Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = cellular precipitation reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7186 KiB  
Article
Biomedical Application Prospects of Gadolinium Oxide Nanoparticles for Regenerative Medicine
by Ekaterina V. Silina, Natalia E. Manturova, Elena L. Chuvilina, Akhmedali A. Gasanov, Olga I. Andreeva, Maksim A. Pugachevskii, Aleksey V. Kochura, Alexey A. Kryukov, Yulia G. Suzdaltseva and Victor A. Stupin
Pharmaceutics 2024, 16(12), 1627; https://doi.org/10.3390/pharmaceutics16121627 - 23 Dec 2024
Cited by 3 | Viewed by 1340
Abstract
Background/Objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (Gd2O3 NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines. Methods: The powder [...] Read more.
Background/Objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (Gd2O3 NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines. Methods: The powder of Gd2O3 NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of Gd2O3 NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source. Biological activity was studied on different human cell lines (keratinocytes, fibroblasts, mesenchymal stem cells (MSCs)) with evaluation of the effect of a wide range of Gd2O3 NP concentrations on metabolic and proliferative cellular activity (MTT test, direct cell counting, dead cell assessment, and visual assessment of cytoarchitectonics). The test of migration activity assessment on a model wound was performed on MSC culture. Results: According to TEM data, the size of the NPs was in the range of 2–43 nm, with an average of 20 nm. XRD analysis revealed that the f Gd2O3 nanoparticles had a cubic structure (C-form) of Gd2O3 (Ia3)¯ with lattice parameter a = 10.79(9) Å. Raman spectroscopy showed that the f Gd2O3 nanoparticles had a high degree of crystallinity. By investigating the photooxidative degradation of methylene blue dye in the presence of f Gd2O3 NPs under red light irradiation, it was found that f Gd2O3 nanoparticles showed weak antioxidant activity, which depended on the particle content in the solution. At a concentration of 10−3 M, the highest antioxidant activity of f Gd2O3 nanoparticles was observed when the reaction rate constant of dye photodegradation decreased by 5.5% to 9.4 × 10−3 min−1. When the concentration of f Gd2O3 NPs in solution was increased to 10−2 M upon irradiation with a red light source, their antioxidant activity changed to pro-oxidant activity, accompanied by a 15% increase in the reaction rate of methylene blue degradation. Studies on cell lines showed a high level of safety and regenerative potential of Gd2O3 NPs, which stimulated fibroblast metabolism at a concentration of 10−3 M (27% enhancement), stimulated keratinocyte metabolism at concentrations of 10−3 M–10−5 M, and enhanced keratinocyte proliferation by an average of 35% at concentrations of 10−4 M. Furthermore, it accelerated the migration of MSCs, enhancing their proliferation, and promoting the healing of the model wound. Conclusions: The results of the study demonstrated the safety and regenerative potential of redox-active Gd2O3 NPs towards different cell lines. This may be the basis for further research to develop nanomaterials based on Gd2O3 NPs for skin wound healing and in regenerative medicine generally. Full article
Show Figures

