Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = cement-augmented pedicle screw

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 901 KB  
Review
Bone Health Optimization in Adult Spinal Deformity Patients: A Narrative Review
by Yousef A. Al-Najjar, Danyal A. Quraishi, Neerav Kumar and Ibrahim Hussain
J. Clin. Med. 2024, 13(16), 4891; https://doi.org/10.3390/jcm13164891 - 19 Aug 2024
Cited by 6 | Viewed by 5133
Abstract
Osteoporosis and low bone mineral density (BMD) pose significant challenges in adult spinal deformity surgery, increasing the risks of complications such as vertebral compression fractures, hardware failure, proximal junctional kyphosis/failure, and pseudoarthrosis. This narrative review examines the current evidence on bone health optimization [...] Read more.
Osteoporosis and low bone mineral density (BMD) pose significant challenges in adult spinal deformity surgery, increasing the risks of complications such as vertebral compression fractures, hardware failure, proximal junctional kyphosis/failure, and pseudoarthrosis. This narrative review examines the current evidence on bone health optimization strategies for spinal deformity patients. Preoperative screening and medical optimization are crucial, with vitamin D supplementation showing particular benefit. Among the pharmacologic agents, bisphosphonates demonstrate efficacy in improving fusion rates and reducing hardware-related complications, though the effects may be delayed. Teriparatide, a parathyroid hormone analog, shows promise in accelerating fusion and enhancing pedicle screw fixation. Newer anabolic agents like abaloparatide and romosozumab require further study but show potential. Romosozumab, in particular, has demonstrated significant improvements in lumbar spine BMD over a shorter duration compared to other treatments. Surgical techniques like cement augmentation and the use of larger interbody cages can mitigate the risks in osteoporotic patients. Overall, a multifaceted approach incorporating medical optimization, appropriate pharmacologic treatment, and tailored surgical techniques is recommended to improve outcomes in adult spinal deformity patients with compromised bone quality. Future research should focus on optimizing the treatment protocols, assessing the long-term outcomes of newer agents in the spine surgery population, and developing cost-effective strategies to improve access to these promising therapies. Full article
(This article belongs to the Special Issue Advances in Scoliosis, Spinal Deformity and Other Spinal Disorders)
Show Figures

Figure 1

24 pages, 17348 KB  
Article
Can We Rely on Prophylactic Two-Level Vertebral Cement Augmentation in Long-Segment Adult Spinal Deformity Surgery to Reduce the Incidence of Proximal Junctional Complications?
by Yoichi Tani, Nobuhiro Naka, Naoto Ono, Koki Kawashima, Masaaki Paku, Masayuki Ishihara, Takashi Adachi, Muneharu Ando, Shinichirou Taniguchi and Takanori Saito
Medicina 2024, 60(6), 860; https://doi.org/10.3390/medicina60060860 - 24 May 2024
Cited by 2 | Viewed by 3402
Abstract
Background and Objectives: Proximal junctional kyphosis (PJK) and failure (PJF), the most prevalent complications following long-segment thoracolumbar fusions for adult spinal deformity (ASD), remain lacking in defined preventive measures. We studied whether one of the previously reported strategies with successful results—a prophylactic [...] Read more.
Background and Objectives: Proximal junctional kyphosis (PJK) and failure (PJF), the most prevalent complications following long-segment thoracolumbar fusions for adult spinal deformity (ASD), remain lacking in defined preventive measures. We studied whether one of the previously reported strategies with successful results—a prophylactic augmentation of the uppermost instrumented vertebra (UIV) and supra-adjacent vertebra to the UIV (UIV + 1) with polymethylmethacrylate (PMMA)—could also serve as a preventive measure of PJK/PJF in minimally invasive surgery (MIS). Materials and Methods: The study included 29 ASD patients who underwent a combination of minimally invasive lateral lumbar interbody fusion (MIS-LLIF) at L1-2 through L4-5, all-pedicle-screw instrumentation from the lower thoracic spine to the sacrum, S2-alar-iliac fixation, and two-level balloon-assisted PMMA vertebroplasty at the UIV and UIV + 1. Results: With a minimum 3-year follow-up, non-PJK/PJF group accounted for fifteen patients (52%), PJK for eight patients (28%), and PJF requiring surgical revision for six patients (21%). We had a total of seven patients with proximal junctional fracture, even though no patients showed implant/bone interface failure with screw pullout, probably through the effect of PMMA. In contrast to the PJK cohort, six PJF patients all had varying degrees of neurologic deficits from modified Frankel grade C to D3, which recovered to grades D3 and to grade D2 in three patients each, after a revision operation of proximal extension of instrumented fusion with or without neural decompression. None of the possible demographic and radiologic risk factors showed statistical differences between the non-PJK/PJF, PJK, and PJF groups. Conclusions: Compared with the traditional open surgical approach used in the previous studies with a positive result for the prophylactic two-level cement augmentation, the MIS procedures with substantial benefits to patients in terms of less access-related morbidity and less blood loss also provide a greater segmental stability, which, however, may have a negative effect on the development of PJK/PJF. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

