao Fan, Gary J. Duncan, Amanda Morris, Donna Henderson, Philip Morrice, Wendy R. Russell, Sylvia H. Duncan and Madalina Neacsu
Int. J. Mol. Sci. 2023, 24(22), 16310; https://doi.org/10.3390/ijms242216310 - 14 Nov 2023
Cited by 10 | Viewed by 2618
Abstract
Pseudo-cereals such as buckwheat (Fagopyrum esculentum) are valid candidates to promote diet biodiversity and nutrition security in an era of global climate change. Buckwheat hulls (BHs) are currently an unexplored source of dietary fibre and bioactive phytochemicals. This study assessed the [...] Read more.
Pseudo-cereals such as buckwheat (Fagopyrum esculentum) are valid candidates to promote diet biodiversity and nutrition security in an era of global climate change. Buckwheat hulls (BHs) are currently an unexplored source of dietary fibre and bioactive phytochemicals. This study assessed the effects of several bioprocessing treatments (using enzymes, yeast, and combinations of both) on BHs’ nutrient and phytochemical content, their digestion and metabolism in vitro (using a gastrointestinal digestion model and mixed microbiota from human faeces). The metabolites were measured using targeted LC-MS/MS and GC analysis and 16S rRNA gene sequencing was used to detect the impact on microbiota composition. BHs are rich in insoluble fibre (31.09 ± 0.22% as non-starch polysaccharides), protocatechuic acid (390.71 ± 31.72 mg/kg), and syringaresinol (125.60 ± 6.76 mg/kg). The bioprocessing treatments significantly increased the extractability of gallic acid, vanillic acid, p-hydroxybenzoic acid, syringic acid, vanillin, syringaldehyde, p-coumaric acid, ferulic acid, caffeic acid, and syringaresinol in the alkaline-labile bound form, suggesting the bioaccessibility of these phytochemicals to the colon. Furthermore, one of the treatments, EC_2 treatment, increased significantly the in vitro upper gastrointestinal release of bioactive phytochemicals, especially for protocatechuic acid (p < 0.01). The BH fibre was fermentable, promoting the formation mainly of propionate and, to a lesser extent, butyrate formation. The EM_1 and EC_2 treatments effectively increased the content of insoluble fibre but had no effect on dietary fibre fermentation (p > 0.05). These findings promote the use of buckwheat hulls as a source of dietary fibre and phytochemicals to help meet dietary recommendations and needs. Full article
Show Figures

Figure 1

14 pages, 1983 KiB  
Article
Analysis of the Structural Organization and Expression of the Vrn-D1 Gene Controlling Growth Habit (Spring vs. Winter) in Aegilops tauschii Coss.
by Grigory Yurievich Chepurnov, Ekaterina Sergeevna Ovchinnikova, Alexander Genadevich Blinov, Nadezhda Nikolaevna Chikida, Mariya Khasbulatovna Belousova and Nikolay Petrovich Goncharov
Plants 2023, 12(20), 3596; https://doi.org/10.3390/plants12203596 - 17 Oct 2023
Cited by 5 | Viewed by 1606
Abstract
The duration of the vegetative period is an important agronomic characteristic of cereal crops. It is mainly influenced by the Vrn (response to vernalization) and Ppd (response to photoperiod) genes. In this work, we searched for alleles of several known genes of these [...] Read more.
The duration of the vegetative period is an important agronomic characteristic of cereal crops. It is mainly influenced by the Vrn (response to vernalization) and Ppd (response to photoperiod) genes. In this work, we searched for alleles of several known genes of these two systems of response to external conditions in 15 accessions of Aegilops tauschii Coss. (syn. Ae. squarrosa L.), with the aim of studying the impact these alleles have on the vegetative period duration and growth habit. As a result, three allelic variants have been found for the Vrn-D1 gene: (i) one intact (winter type), (ii) one with a 5437 bp deletion in the first intron and (iii) one previously undescribed allele with a 3273 bp deletion in the first intron. It has been shown that the spring growth habit of Ae. tauschii can be developed due to the presence of a new allele of the Vrn-D1 gene. Significant differences in expression levels between the new allelic variant of the Vrn-D1 gene and the intact allele vrn-D1 were confirmed by qPCR. The new allele can be introgressed into common wheat to enhance the biodiversity of the spring growth habit and vegetative period duration of plants. Full article
(This article belongs to the Special Issue Cereal Genetics and Molecular Genetics)
Show Figures