Figure 1

22 pages, 1486 KiB  
Review
Probiotics and Non-Alcoholic Fatty Liver Disease: Unveiling the Mechanisms of Lactobacillus plantarum and Bifidobacterium bifidum in Modulating Lipid Metabolism, Inflammation, and Intestinal Barrier Integrity
by Jing Lu, Dilireba Shataer, Huizhen Yan, Xiaoxiao Dong, Minwei Zhang, Yanan Qin, Jie Cui and Liang Wang
Foods 2024, 13(18), 2992; https://doi.org/10.3390/foods13182992 - 21 Sep 2024
Cited by 17 | Viewed by 5256
Abstract
In recent years, the prevalence of non-alcoholic fatty liver disease (NAFLD) has risen annually, yet due to the intricacies of its pathogenesis and therapeutic challenges, there remains no definitive medication for this condition. This review explores the intricate relationship between the intestinal microbiome [...] Read more.
In recent years, the prevalence of non-alcoholic fatty liver disease (NAFLD) has risen annually, yet due to the intricacies of its pathogenesis and therapeutic challenges, there remains no definitive medication for this condition. This review explores the intricate relationship between the intestinal microbiome and the pathogenesis of NAFLD, emphasizing the substantial roles played by Lactobacillus plantarum and Bifidobacterium bifidum. These probiotics manipulate lipid synthesis genes and phosphorylated proteins through pathways such as the AMPK/Nrf2, LPS-TLR4-NF-κB, AMPKα/PGC-1α, SREBP-1/FAS, and SREBP-1/ACC signaling pathways to reduce hepatic lipid accumulation and oxidative stress, key components of NAFLD progression. By modifying the intestinal microbial composition and abundance, they combat the overgrowth of harmful bacteria, alleviating the inflammatory response precipitated by dysbiosis and bolstering the intestinal mucosal barrier. Furthermore, they participate in cellular immune regulation, including CD4+ T cells and Treg cells, to suppress systemic inflammation. L. plantarum and B. bifidum also modulate lipid metabolism and immune reactions by adjusting gut metabolites, including propionic and butyric acids, which inhibit liver inflammation and fat deposition. The capacity of probiotics to modulate lipid metabolism, immune responses, and gut microbiota presents an innovative therapeutic strategy. With a global increase in NAFLD prevalence, these insights propose a promising natural method to decelerate disease progression, avert liver damage, and tackle associated metabolic issues, significantly advancing microbiome-focused treatments for NAFLD. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

13 pages, 1855 KiB  
Review
The Origin of RNA and the Formose–Ribose–RNA Pathway
by Gaspar Banfalvi
Int. J. Mol. Sci. 2024, 25(12), 6727; https://doi.org/10.3390/ijms25126727 - 19 Jun 2024
Viewed by 2153
Abstract
Prebiotic pre-Darwinian reactions continued throughout biochemical or Darwinian evolution. Early chemical processes could have occurred on Earth between 4.5 and 3.6 billion years ago when cellular life was about to come into being. Pre-Darwinian evolution assumes the development of hereditary elements but does [...] Read more.
Prebiotic pre-Darwinian reactions continued throughout biochemical or Darwinian evolution. Early chemical processes could have occurred on Earth between 4.5 and 3.6 billion years ago when cellular life was about to come into being. Pre-Darwinian evolution assumes the development of hereditary elements but does not regard them as self-organizing processes. The presence of biochemical self-organization after the pre-Darwinian evolution did not justify distinguishing between different types of evolution. From the many possible solutions, evolution selected from among those stable reactions that led to catalytic networks, and under gradually changing external conditions produced a reproducible, yet constantly evolving and adaptable, living system. Major abiotic factors included sunlight, precipitation, air, minerals, soil and the Earth’s atmosphere, hydrosphere and lithosphere. Abiotic sources of chemicals contributed to the formation of prebiotic RNA, the development of genetic RNA, the RNA World and the initial life forms on Earth and the transition of genRNA to the DNA Empire, and eventually to the multitude of life forms today. The transition from the RNA World to the DNA Empire generated new processes such as oxygenic photosynthesis and the hierarchical arrangement of processes involved in the transfer of genetic information. The objective of this work is to unite earlier work dealing with the formose, the origin and synthesis of ribose and RNA reactions that were published as a series of independent reactions. These reactions are now regarded as the first metabolic pathway. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

