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Abstract: The fundamentals of discontinuous precipitation (DP) reaction modelling using a cellular
automata (CA) method are presented. In the proposed CA model, cell states, internal variables,
equations, and transition rules were defined to predict the manner of mass transport during DP
reaction and to relate changes in the microstructure with corresponding changes in chemical compo-
sition. Furthermore, the concept of digital material representation (DMR) was introduced into the CA
model, which allowed schematic images of the microstructure to be used as starting structures in the
modelling of the DP reaction. The preliminary assumptions adopted in the proposed CA model for
the DP reaction were verified by numerical simulations of the growth of discontinuous precipitates at
a steady-state at the example of Al-22 at.% Zn alloy. The outcomes achieved from the CA simulations
were presented in a different form than that most commonly used previously (single concentration
profiles), namely as the 2D maps showing changes in Zn content accompanying the successive stages
of growth of discontinuous precipitates. The model used for the description of the solute diffusion
along of the reaction front (RF) allowed two-dimensional systems at the nano-scale to be treated
within a reasonable simulation time. The obtained results indicate that the developed CA model was
able to realistically simulate the DP reaction, which was confirmed by the visualisation of migrating
RFs together with associated chemical composition changes in the microstructure.

Keywords: discontinuous precipitation; cellular automata; solute concentration profiles; modelling;
digital material representation

1. Introduction

Knowledge about microstructure and chemistry down to the nanometre level, which
accompanies the formation and growth of new phase(s) during solid-solid state phase
transformations, is crucial to developing a better understanding of their mechanisms
and kinetics. This especially holds true if a two-phase lamellar product is formed. Here,
discontinuous precipitation (DP) is a relevant example, as during this reaction not only
does a new solute rich phase β form, but the whole process is limited to a moving reaction
front (RF) within a high-angle grain boundary (GB). The process takes place according to
a scheme: αo → α + β, which differs from the eutectoid transformation, where two new
phases are formed (γ→ α + β).

Bearing in mind the success in modelling of multi-physics phenomena in metallic
materials at the grain scale, which was recently reviewed by Diehl [1], one can consider that
modelling of the DP reaction in terms of the micro-scale, or even nano-scale, is also feasible.
The quantitative modelling of DP is a challenging task because the process is extremely
complex and controlled by a large number of parameters, which are often not precisely
known. Furthermore, this issue requires operation at the nanometre level for the RF area
discretisation, which is crucial in the model formulation and its efficiency. Nevertheless,
some attempts to model the DP reaction were performed.
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The first interesting result was obtained by Ramanarayan and Abinandanan [2]. They
extended the phase field (PF) model, describing the spinodal decomposition (SD), to the
case of enhanced atomic mobility at the GB. As the result, a microstructure resembling DP
was obtained and the whole the process was called discontinuous SD. However, the main
differences between a classical DP reaction and discontinuous SD is that in DP, one of the
lamellae must be the precipitate phase, whose composition is significantly different from
that of the matrix. In the discontinuous SD, the lamellae are created due to a composition
wave of relatively large amplitude, but simultaneously coherent interfaces exist between
the solute-rich and solute-depleted lamellae.

Amirouche and Plapp [3,4] developed the PF model for the DP reaction by modifying
an existing solution for the solidification. They used the so-called the multi-phase-field
approach, in which each phase (αo, α, β) was described by one phase field and applied
it for only isothermal growth in a binary alloy. The simulation showed that the bulk
diffusion was important for the formation of solute-rich precipitates and initiation of the
DP reaction, and that the steady-state growth rates depended generally on both bulk and
surface diffusivities, as well as on the grain boundary mobility. One should note, that all
the considerations of Amirouche and Plapp [4] referred to the solute-rich lamellae as being,
in all the simulations, much thicker than the solute-depleted lamellae. Moreover, the values
of the precipitate growth velocity obtained from their simulations did not agree with the
theoretical predictions. As Amirouche and Plapp [4] admitted, such a discrepancy was due
to the fact that the local equilibrium hypothesis used in their sharp-interface model was
not valid for diffusive interphase boundaries in the presence of strong surface diffusion.