13 pages, 664 KB  
Review
Cardiopulmonary Cement Embolism Following Cement-Augmented Pedicle Screw Fixation: A Narrative Review
by Tadatsugu Morimoto, Takaomi Kobayashi, Hirohito Hirata, Masatsugu Tsukamoto, Tomohito Yoshihara, Yu Toda and Masaaki Mawatari
Medicina 2023, 59(2), 407; https://doi.org/10.3390/medicina59020407 - 19 Feb 2023
Cited by 12 | Viewed by 3648
Abstract
Fixation using cement-augmented pedicle screws (CAPS) is being increasingly performed. However, CAPS-associated cement leakage is a critical problem that can lead to cardiopulmonary cement embolism (CPCE). This narrative review aimed to explore the incidence of and risk factors and treatment strategies for CPCE [...] Read more.
Fixation using cement-augmented pedicle screws (CAPS) is being increasingly performed. However, CAPS-associated cement leakage is a critical problem that can lead to cardiopulmonary cement embolism (CPCE). This narrative review aimed to explore the incidence of and risk factors and treatment strategies for CPCE and cement leakage-related complications after CAPS fixation. Data were extracted from each article, including characteristics of CPCE after CAPS fixation (incidence, location, diagnostic method and criteria, treatment, and outcome and prognosis). Overall, 28 case series and 14 case reports that met the inclusion criteria were included. Of the 1974 cases included in the review, CPCE was noted in 123, symptomatic CPCE in 35, and death in six, respectively. The frequencies of PCE and symptomatic PCE after CAPS fixation were 6% (range: 0–28.6%) and 1.3% (range: 0–26%), respectively. The range of frequencies of PCE and symptomatic PCE after CAPS fixation may have been wide because the definition of CPCE and data collection methods differed among the reports analyzed. Since PCE due to large cement emboli may be primarily related to the surgical technique, improved technique, such as minimizing the number of CAPSs by injecting low-volume high-viscosity cement at low velocity and pressure, and careful observation of cement leakage during CAPS insertion may reduce PCE associated with cement leakage. Spinal surgeons should pay more attention to the occurrence of CPCE during and after CAPS insertion, which can cause serious complications in some patients. Full article
Show Figures

Figure 1

9 pages, 3602 KB  
Case Report
Novel Polyethylene Terephthalate Screw Sleeve Implant: Salvage Treatment in a Case of Spine Instability after Vertebroplasty Failure
by Giacomo Drago, Giulia Pastorello, Paolo Gallinaro, Roberto Zanata, Jacopo Del Verme, Altin Stafa and Enrico Giordan
Medicines 2023, 10(1), 6; https://doi.org/10.3390/medicines10010006 - 30 Dec 2022
Cited by 2 | Viewed by 2201
Abstract
Introduction: The management of osteoporotic fractures is sometimes rather challenging for spinal surgeons, and considering the longer life expectancy induced by improved living conditions, their prevalence is expected to increase. At present, the approaches to osteoporotic fractures differ depending on their severity, location, [...] Read more.
Introduction: The management of osteoporotic fractures is sometimes rather challenging for spinal surgeons, and considering the longer life expectancy induced by improved living conditions, their prevalence is expected to increase. At present, the approaches to osteoporotic fractures differ depending on their severity, location, and the patient’s age. State-of-the-art treatments range from vertebroplasty/kyphoplasty to hardware-based spinal stabilization in which screw augmentation with cement is the gold standard. Case presentation: We describe the case of a 74-year-old man with an L5 osteoporotic fracture. The patient underwent a vertebroplasty (VP) procedure, which was complicated by a symptomatic cement leakage in the right L4–L5 neuroforamen. We urgently decompressed the affected pedicle via hemilaminectomy. At that point, the column required stability. The extravasation of cement had ruled out the use of cement-augmented pedicle screws but leaving the pedicular screws alone was not considered sufficient to achieve stability. We decided to cover the screws with a polyethylene terephthalate sleeve (OGmend®) to avoid additional cement leakage and to reinforce the screw strength required by the poor bone quality. Conclusion: In the evolving technologies used for spinal surgery, screws sleeve implants such as OGmend® are a useful addition to the surgeon’s armamentarium when an increased pull-out strength is required and other options are not available. Full article
Show Figures