22 pages, 4717 KiB  
Article
Application of Mesoporous Silicas for Adsorption of Organic and Inorganic Pollutants from Rainwater
by Anna Marszałek, Ewa Puszczało, Katarzyna Szymańska, Marek Sroka, Edyta Kudlek and Agnieszka Generowicz
Materials 2024, 17(12), 2917; https://doi.org/10.3390/ma17122917 - 14 Jun 2024
Cited by 5 | Viewed by 1448
Abstract
Precipitation is an important factor that influences the quality of surface water in many regions of the world. The pollution of stormwater runoff from roads and parking lots is an understudied area in water quality research. Therefore, a comprehensive analysis of the physicochemical [...] Read more.
Precipitation is an important factor that influences the quality of surface water in many regions of the world. The pollution of stormwater runoff from roads and parking lots is an understudied area in water quality research. Therefore, a comprehensive analysis of the physicochemical properties of rainwater flowing from parking lots was carried out, considering heavy metals and organic micropollutants. High concentrations of zinc were observed in rainwater, in addition to alkanes, e.g., tetradecane, hexadecane, octadecane, 2,6,10-trimethyldodecane, 2-methyldodecane; phenolic derivatives, such as 2,6-dimethoxyphenol and 2,4-di-tertbutylphenol; and compounds such as benzothiazole. To remove the contaminants present in rainwater, adsorption using silica carriers of the MCF (Mesostructured Cellular Foams) type was performed. Three groups of modified carriers were prepared, i.e., (1) SH (thiol), (2) NH2 (amino), and (3) NH2/SH (amine and thiol functional groups). The research problem, which is addressed in the presented article, is concerned with the silica carrier influence of the functional group on the adsorption efficiency of micropollutants. The study included an evaluation of the effects of adsorption dose and time on the efficiency of the contaminant removal process, as well as an analysis of adsorption isotherms and reaction kinetics. The colour adsorption from rainwater was 94–95% for MCF-NH2 and MCF-NH2/SH. Zinc adsorbance was at a level of 90% for MCF-NH2, and for MCF-NH2/SH, 52%. Studies have shown the high efficacy (100%) of MCF-NH2 in removing organic micropollutants, especially phenolic compounds and benzothiazole. On the other hand, octadecane was the least susceptible to adsorption in each case. It was found that the highest efficiency of removal of organic micropollutants and zinc ions was obtained through the use of functionalized silica NH2. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

10 pages, 3652 KiB  
Article
Microstructure Evolution of Gas-Atomized β-Solidifying γ-TiAl Alloy Powder during Subsequent Heat Treatment
by Sung-Hyun Park, Ozkan Gokcekaya, Ryosuke Ozasa, Ken Cho, Hiroyuki Y. Yasuda, Myung-Hoon Oh and Takayoshi Nakano
Crystals 2023, 13(12), 1629; https://doi.org/10.3390/cryst13121629 - 23 Nov 2023
Cited by 3 | Viewed by 2052
Abstract
To promote the use of γ-TiAl alloys in various domains, such as the aerospace industry, it is pivotal to investigate the unusual phase transformation from rapidly solidified and metastable γ-TiAl toward the equilibrium state. In this study, the microstructure characteristics of gas-atomized β-solidifying [...] Read more.
To promote the use of γ-TiAl alloys in various domains, such as the aerospace industry, it is pivotal to investigate the unusual phase transformation from rapidly solidified and metastable γ-TiAl toward the equilibrium state. In this study, the microstructure characteristics of gas-atomized β-solidifying Ti-44Al-6Nb-1.2Cr alloy powder, in terms of the effect of rapid solidification on microstructure evolution, were explored in comparison with cast materials. The phase constitution, morphology, and crystallographic orientation between phases were noted to be distinct. Furthermore, subsequent heat treatment was conducted at different temperatures using gas-atomized powder. The transition from the metastable to equilibrium state was observed, wherein firstly, the γ phase precipitated from the retained α2 phase, forming an α2/γ lamellar microstructure. In intensified heat-treatment conditions adequate for cellular reaction, β/γ cells were formed at the grain boundaries of α2/γ lamellar colonies. The findings highlight the overall phase transformation during rapid solidification and continuous microstructural evolution from the nonequilibrium to the equilibrium state. This research can bridge the gap in understanding the effect of the solidification rate on microstructural evolution and contribute to enhanced comprehension of the microstructure in other domains involving rapid solidification, such as the additive manufacturing of γ-TiAl alloys. Full article
Show Figures