Figure 1

3 pages, 186 KiB  
Editorial
The Contribution of Minor Cereals to Sustainable Diets and Agro-Food Biodiversity
by Laura Gazza and Francesca Nocente
Foods 2023, 12(18), 3500; https://doi.org/10.3390/foods12183500 - 20 Sep 2023
Cited by 3 | Viewed by 1405
Abstract
Since the second half of the 20th century, the intensification of agriculture by increasing external inputs (fertilizers, pesticides), cropland expansion, and the cultivation of only a few selected cereal species or varieties have caused the loss of biodiversity and ecosystem services on farmland [...] Read more.
Since the second half of the 20th century, the intensification of agriculture by increasing external inputs (fertilizers, pesticides), cropland expansion, and the cultivation of only a few selected cereal species or varieties have caused the loss of biodiversity and ecosystem services on farmland [...] Full article
37 pages, 2571 KiB  
Review
Integrated Genomic Selection for Accelerating Breeding Programs of Climate-Smart Cereals
by Dwaipayan Sinha, Arun Kumar Maurya, Gholamreza Abdi, Muhammad Majeed, Rachna Agarwal, Rashmi Mukherjee, Sharmistha Ganguly, Robina Aziz, Manika Bhatia, Aqsa Majgaonkar, Sanchita Seal, Moumita Das, Swastika Banerjee, Shahana Chowdhury, Sherif Babatunde Adeyemi and Jen-Tsung Chen
Genes 2023, 14(7), 1484; https://doi.org/10.3390/genes14071484 - 21 Jul 2023
Cited by 63 | Viewed by 12780
Abstract
Rapidly rising population and climate changes are two critical issues that require immediate action to achieve sustainable development goals. The rising population is posing increased demand for food, thereby pushing for an acceleration in agricultural production. Furthermore, increased anthropogenic activities have resulted in [...] Read more.
Rapidly rising population and climate changes are two critical issues that require immediate action to achieve sustainable development goals. The rising population is posing increased demand for food, thereby pushing for an acceleration in agricultural production. Furthermore, increased anthropogenic activities have resulted in environmental pollution such as water pollution and soil degradation as well as alterations in the composition and concentration of environmental gases. These changes are affecting not only biodiversity loss but also affecting the physio-biochemical processes of crop plants, resulting in a stress-induced decline in crop yield. To overcome such problems and ensure the supply of food material, consistent efforts are being made to develop strategies and techniques to increase crop yield and to enhance tolerance toward climate-induced stress. Plant breeding evolved after domestication and initially remained dependent on phenotype-based selection for crop improvement. But it has grown through cytological and biochemical methods, and the newer contemporary methods are based on DNA-marker-based strategies that help in the selection of agronomically useful traits. These are now supported by high-end molecular biology tools like PCR, high-throughput genotyping and phenotyping, data from crop morpho-physiology, statistical tools, bioinformatics, and machine learning. After establishing its worth in animal breeding, genomic selection (GS), an improved variant of marker-assisted selection (MAS), has made its way into crop-breeding programs as a powerful selection tool. To develop novel breeding programs as well as innovative marker-based models for genetic evaluation, GS makes use of molecular genetic markers. GS can amend complex traits like yield as well as shorten the breeding period, making it advantageous over pedigree breeding and marker-assisted selection (MAS). It reduces the time and resources that are required for plant breeding while allowing for an increased genetic gain of complex attributes. It has been taken to new heights by integrating innovative and advanced technologies such as speed breeding, machine learning, and environmental/weather data to further harness the GS potential, an approach known as integrated genomic selection (IGS). This review highlights the IGS strategies, procedures, integrated approaches, and associated emerging issues, with a special emphasis on cereal crops. In this domain, efforts have been taken to highlight the potential of this cutting-edge innovation to develop climate-smart crops that can endure abiotic stresses with the motive of keeping production and quality at par with the global food demand. Full article
(This article belongs to the Collection Feature Papers: 'Plant Genetics and Genomics' Section)
Show Figures