Quite recently, Duong et al. [5] applied the so-called multiscale modelling for the DP
in U-Nb alloy, which included first-principle calculations and CALPHAD to assess the
self-consistent thermodynamic description of the U-Nb system. Then, atomic mobility
and diffusivity was determined again using CALPHAD via the DICTRA package. Finally,
they used the phase-field interface dissipation model developed by Zhang, Steinbach, and
Plapp [6,7], which does not require local equilibrium conditions at phase interfaces and
the degree to which this quasi-equilibrium condition is enforced can be governed by a
so-called permeability parameter that controls how easy or difficult is for solutes to cross
phase interfaces. It was especially useful because Duong et al. [5] considered formation of
the metastable γ′ phase during the reaction γ→ α + γ′, with an intermediate composition
differing from that of the stable γ2, which forms during subsequent discontinuous coarsen-
ing. Their results showed further progress and the important role of interfacial strain in the
stabilization of the DP product, and also that highly anisotropic boundary diffusion can
stabilize the DP front.

One of the most popular computational alternatives to the PF method is a cellular
automata (CA) method, which is successfully used to model solid-state phase transfor-
mations. There are a number of works [8–12] presenting capabilities of models based on
CA, predominantly for meso-scale simulations. However, it is worth pointing out that
a number of CA models were recently developed to model physical phenomena at the
micro-scale [13,14], and even down to nano-scale to simulate diffusion in nanocrystalline
materials. For the latter case, Zhao et al. [13] presented a numerical scheme considering
both grain growth and nitrogen diffusion in the nanocrystalline structure of iron. On the
other hand, Shen et al. [14] applied CA model, which depicted the interface evolution
inside the cementite plus ferrite lamellar microstructures during the reaustenitisation of
pearlite steel according to the overall scheme: (α + β→ γ). In a consequence, this resembles
the discontinuous dissolution, reverse reaction to the DP, which can be written as: α + β→
αo. A crucial aspect of this work is a very fine grid spacing set as 1/50 of the thickness of a
cementite lamella, which finally gives the cell size of the cellular automaton at the level
of 10 nm. This is promising for the successful building of a physically-based CA model
dedicated to the discontinuous precipitation, which has to consider the set of individual α
and β lamellae.
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The purpose of this work is to present the fundamentals of cellular automata modelling
of the DP reaction. We will focus on presenting a general application concept of the
CA model for the DP, assumptions for the reaction front discretisation, and necessary
simplifications, which are required for the first approximation of DP reaction modelling
using the CA approach. Furthermore, a scheme of a digital material representation for the
initial microstructure in simulations will be carefully depicted. The simulation settings
with crucial parameters of the model will be presented. Finally, the capabilities of the CA
model dedicated to the DP reaction will be demonstrated and discussed.

2. Model Concept
2.1. General Idea of the CA Model for DP Reaction

During discontinuous precipitation, two individual growing phase processes into
supersaturated solid solution αo can be distinguished. The first one is associated with a
solute-rich β phase lamella, and the other is associated with a solute-depleted α phase
lamella, with the same crystal structure as the initial parent αo phase. On this basis, one
can distinguish at least two types of interfacial boundaries β/αo and α/αo, which separate
growing new phases from the parent phase. Discontinuous precipitates nucleating at grain
boundaries and during growth a cellular structure, i.e., alternating lamellae of β and α

phases are formed, between which a β/α interfacial boundary exists. These three phases
come into a contact at a single point, the so-called triple point, which is defined as the
β/αo/α interfacial boundary. All phases and types of interfacial boundaries that occur
during the DP reaction are shown in Figure 1 via a grid diagram of the cellular automata.
In the CA model computation process, each cell represents only one phase or interfacial
boundary state.
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The CA method is a well-known numerical technique, which is widely used in the
modelling of phase transformations in solid state [8–14]. The classical definition of the CA
method can be found in Chopard’s work [15], and its more expanded description consists
of five basic concepts: the space of cellular automata (Ω), i.e., a grid of cells that serves for
discretisation of the modelling area; a finite set of states (Y), by which individual cells are
identified in the computational domain; a function that assigns the appropriate state to
each cell (A); cell neighbourhoods (N), which are used predominately in determining the
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new state of a cellular automaton; and transition rules (P), which control changes in cell
states. In mathematical form, this can be represented as follows:

CA =〈Ω, Y, A, N, P〉 (1)

Two types of cell neighbourhood, most commonly used in the CA model, are presented
in Figure 2. The first one is a von Neumann neighbourhood, which is used both in defining
the growth conditions of a new phase and in solving the diffusion equation. The second
is Moore’s neighbourhood, which is used in setting initial conditions and in the growth
model. The evolution of the system is determined by transition rules, which are called in
each time step synchronously to define the current internal variable describing the state of
each cell, based on the previous states of its neighbours and the cell itself. Generally, the
transition rules are precisely defined based on additional sub-models.
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2.2. Main Assumptions

In the present CA model, the modelling space is discretised onto a two-dimensional
regular, equally spaced square grid (Figure 1), which constitutes a digital material repre-
sentation (DMR) of the microstructure fragment. Due to the attribute of the CA method,
it is possible to implicitly track the position of the reaction front and to introduce new
phases and grains into a virtual microstructure built as a DMR. In many works [10–12],
the approach of integrating the CA method with the finite difference method (FD) is used,
resulting in a solute diffusion calculation in the modelling space based on the solution of
Fick’s 2nd law equation. An alternative way to solve the diffusion equation in the paradigm
of the cellular automata is demonstrated in the work of Chopard and Droz [16]. However,
another calculation approach can be used that considers the cellular automaton centre
as an integration point in which modelling parameters, e.g., solute concentration, can be
determined according to analytical methods, e.g., based on Cahn’s equation [17], as is later
presented in this paper. A scheme of the CA grid with marked centres, which enables
simultaneous modelling of the new phase precipitates growth and the solute diffusion, is
shown in Figure 1.

In order to properly describe the phenomena that occur during discontinuous precipi-
tation, the cells in the CA model are characterized by four state variables:

(1) the phase state, which defines that a cell represents αo, α, β phases or α/αo, β/αo,
β/αo/α interfaces, and immobile β/α interphase boundary;

(2) the solute concentration variable, which includes an average solute concentration in a
cellular automaton;

(3) the α fraction variable, which quantifies the degree of αo → α transformation at the
interface cell;

(4) the β fraction variable, which quantifies the degree of αo → β transformation at the
interface cell.
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Furthermore, the following assumptions need to be taken in the implementation of
the computational algorithm with the CA model for the discontinuous precipitation:

• A sharp interface (SI) model is applied in cellular automata representing interfacial
boundaries, i.e., reaction fronts. In the sharp interface formulation, the interphase
boundary is treated as a singularity at which a step-change in material properties
is occurring;

• Reaction front tracking was established to be implicit in cellular automata, representing
interfacial boundaries, due to the excessively low resolution (low density) of the
CA grid;

• In the growth calculation, the interfacial boundary at the β/αo/α triple point is treated
as an α/αo reaction front where the transformation follows the αo → α pattern;

• The effect of the initial microstructure on further DP is accounted for in the CA grid
by a scheme of digital material representation;

• Direct modelling of solute diffusion using the differential equation of Fick’s 2nd law
is omitted, and an analytical solution of the diffusion equation for the DP reaction
provided by Cahn [17] is adopted instead;

• The nucleation process of the growing phase is neglected because only steady-state
growth during the DP reaction is considered in the model;

• Establishment of uniform temperature field throughout the cellular automata space,
because of the microscopic scale of the modelling space;

• Any temperature effects from the phase transformation, e.g., recalescence effect, are
not accounted for in the modelling. The isothermal process is considered in the
simulations in the ideal thermal conditions.