Figure 1

15 pages, 4095 KiB  
Article
Multifunctional Oxidized Dextran as a Matrix for Stabilization of Octahedral Molybdenum and Tungsten Iodide Clusters in Aqueous Media
by Ekaterina V. Pronina, Yuri A. Vorotnikov, Tatiana N. Pozmogova, Alphiya R. Tsygankova, Kaplan Kirakci, Kamil Lang and Michael A. Shestopalov
Int. J. Mol. Sci. 2023, 24(12), 10010; https://doi.org/10.3390/ijms241210010 - 11 Jun 2023
Cited by 3 | Viewed by 1788
Abstract
Due to their high abundance, polymeric character, and chemical tunability, polysaccharides are perfect candidates for the stabilization of photoactive nanoscale objects, which are of great interest in modern science but can be unstable in aqueous media. In this work, we have demonstrated the [...] Read more.
Due to their high abundance, polymeric character, and chemical tunability, polysaccharides are perfect candidates for the stabilization of photoactive nanoscale objects, which are of great interest in modern science but can be unstable in aqueous media. In this work, we have demonstrated the relevance of oxidized dextran polysaccharide, obtained via a simple reaction with H2O2, towards the stabilization of photoactive octahedral molybdenum and tungsten iodide cluster complexes [M6I8}(DMSO)6](NO3)4 in aqueous and culture media. The cluster-containing materials were obtained by co-precipitation of the starting reagents in DMSO solution. According to the data obtained, the amount and ratio of functional carbonyl and carboxylic groups as well as the molecular weight of oxidized dextran strongly affect the extent of stabilization, i.e., high loading of aldehyde groups and high molecular weight increase the stability, while acidic groups have some negative impact on the stability. The most stable material based on the tungsten cluster complex exhibited low dark and moderate photoinduced cytotoxicity, which together with high cellular uptake makes these polymers promising for the fields of bioimaging and PDT. Full article
Show Figures