Figure 1

17 pages, 2925 KiB  
Article
Effects of Winter Cereals (Triticum aestivum L., Hordeum vulgare L., Triticosecale Wittmack) and Winter Pea (Pisum sativum L.) Intercropping on Weed Cover in South-Eastern and Central Hungary
by Attila Rácz, Marianna Vályi-Nagy, Melinda Tar, Katalin Irmes, Lajos Szentpéteri, Apolka Ujj, Klára Veresné Valentinyi, Márta Ladányi and István Kristó
Agronomy 2023, 13(5), 1319; https://doi.org/10.3390/agronomy13051319 - 8 May 2023
Viewed by 1712
Abstract
Growing two or more crops together in the same area at the same time, called intercropping, is a well-known agroecological method of weed suppression. Cereal-legume intercropping systems are of great importance in increasing biodiversity in arable lands. In cereal-legume mixtures, cereals provide physical [...] Read more.
Growing two or more crops together in the same area at the same time, called intercropping, is a well-known agroecological method of weed suppression. Cereal-legume intercropping systems are of great importance in increasing biodiversity in arable lands. In cereal-legume mixtures, cereals provide physical support to legumes and enhance weed suppression. Cereals have a stronger weed suppression ability than peas. The aim of our research was to determine the weed composition and weed cover of pure winter wheat, pure barley, pure triticale and pure winter pea, as well as associated wheat-pea, barley-pea, and triticale-pea crops in two locations (Szeged and Fülöpszállás) and in two growing seasons (2020/2021 and 2021/2022). In Fülöpszállás, the average weed cover was significantly higher than in Szeged. When comparing the years and crop production methods, significant differences were observed in weed cover in the pure legume plots. More weed species appeared in Szeged and Fülöpszállás in the second year than in the first year. Cereal-pea intercropping reduces the need for herbicides; we can achieve more sustainable and effective weed management without herbicide treatment. Full article
(This article belongs to the Special Issue Promoting Intercropping Systems in Sustainable Agriculture)
Show Figures

Figure 1

14 pages, 1823 KiB  
Article
Mitigating the Effect of Climate Change within the Cereal Sector: Improving Rheological and Baking Properties of Strong Gluten Wheat Doughs by Blending with Specialty Grains
by Rubina Rumler, Denisse Bender and Regine Schoenlechner
Plants 2023, 12(3), 492; https://doi.org/10.3390/plants12030492 - 21 Jan 2023
Cited by 8 | Viewed by 2913
Abstract
Due to the effect of climate change, wheat flour qualities with extremely high dough extensibility or dough strength are becoming more common, which impairs the production of selected wheat products such as pastries. The aim of this study was to investigate the effect [...] Read more.
Due to the effect of climate change, wheat flour qualities with extremely high dough extensibility or dough strength are becoming more common, which impairs the production of selected wheat products such as pastries. The aim of this study was to investigate the effect of sorghum, millet, amaranth, or buckwheat addition to such a strong gluten common wheat flour (Triticum aestivum) on its rheological and baking properties. Raw materials were analyzed chemically (ash, protein, fat, starch, total dietary fiber) and physically (water absorption index, water solubility index, and pasting properties). Selected rheological analyses (Farinograph® and Extensograph®) were carried out on wheat blends, including up to 30% alternative grains. The baking properties of the blends were evaluated on standard bread and sweet milk bread recipes. Results showed that low amounts (5%) of sorghum and millet improved the dough stability of the high-gluten wheat flour. For optimum dough extensibility, additions of 30% sorghum, 15% millet, or 20% amaranth were needed. The use of gluten-free grains increased bread volume and decreased crumb firmness of the sweet milk breads when added at lower levels (5–15%, depending on the grain). In conclusion, cereal blending is a supportive tool to mitigate the effects of ongoing climate change and can enhance biodiversity and nutrition. Full article
(This article belongs to the Special Issue Cereals: Aspects of Quality, Health, Technology, and Innovation)
Show Figures