2.3. Sharp Interface Model

One of the crucial assumptions made in building the CA model for the DP reaction
was the approximation of RF using the sharp interface concept. This approach was verified
by analysing the experimental results. Microanalytical studies of the DP reaction confirmed
that a chemical discontinuity occurs across the RF in a direction perpendicular to the
position of the original boundary [18–21]. Figure 3 is a schematic illustration of the sharp
(discontinuous) change of the solute content across the RF (αo → α transition), which was
an assumed discretisation of the reaction front. It means that the nano-area of the interface
is treated as an infinitesimally thin layer, with a practical zero width, in a numerical
implementation of the algorithm. In effect, a sharp skip of the physical properties of grains
and phases in the modelled area of the RF was established (see Figure 3).
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2.4. Digital Material Representation

In order to reproduce the initial microstructure for numerical simulations of the DP
reaction, a DMR approach proposed by Opara et al. [22] was adopted in the current issue.
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The solution is based on a dedicated algorithm for the conversion of a raster image of the
investigated microstructure into the digital material representation using the CA method.
The proposed approach consists of the following steps:

• Manual redrawing of the selected area from microstructure, presented in Figure 4a,
as a raster image with schematic cellular structure (with two β phase lamellae, one α

phase lamella, and one αo phase grain), as is demonstrated in Figure 4b, maintaining
the proportions between lamellae;

• Reading the raster image (Figure 4b) with four assigned colours to each phase and
grain boundaries, i.e., grey to αo phase, light grey to α phase, graphite to β phase,
and black to RF, into a computer program based on the dedicated CA algorithm that
is able to recognize and properly interpret DP structure, keeping its real dimensions
read from the marker scale size depicted in Figure 4a;

• Conversion of the interpreted raster image with DP structure into the CA grid
(Figure 4c) with the assumed discretisation precision of the physical space, that de-
termines the size of the cellular automaton and consequently the magnitude of the
CA grid;

• Initialization of internal variables of cellular automata (i.e., phase state, solute concen-
tration, and fraction of the considered phase) according to the colour of the specified
phase or grain boundary. Details of the initial microstructure setting with specific
properties are presented in Section 3.
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An example of the DMR, with a slice of the initial microstructure for the numerical
simulations, is shown in Figure 4c. In turn, Figure 4d presents a zoomed-in section of the
DMR that accurately shows the cellular automata discretising the reaction front and the
grains belonging to the three different phases. The characteristic feature in the adopted
solution in the CA method is the implicit tracking of the RF position in cells representing
interfacial boundaries, the hypothetical course of which is outlined in Figure 4d.

2.5. Mathematical Modelling of DP

Hillert [23], followed by Klinger et al. [24], proposed an analytical approach to model
the discontinuous precipitation reaction with the individual treatment of the growth of each
newly emerging α and β phase. Since the growth process of each phase occurs according
to a different mechanism, Klinger et al. [24] introduced applicable equations to describe the
migration velocity for two types of interfacial boundaries (β/αo and α/αo). It should be
noted that each of the adopted equations is based on the fundamental assumption that the
motion of the interfacial boundary is controlled by the local equilibrium of forces acting in
the interface [25], which is expressed by the following general relation:

v = M(G− Γ) (2)

where v denotes the linear growth rate of the reaction front, M is the local mobility of
the interfacial boundary, G is the chemical driving force of the phase transformation
(Gibbs free energy change), and Γ is the local capillary force, representing the Gibbs-
Thomson effect associated with the curvature of the interfacial boundary. The Formula (2)
is equivalent to the relationship presented in Christian’s work [26]. This equation describes
the linear relationship between the migration velocity of the interfacial boundary and
the total chemical driving force of the transformation at non-equilibrium thermodynamic
conditions close to the equilibrium state. The crucial point in the proposed DP reaction
modelling approach is the fulfilment of several basic conditions, i.e., the preservation of
mass balance at the interface between grain boundaries and reaction fronts (β/αo and
α/αo) set the identical growth rates in adjacent α and β lamellae so that the system reaches
the steady-state, which is considered in this work.

Consequently, in the first approximation of DP modelling using the CA method, the
migration velocity of the interfacial boundary was assumed to be constant under certain
conditions and for a certain time in each cellular automaton representing the RF. Under
this assumption, it is easy to determine the solute concentration profile (x) in the α lamella
that arises in the z-axis parallel to the moving α/αo reaction front, based on the Cahn
equation [17] in the following form:

x(z) = xo −
(
xo − xα/β

)cosh
[
(z− 0.5)

√
C
]

cosh
(

0.5
√

C
) (3)

in which the parameter C is expressed by the formula:

C =
vλ2

α

sδDb
(4)

where xo is the average concentration of the solute in the alloy, xα/β is the concentration of
the solute in the α-phase lamella at the interfacial boundary with the β-phase lamella, λα

denotes the width of the lamella α, s is the segregation factor, δ is the width of the grain
boundary (RF), and Db is the grain boundary diffusion coefficient of the solute.