Figure 1

16 pages, 1695 KiB  
Article
Activation of Neutrophils by Mucin–Vaterite Microparticles
by Elena Mikhalchik, Liliya Yu. Basyreva, Sergey A. Gusev, Oleg M. Panasenko, Dmitry V. Klinov, Nikolay A. Barinov, Olga V. Morozova, Alexander P. Moscalets, Liliya N. Maltseva, Lyubov Yu. Filatova, Evgeniy A. Pronkin, Julia A. Bespyatykh and Nadezhda G. Balabushevich
Int. J. Mol. Sci. 2022, 23(18), 10579; https://doi.org/10.3390/ijms231810579 - 13 Sep 2022
Cited by 10 | Viewed by 3663
Abstract
Nano- and microparticles enter the body through the respiratory airways and the digestive system, or form as biominerals in the gall bladder, salivary glands, urinary bladder, kidney, or diabetic pancreas. Calcium, magnesium, and phosphate ions can precipitate from biological fluids in the presence [...] Read more.
Nano- and microparticles enter the body through the respiratory airways and the digestive system, or form as biominerals in the gall bladder, salivary glands, urinary bladder, kidney, or diabetic pancreas. Calcium, magnesium, and phosphate ions can precipitate from biological fluids in the presence of mucin as hybrid nanoparticles. Calcium carbonate nanocrystallites also trap mucin and are assembled into hybrid microparticles. Both mucin and calcium carbonate polymorphs (calcite, aragonite, and vaterite) are known to be components of such biominerals as gallstones which provoke inflammatory reactions. Our study was aimed at evaluation of neutrophil activation by hybrid vaterite–mucin microparticles (CCM). Vaterite microparticles (CC) and CCM were prepared under standard conditions. The diameter of CC and CCM was 3.3 ± 0.8 µm and 5.8 ± 0.7 µm, with ƺ-potentials of −1 ± 1 mV and −7 ± 1 mV, respectively. CC microparticles injured less than 2% of erythrocytes in 2 h at 1.5 mg mL−1, and no hemolysis was detected with CCM; this let us exclude direct damage of cellular membranes by microparticles. Activation of neutrophils was analyzed by luminol- and lucigenin-dependent chemiluminescence (Lum-CL and Luc-CL), by cytokine gene expression (IL-6, IL-8, IL-10) and release (IL-1β, IL-6, IL-8, IL-10, TNF-α), and by light microscopy of stained smears. There was a 10-fold and higher increase in the amplitude of Lum-CL and Luc-CL after stimulation of neutrophils with CCM relative to CC. Adsorption of mucin onto prefabricated CC microparticles also contributed to activation of neutrophil CL, unlike mucin adsorption onto yeast cell walls (zymosan); adsorbed mucin partially suppressed zymosan-stimulated production of oxidants by neutrophils. Preliminary treatment of CCM with 0.1–10 mM NaOCl decreased subsequent activation of Lum-CL and Luc-CL of neutrophils depending on the used NaOCl concentration, presumably because of the surface mucin oxidation. Based on the results of ELISA, incubation of neutrophils with CCM downregulated IL-6 production but upregulated that of IL-8. IL-6 and IL-8 gene expression in neutrophils was not affected by CC or CCM according to RT2-PCR data, which means that post-translational regulation was involved. Light microscopy revealed adhesion of CC and CCM microparticles onto the neutrophils; CCM increased neutrophil aggregation with a tendency to form neutrophil extracellular traps (NETs). We came to the conclusion that the main features of neutrophil reaction to mucin–vaterite hybrid microparticles are increased oxidant production, cell aggregation, and NET-like structure formation, but without significant cytokine release (except for IL-8). This effect of mucin is not anion-specific since particles of powdered kidney stone (mainly calcium oxalate) in the present study or calcium phosphate nanowires in our previous report also activated Lum-CL and Luc-CL response of neutrophils after mucin sorption. Full article
(This article belongs to the Special Issue Neutrophil in Cell Biology and Diseases)
Show Figures

Figure 1

19 pages, 2598 KiB  
Review
Chromatography-Free Purification Strategies for Large Biological Macromolecular Complexes Involving Fractionated PEG Precipitation and Density Gradients
by Fabian Henneberg and Ashwin Chari
Life 2021, 11(12), 1289; https://doi.org/10.3390/life11121289 - 24 Nov 2021
Cited by 3 | Viewed by 5150
Abstract
A complex interplay between several biological macromolecules maintains cellular homeostasis. Generally, the demanding chemical reactions which sustain life are not performed by individual macromolecules, but rather by several proteins that together form a macromolecular complex. Understanding the functional interactions amongst subunits of these [...] Read more.
A complex interplay between several biological macromolecules maintains cellular homeostasis. Generally, the demanding chemical reactions which sustain life are not performed by individual macromolecules, but rather by several proteins that together form a macromolecular complex. Understanding the functional interactions amongst subunits of these macromolecular machines is fundamental to elucidate mechanisms by which they maintain homeostasis. As the faithful function of macromolecular complexes is essential for cell survival, their mis-function leads to the development of human diseases. Furthermore, detailed mechanistic interrogation of the function of macromolecular machines can be exploited to develop and optimize biotechnological processes. The purification of intact macromolecular complexes is an essential prerequisite for this; however, chromatographic purification schemes can induce the dissociation of subunits or the disintegration of the whole complex. Here, we discuss the development and application of chromatography-free purification strategies based on fractionated PEG precipitation and orthogonal density gradient centrifugation that overcomes existing limitations of established chromatographic purification protocols. The presented case studies illustrate the capabilities of these procedures for the purification of macromolecular complexes. Full article
Show Figures