Figure 1

25 pages, 467 KiB  
Review
Cereal Aphid Parasitoids in Europe (Hymenoptera: Braconidae: Aphidiinae): Taxonomy, Biodiversity, and Ecology
by Željko Tomanović, Nickolas G. Kavallieratos, Zhengpei Ye, Erifili P. Nika, Andjeljko Petrović, Ines M. G. Vollhardt and Christoph Vorburger
Insects 2022, 13(12), 1142; https://doi.org/10.3390/insects13121142 - 12 Dec 2022
Cited by 9 | Viewed by 4116
Abstract
Cereals are very common and widespread crops in Europe. Aphids are a diverse group of herbivorous pests on cereals and one of the most important limiting factors of cereal production. Here, we present an overview of knowledge about the taxonomy, biodiversity, and ecology [...] Read more.
Cereals are very common and widespread crops in Europe. Aphids are a diverse group of herbivorous pests on cereals and one of the most important limiting factors of cereal production. Here, we present an overview of knowledge about the taxonomy, biodiversity, and ecology of cereal aphid parasitoids in Europe, an important group of natural enemies contributing to cereal aphid control. We review the knowledge obtained from the integrative taxonomy of 26 cereal aphid primary parasitoid species, including two allochthonous species (Lysiphlebus testaceipes and Trioxys sunnysidensis) and two recently described species (Lipolexis labialis and Paralipsis brachycaudi). We further review 28 hyperparasitoid species belonging to three hymenopteran superfamilies and four families (Ceraphronoidea: Megaspillidae; Chalcidoidea: Pteromalidae, Encyrtidae; Cynipoidea: Figitidae). We also compile knowledge on the presence of secondary endosymbionts in cereal aphids, as these are expected to influence the community composition and biocontrol efficiency of cereal aphid parasitoids. To study aphid–parasitoid–hyperparasitoid food webs more effectively, we present two kinds of DNA-based approach: (i) diagnostic PCR (mainly multiplex PCR), and (ii) DNA sequence-based methods. Finally, we also review the effects of landscape complexity on the different trophic levels in the food webs of cereal aphids and their associated parasitoids, as well as the impacts of agricultural practices and environmental variation. Full article
(This article belongs to the Collection Biology and Management of Sap-Sucking Pests)
29 pages, 4444 KiB  
Article
Mapping Crop Types of Germany by Combining Temporal Statistical Metrics of Sentinel-1 and Sentinel-2 Time Series with LPIS Data
by Sarah Asam, Ursula Gessner, Roger Almengor González, Martina Wenzl, Jennifer Kriese and Claudia Kuenzer
Remote Sens. 2022, 14(13), 2981; https://doi.org/10.3390/rs14132981 - 22 Jun 2022
Cited by 43 | Viewed by 7445
Abstract
Nationwide and consistent information on agricultural land use forms an important basis for sustainable land management maintaining food security, (agro)biodiversity, and soil fertility, especially as German agriculture has shown high vulnerability to climate change. Sentinel-1 and Sentinel-2 satellite data of the Copernicus program [...] Read more.
Nationwide and consistent information on agricultural land use forms an important basis for sustainable land management maintaining food security, (agro)biodiversity, and soil fertility, especially as German agriculture has shown high vulnerability to climate change. Sentinel-1 and Sentinel-2 satellite data of the Copernicus program offer time series with temporal, spatial, radiometric, and spectral characteristics that have great potential for mapping and monitoring agricultural crops. This paper presents an approach which synergistically uses these multispectral and Synthetic Aperture Radar (SAR) time series for the classification of 17 crop classes at 10 m spatial resolution for Germany in the year 2018. Input data for the Random Forest (RF) classification are monthly statistics of Sentinel-1 and Sentinel-2 time series. This approach reduces the amount of input data and pre-processing steps while retaining phenological information, which is crucial for crop type discrimination. For training and validation, Land Parcel Identification System (LPIS) data were available covering 15 of the 16 German Federal States. An overall map accuracy of 75.5% was achieved, with class-specific F1-scores above 80% for winter wheat, maize, sugar beet, and rapeseed. By combining optical and SAR data, overall accuracies could be increased by 6% and 9%, respectively, compared to single sensor approaches. While no increase in overall accuracy could be achieved by stratifying the classification in natural landscape regions, the class-wise accuracies for all but the cereal classes could be improved, on average, by 7%. In comparison to census data, the crop areas could be approximated well with, on average, only 1% of deviation in class-specific acreages. Using this streamlined approach, similar accuracies for the most widespread crop types as well as for smaller permanent crop classes were reached as in other Germany-wide crop type studies, indicating its potential for repeated nationwide crop type mapping. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Vegetation Classification)
Show Figures