Figure 1

15 pages, 3929 KB  
Article
Evaluation of an Injectable Biphasic Calcium Sulfate/Hydroxyapatite Cement for the Augmentation of Fenestrated Pedicle Screws in Osteoporotic Vertebrae: A Biomechanical Cadaver Study
by Xinggui Tian, Deepak B. Raina, Corina Vater, David Kilian, Tilman Ahlfeld, Ivan Platzek, Ute Nimtschke, Magnus Tägil, Lars Lidgren, Alexander Thomas, Uwe Platz, Klaus-Dieter Schaser, Alexander C. Disch and Stefan Zwingenberger
J. Funct. Biomater. 2022, 13(4), 269; https://doi.org/10.3390/jfb13040269 - 1 Dec 2022
Cited by 7 | Viewed by 3643
Abstract
Cement augmentation of pedicle screws is one of the most promising approaches to enhance the anchoring of screws in the osteoporotic spine. To date, there is no ideal cement for pedicle screw augmentation. The purpose of this study was to investigate whether an [...] Read more.
Cement augmentation of pedicle screws is one of the most promising approaches to enhance the anchoring of screws in the osteoporotic spine. To date, there is no ideal cement for pedicle screw augmentation. The purpose of this study was to investigate whether an injectable, bioactive, and degradable calcium sulfate/hydroxyapatite (CaS/HA) cement could increase the maximum pull-out force of pedicle screws in osteoporotic vertebrae. Herein, 17 osteoporotic thoracic and lumbar vertebrae were obtained from a single fresh-frozen human cadaver and instrumented with fenestrated pedicle screws. The right screw in each vertebra was augmented with CaS/HA cement and the un-augmented left side served as a paired control. The cement distribution, interdigitation ability, and cement leakage were evaluated using radiographs. Furthermore, pull-out testing was used to evaluate the immediate mechanical effect of CaS/HA augmentation on the pedicle screws. The CaS/HA cement presented good distribution and interdigitation ability without leakage into the spinal canal. Augmentation significantly enhanced the maximum pull-out force of the pedicle screw in which the augmented side was 39.0% higher than the pedicle-screw-alone side. Therefore, the novel biodegradable biphasic CaS/HA cement could be a promising material for pedicle screw augmentation in the osteoporotic spine. Full article
(This article belongs to the Special Issue Active Biomedical Materials and Their Applications)
Show Figures