Figure 1

17 pages, 4805 KiB  
Article
Cellular Automata Modelling of Discontinuous Precipitation
by Jarosław Opara, Boris Straumal and Paweł Zięba
Materials 2021, 14(17), 4985; https://doi.org/10.3390/ma14174985 - 31 Aug 2021
Cited by 4 | Viewed by 2085
Abstract
The fundamentals of discontinuous precipitation (DP) reaction modelling using a cellular automata (CA) method are presented. In the proposed CA model, cell states, internal variables, equations, and transition rules were defined to predict the manner of mass transport during DP reaction and to [...] Read more.
The fundamentals of discontinuous precipitation (DP) reaction modelling using a cellular automata (CA) method are presented. In the proposed CA model, cell states, internal variables, equations, and transition rules were defined to predict the manner of mass transport during DP reaction and to relate changes in the microstructure with corresponding changes in chemical composition. Furthermore, the concept of digital material representation (DMR) was introduced into the CA model, which allowed schematic images of the microstructure to be used as starting structures in the modelling of the DP reaction. The preliminary assumptions adopted in the proposed CA model for the DP reaction were verified by numerical simulations of the growth of discontinuous precipitates at a steady-state at the example of Al-22 at.% Zn alloy. The outcomes achieved from the CA simulations were presented in a different form than that most commonly used previously (single concentration profiles), namely as the 2D maps showing changes in Zn content accompanying the successive stages of growth of discontinuous precipitates. The model used for the description of the solute diffusion along of the reaction front (RF) allowed two-dimensional systems at the nano-scale to be treated within a reasonable simulation time. The obtained results indicate that the developed CA model was able to realistically simulate the DP reaction, which was confirmed by the visualisation of migrating RFs together with associated chemical composition changes in the microstructure. Full article
Show Figures

Figure 1

13 pages, 6934 KiB  
Article
Improving the Tensile Properties of Additively Manufactured β-Containing TiAl Alloys via Microstructure Control Focusing on Cellular Precipitation Reaction
by Ken Cho, Hirotaka Odo, Keisuke Okamoto, Hiroyuki Y. Yasuda, Hirotoyo Nakashima, Masao Takeyama and Takayoshi Nakano
Crystals 2021, 11(7), 809; https://doi.org/10.3390/cryst11070809 - 12 Jul 2021
Cited by 12 | Viewed by 3071
Abstract
The effect of a two-step heat treatment on the microstructure and high-temperature tensile properties of β-containing Ti-44Al-4Cr (at%) alloys fabricated by electron beam powder bed fusion were examined by focusing on the morphology of α2/γ lamellar grains and β/γ cells precipitated [...] Read more.
The effect of a two-step heat treatment on the microstructure and high-temperature tensile properties of β-containing Ti-44Al-4Cr (at%) alloys fabricated by electron beam powder bed fusion were examined by focusing on the morphology of α2/γ lamellar grains and β/γ cells precipitated at the lamellar grain boundaries by a cellular precipitation reaction. The alloys subjected to the first heat treatment step at 1573 K in the α + β two-phase region exhibit a non-equilibrium microstructure consisting of the α2/γ lamellar grains with a fine lamellar spacing and a β/γ duplex structure located at the grain boundaries. In the second step of heat treatment, i.e., aging at 1273 K in the β + γ two-phase region, the β/γ cells are discontinuously precipitated from the lamellar grain boundaries due to excess Cr supersaturation in the lamellae. The volume fraction of the cells and lamellar spacing increase with increasing aging time and affect the tensile properties of the alloys. The aged alloys exhibit higher strength and comparable elongation at 1023 K when compared to the as-built alloys. The strength of these alloys is strongly dependent on the volume fraction and lamellar spacing of the α2/γ lamellae. In addition, the morphology of the β/γ cells is also an important factor controlling the fracture mode and ductility of these alloys. Full article
Show Figures