Graphical abstract

32 pages, 1900 KiB  
Review
Does Plant Breeding for Antioxidant-Rich Foods Have an Impact on Human Health?
by Laura Bassolino, Katia Petroni, Angela Polito, Alessandra Marinelli, Elena Azzini, Marika Ferrari, Donatella B. M. Ficco, Elisabetta Mazzucotelli, Alessandro Tondelli, Agostino Fricano, Roberta Paris, Inmaculada García-Robles, Carolina Rausell, María Dolores Real, Carlo Massimo Pozzi, Giuseppe Mandolino, Ephrem Habyarimana and Luigi Cattivelli
Antioxidants 2022, 11(4), 794; https://doi.org/10.3390/antiox11040794 - 18 Apr 2022
Cited by 29 | Viewed by 5576
Abstract
Given the general beneficial effects of antioxidants-rich foods on human health and disease prevention, there is a continuous interest in plant secondary metabolites conferring attractive colors to fruits and grains and responsible, together with others, for nutraceutical properties. Cereals and Solanaceae are important [...] Read more.
Given the general beneficial effects of antioxidants-rich foods on human health and disease prevention, there is a continuous interest in plant secondary metabolites conferring attractive colors to fruits and grains and responsible, together with others, for nutraceutical properties. Cereals and Solanaceae are important components of the human diet, thus, they are the main targets for functional food development by exploitation of genetic resources and metabolic engineering. In this review, we focus on the impact of antioxidants-rich cereal and Solanaceae derived foods on human health by analyzing natural biodiversity and biotechnological strategies aiming at increasing the antioxidant level of grains and fruits, the impact of agronomic practices and food processing on antioxidant properties combined with a focus on the current state of pre-clinical and clinical studies. Despite the strong evidence in in vitro and animal studies supporting the beneficial effects of antioxidants-rich diets in preventing diseases, clinical studies are still not sufficient to prove the impact of antioxidant rich cereal and Solanaceae derived foods on human Full article
(This article belongs to the Special Issue The Role of Antioxidant Foods and Nutraceuticals in Ageing)
Show Figures