Figure 1

12 pages, 3307 KB  
Article
Biomechanical Comparison of Salvage Pedicle Screw Augmentations Using Different Biomaterials
by Yun-Da Li, Ming-Kai Hsieh, De-Mei Lee, Yi-Jiun Lin, Tsung-Ting Tsai, Po-Liang Lai and Ching-Lung Tai
Appl. Sci. 2022, 12(15), 7792; https://doi.org/10.3390/app12157792 - 3 Aug 2022
Cited by 2 | Viewed by 2753
Abstract
Allograft bone particles, hydroxyapatite/β-hydroxyapatite-tricalcium phosphate (HA/β-TCP), calcium sulfate (CS), and polymethylmethacrylate (PMMA) bone cement are biomaterials clinically used to fill defective pedicles for pedicle screw augmentation. Few studies have systematically investigated the effects of various biomaterials utilized for salvage screw stabilization. The aim [...] Read more.
Allograft bone particles, hydroxyapatite/β-hydroxyapatite-tricalcium phosphate (HA/β-TCP), calcium sulfate (CS), and polymethylmethacrylate (PMMA) bone cement are biomaterials clinically used to fill defective pedicles for pedicle screw augmentation. Few studies have systematically investigated the effects of various biomaterials utilized for salvage screw stabilization. The aim of this study was to evaluate the biomechanical properties of screws augmented with these four different materials and the effect of different pilot hole sizes and bone densities on screw fixation strength. Commercially available synthetic bones with three different densities (7.5 pcf, 15pcf, 30 pcf) simulating different degrees of bone density were utilized as substitutes for human bone. Two different pilot hole sizes (3.2 mm and 7.0 mm in diameter) were prepared on test blocks to simulate primary and revision pedicle screw fixation, respectively. Following separate specimen preparation with these four different filling biomaterials, a screw pullout test was conducted using a material test machine, and the average maximal screw pullout strength was compared among groups. The average maximal pullout strength of the materials, presented in descending order, was as follows: bone cement, calcium sulfate, HA/β-TCP, allograft bone chips and the control. In samples in both the 3.2 mm pilot-hole and 7.0 mm pilot-hole groups, the average maximal pullout strength of these four materials increased with increasing bone density. The average maximal pullout strength of the bone cement augmented salvage screw (7.0 mm) was apparently elevated in the 7.5 pcf test block. Salvage pedicle screw augmentation with allograft bone chips, HA/β-TCP, calcium sulfate, and bone cement are all feasible methods and can offer better pullout strength than materials in the non-augmentation group. Bone cement provides the most significantly augmented effect in each pilot hole size and bone density setting and could be considered preferentially to achieve larger initial stability during revision surgery, especially for bones with osteoporotic quality. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

12 pages, 1966 KB  
Article
Novel Biodegradable Composite of Calcium Phosphate Cement and the Collagen I Mimetic P-15 for Pedicle Screw Augmentation in Osteoporotic Bone
by Harald Krenzlin, Andrea Foelger, Volker Mailänder, Christopher Blase, Marc Brockmann, Christoph Düber, Florian Ringel and Naureen Keric
Biomedicines 2021, 9(10), 1392; https://doi.org/10.3390/biomedicines9101392 - 4 Oct 2021
Cited by 7 | Viewed by 3248
Abstract
Osteoporotic vertebral fractures often necessitate fusion surgery, with high rates of implant failure. We present a novel bioactive composite of calcium phosphate cement (CPC) and the collagen I mimetic P-15 for pedicle screw augmentation in osteoporotic bone. Methods involved expression analysis of osteogenesis-related [...] Read more.
Osteoporotic vertebral fractures often necessitate fusion surgery, with high rates of implant failure. We present a novel bioactive composite of calcium phosphate cement (CPC) and the collagen I mimetic P-15 for pedicle screw augmentation in osteoporotic bone. Methods involved expression analysis of osteogenesis-related genes during osteoblastic differentiation by RT-PCR and immunostaining of osteopontin and Ca2+ deposits. Untreated and decalcified sheep vertebrae were utilized for linear pullout testing of pedicle screws. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry (DEXA). Expression of ALPI II (p < 0.0001), osteopontin (p < 0.0001), RUNX2 (p < 0.0001), and osteocalcin (p < 0.0001) was upregulated after co-culture of MSC with CPC-P-15. BMD was decreased by 28.75% ± 2.6%. Pullout loads in untreated vertebrae were 1405 ± 6 N (p < 0.001) without augmentation, 2010 ± 168 N (p < 0.0001) after augmentation with CPC-P-15, and 2112 ± 98 N (p < 0.0001) with PMMA. In decalcified vertebrae, pullout loads were 828 ± 66 N (p < 0.0001) without augmentation, 1324 ± 712 N (p = 0.04) with PMMA, and 1252 ± 131 N (p < 0.0078) with CPC-P-15. CPC-P-15 induces osteoblastic differentiation of human MES and improves pullout resistance of pedicle screws in osteoporotic and non-osteoporotic bone. Full article
Show Figures

Figure 1

Back to TopTop