Figure 1

24 pages, 7866 KiB  
Article
Gelatin-Modified Calcium/Strontium Hydrogen Phosphates Stimulate Bone Regeneration in Osteoblast/Osteoclast Co-Culture and in Osteoporotic Rat Femur Defects—In Vitro to In Vivo Translation
by Benjamin Kruppke, Seemun Ray, Volker Alt, Marcus Rohnke, Christine Kern, Marian Kampschulte, Christiane Heinemann, Matthäus Budak, Josephine Adam, Nils Döhner, Lucretia Franz-Forsthoffer, Thaqif El Khassawna, Christian Heiss, Thomas Hanke and Ulrich Thormann
Molecules 2020, 25(21), 5103; https://doi.org/10.3390/molecules25215103 - 3 Nov 2020
Cited by 18 | Viewed by 3966
Abstract
The development and characterization of biomaterials for bone replacement in case of large defects in preconditioned bone (e.g., osteoporosis) require close cooperation of various disciplines. Of particular interest are effects observed in vitro at the cellular level and their in vivo representation in [...] Read more.
The development and characterization of biomaterials for bone replacement in case of large defects in preconditioned bone (e.g., osteoporosis) require close cooperation of various disciplines. Of particular interest are effects observed in vitro at the cellular level and their in vivo representation in animal experiments. In the present case, the material-based alteration of the ratio of osteoblasts to osteoclasts in vitro in the context of their co-cultivation was examined and showed equivalence to the material-based stimulation of bone regeneration in a bone defect of osteoporotic rats. Gelatin-modified calcium/strontium phosphates with a Ca:Sr ratio in their precipitation solutions of 5:5 and 3:7 caused a pro-osteogenic reaction on both levels in vitro and in vivo. Stimulation of osteoblasts and inhibition of osteoclast activity were proven during culture on materials with higher strontium content. The same material caused a decrease in osteoclast activity in vitro. In vivo, a positive effect of the material with increased strontium content was observed by immunohistochemistry, e.g., by significantly increased bone volume to tissue volume ratio, increased bone morphogenetic protein-2 (BMP2) expression, and significantly reduced receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio. In addition, material degradation and bone regeneration were examined after 6 weeks using stage scans with ToF-SIMS and µ-CT imaging. The remaining material in the defects and strontium signals, which originate from areas exceeding the defect area, indicate the incorporation of strontium ions into the surrounding mineralized tissue. Thus, the material inherent properties (release of biologically active ions, solubility and degradability, mechanical strength) directly influenced the cellular reaction in vitro and also bone regeneration in vivo. Based on this, in the future, materials might be synthesized and specifically adapted to patient-specific needs and their bone status. Full article
(This article belongs to the Special Issue Biomaterials for Hard Tissue Regeneration)
Show Figures

Graphical abstract

11 pages, 2283 KiB  
Article
Modelling Bacteria-Inspired Dynamics with Networks of Interacting Chemicals
by Tamás Bánsági and Annette F. Taylor
Life 2019, 9(3), 63; https://doi.org/10.3390/life9030063 - 29 Jul 2019
Cited by 7 | Viewed by 4248
Abstract
One approach to understanding how life-like properties emerge involves building synthetic cellular systems that mimic certain dynamical features of living cells such as bacteria. Here, we developed a model of a reaction network in a cellular system inspired by the ability of bacteria [...] Read more.
One approach to understanding how life-like properties emerge involves building synthetic cellular systems that mimic certain dynamical features of living cells such as bacteria. Here, we developed a model of a reaction network in a cellular system inspired by the ability of bacteria to form a biofilm in response to increasing cell density. Our aim was to determine the role of chemical feedback in the dynamics. The feedback was applied through the enzymatic rate dependence on pH, as pH is an important parameter that controls the rates of processes in cells. We found that a switch in pH can be used to drive base-catalyzed gelation or precipitation of a substance in the external solution. A critical density of cells was required for gelation that was essentially independent of the pH-driven feedback. However, the cell pH reached a higher maximum as a result of the appearance of pH oscillations with feedback. Thus, we conclude that while feedback may not play a vital role in some density-dependent behavior in cellular systems, it nevertheless can be exploited to activate internally regulated cell processes at low cell densities. Full article
(This article belongs to the Special Issue Modelling Life-Like Behavior in Systems Chemistry)
Show Figures