Figure 1

25 pages, 2691 KiB  
Article
High-Resolution Indicators of Soil Microbial Responses to N Fertilization and Cover Cropping in Corn Monocultures
by Nakian Kim, Chance W. Riggins, María C. Zabaloy, Marco Allegrini, Sandra L. Rodriguez-Zas and María B. Villamil
Agronomy 2022, 12(4), 954; https://doi.org/10.3390/agronomy12040954 - 15 Apr 2022
Cited by 9 | Viewed by 5209
Abstract
Cover cropping (CC) is the most promising in-field practice to improve soil health and mitigate N losses from fertilizer use. Although the soil microbiota play essential roles in soil health, their response to CC has not been well characterized by bioindicators of high [...] Read more.
Cover cropping (CC) is the most promising in-field practice to improve soil health and mitigate N losses from fertilizer use. Although the soil microbiota play essential roles in soil health, their response to CC has not been well characterized by bioindicators of high taxonomic resolution within typical agricultural systems. Our objective was to fill this knowledge gap with genus-level indicators for corn [Zea mays L.] monocultures with three N fertilizer rates (N0, N202, N269; kg N ha−1), after introducing a CC mixture of cereal rye [Secale cereale L.] and hairy vetch [Vicia villosa Roth.], using winter fallows (BF) as controls. A 3 × 2 split-plot arrangement of N rates and CC treatments was studied in a randomized complete block design with three replicates over two years. Bacterial and archaeal 16S rRNA and fungal ITS regions were sequenced with Illumina MiSeq system. Overall, our high-resolution bioindicators were able to represent specific functional or ecological shifts within the microbial community. The abundances of indicators representing acidophiles, nitrifiers, and denitrifiers increased with N fertilization, while those of heterotrophic nitrifiers, nitrite oxidizers, and complete denitrifiers increased with N0. Introducing CC decreased soil nitrate levels by up to 50% across N rates, and CC biomass increased by 73% with N fertilization. CC promoted indicators of diverse functions and niches, including N-fixers, nitrite reducers, and mycorrhizae, while only two N-cycling genera were associated with BF. Thus, CC can enhance the soil biodiversity of simplified cropping systems and reduce nitrate leaching, but might increase the risk of nitrous oxide emission without proper nutrient management. This primary information is the first of its kind in this system and provided valuable insights into the limits and potential of CC as a strategy to improve soil health. Full article
(This article belongs to the Special Issue Cover Crops Contributions to Soil Health)
Show Figures

Figure 1

18 pages, 4906 KiB  
Article
Strengthening the Mitigation of Climate Change Impacts in Slovakia through the Disaggregation of Cultural Landscapes
by Jana Rybárová, Ľubomíra Gabániová, Lucia Bednárová, Radim Rybár and Martin Beer
Processes 2022, 10(4), 658; https://doi.org/10.3390/pr10040658 - 28 Mar 2022
Cited by 4 | Viewed by 2605
Abstract
This article presents the results of research on the possibilities of fragmentation of cultural, and especially agricultural, landscapes in a selected locality in eastern Slovakia, which is currently characterized by a high proportion of large-scale soil units used for growing cereals and crops [...] Read more.
This article presents the results of research on the possibilities of fragmentation of cultural, and especially agricultural, landscapes in a selected locality in eastern Slovakia, which is currently characterized by a high proportion of large-scale soil units used for growing cereals and crops subsequently used as energy sources (maize and oilseed rape, among others). Slovakia, as the country with the largest average field area in the European Union (EU), is facing a process of fragmentation of these units to counter climate change and increase the resilience of the landscape to erosion, soil fertility, and biodiversity loss. This paper presents a fragmentation method based on the restoration of former dividing lines, mainly formed by dirt roads, based on the historical mapping. The results show that in this way it is possible to achieve denser landscape fragmentation, to create dividing green belts, to increase the resilience of the environment to water and wind erosion, and to create an environment for pollinator resources and a background for plants and animals in the landscape, while respecting the ergometric routing of the dividing lines and the ownership relations of the land. Last but not least, benefits have been quantified in the form of carbon capture, as well as in the construction of a network of recreational or hiking trails. Full article
(This article belongs to the Special Issue Sustainable Development Processes for Renewable Energy Technology)
Show Figures

Figure 1

Back to TopTop