Graphical abstract

8 pages, 3544 KiB  
Article
Grain Boundary Character Dependence on Nucleation of Discontinuous Precipitates in Cu-Ti Alloys
by Satoshi Semboshi, Mitsutaka Sato, Yasuyuki Kaneno, Akihiro Iwase and Takayuki Takasugi
Materials 2017, 10(4), 415; https://doi.org/10.3390/ma10040415 - 15 Apr 2017
Cited by 34 | Viewed by 6211
Abstract
The dependence of the grain boundary character distribution for a Cu-4 at. % Ti polycrystal alloy (average grain size: 100 µm) on the nucleation of cellular discontinuous precipitates was systematically investigated. In an alloy over-aged at 723 K, cellular discontinuous precipitates consisted of [...] Read more.
The dependence of the grain boundary character distribution for a Cu-4 at. % Ti polycrystal alloy (average grain size: 100 µm) on the nucleation of cellular discontinuous precipitates was systematically investigated. In an alloy over-aged at 723 K, cellular discontinuous precipitates consisted of a terminal Cu solid solution and a stable β-Cu4Ti lamellae nucleated at grain boundaries. Electron backscatter diffraction analysis revealed that the discontinuous precipitation reaction preferentially occurred at random grain boundaries with a Σ value of more than 21 according to the coincidence site lattice theory. On the other hand, few cellular discontinuous precipitates nucleated at low-angle and low-Σ boundaries, particularly twin (Σ 3) boundaries. These findings suggest that the nucleation of discontinuous precipitates is closely correlated with grain boundary character and structure, and hence energy and/or diffusibility. It should therefore be possible to suppress the discontinuous precipitation reaction through control of the alloy’s grain boundary energy, by means of texture control and third elemental addition. Full article
Show Figures

Figure 1

9 pages, 618 KiB  
Review
Reconfiguration of N Metabolism upon Hypoxia Stress and Recovery: Roles of Alanine Aminotransferase (AlaAT) and Glutamate Dehydrogenase (GDH)
by Houssein Diab and Anis M. Limami
Plants 2016, 5(2), 25; https://doi.org/10.3390/plants5020025 - 31 May 2016
Cited by 68 | Viewed by 13291
Abstract
In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic [...] Read more.
In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic stresses (e.g., cold, high temperature, drought and saline stress), received little interest from the scientific community and less financial support from stakeholders. Accordingly, breeding programs should be developed and agronomical practices should be adapted in order to save plants’ growth and yield—even under conditions of low oxygen availability (e.g., submergence and waterlogging). The prerequisite to the success of such breeding programs and changes in agronomical practices is a good knowledge of how plants adapt to low oxygen stress at the cellular and the whole plant level. In the present paper, we summarized the recent knowledge on metabolic adjustment in general under low oxygen stress and highlighted thereafter the major changes pertaining to the reconfiguration of amino acids syntheses. We propose a model showing (i) how pyruvate derived from active glycolysis upon hypoxia is competitively used by the alanine aminotransferase/glutamate synthase cycle, leading to alanine accumulation and NAD+ regeneration. Carbon is then saved in a nitrogen store instead of being lost through ethanol fermentative pathway. (ii) During the post-hypoxia recovery period, the alanine aminotransferase/glutamate dehydrogenase cycle mobilizes this carbon from alanine store. Pyruvate produced by the reverse reaction of alanine aminotransferase is funneled to the TCA cycle, while deaminating glutamate dehydrogenase regenerates, reducing equivalent (NADH) and 2-oxoglutarate to maintain the cycle function. Full article
(This article belongs to the Special Issue Plant Nitrogen Metabolism)
Show Figures

Graphical abstract

Back to TopTop