A similar approach for determining the solute concentration profile using an analytical
equation was applied in the context of modelling the carbon concentration profile at the
interfacial boundary front during the austenite to ferrite phase transformation by Bos and
Sietsma [8,27]. However, one should note that the model of Bos and Sietsma [27] was used
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to determine a solute profile, which is perpendicularly directed to the interface during
simulation of the volume diffusion, whereas Equation (3) is used to simulate a solute profile
along of the interface during grain boundary diffusion process. Nevertheless, both models
allow for performing computationally efficient simulations within a reasonable time.

2.6. CA Algorithm

The transition rules in CA models dedicated to the microstructure evolution of
polycrystalline systems are usually based on an equation describing the grain growth
length of the arising phase in cellular automata, representing the interfacial boundary
(i—interface) [8]. The growth length parameter (li

cell) is calculated at each time step (∆t) by
integrating after time (t) the migration velocity of the interface (v), according to an explicit
Euler scheme:

li
cell(t + ∆t) = li

cell(t) + v∆t (5)

Further, according to this approach, a volume fraction of the transformation is deter-
mined in the CA computational algorithm, only in frontal cellular automata:

Fi
cell =

li
cell

LCA
(6)

where LCA is the size of the cellular automaton, also known as the side width of CA,
which can also be interpreted as the constant distance between the centres of gravity
of the two neighbouring cellular automatons contacting each other by sides (the von
Neumann neighbourhood of Figure 2a). Based on Equation (6), the following transition
rules (Equations (7)–(9)) were formulated to determine the growth of the newly formed
phase with the change in the concentration of the solute in the α-phase lamella using
relation (3):

Yi(t + ∆t) =
{

α ⇔ Fi
cell ≥ 1 ∧ Yi(t) = RF

Yi(t)
(7)

xi(t + ∆t) =
{

eq(3) ⇔ Yi(t + ∆t) = α

xi(t)
(8)

Y j(t + ∆t) =
{

RF ⇔ Y j(t) = αo ∧ Yi(t + ∆t) = α

Y j(t)
j ∈ NN(i) (9)

where Yi is the state of the cellular automaton with interphase boundary (i) in which the
growth calculation of the migrating RF is performed, Y j is the state of a cellular automaton
from the nearest neighbourhood of frontal cells, NN(i) is the von Neumann neighbourhood
of the cellular automaton representing the interphase boundary, and xi is an internal
variable that specifies the average concentration of a solute in a cellular automaton with an
interphase boundary. For the growth of the β-phase lamella, the transition rules (10)–(12),
are as follows:

Yi(t + ∆t) =
{

β ⇔ Fi
cell ≥ 1 ∧ Yi(t) = RF

Yi(t)
(10)

xi(t + ∆t) =
{

xβ ⇔ Yi(t + ∆t) = β

xi(t)
(11)

Y j(t + ∆t) =
{

RF ⇔ Y j(t) = αo ∧ Yi(t + ∆t) = β

Y j(t)
j ∈ NN(i) (12)

where xβ is the constant concentration of the solute in the β-phase lamella, which is taken
from the phase equilibrium diagram of the chemical system under consideration at a
given temperature.

The set of Equations (7)–(12), with cellular automaton transition rules that are invoked
at each computational step, i.e., after the change of discrete segment of time, can be
described as follows. When the volume fraction of transformation (Fi

cell) in a frontal cell
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(in the RF state) exceeds the value of 1, and thus its growth length (li
cell) reaches the value

of the cellular automata size (LCA), the cell changes its so-called transition state (RF state)
into the phase state of growing lamella α or β, depending on the transition rule (7) or (10).
Immediately after this operation, a new value is assigned to the variable that specifies the
average concentration of the solute in the cellular automaton, which transformed into the
α or β phases, based on Equation (3), or a constant value of xβ, depending on the (8) or (11)
transition rule. Thereafter, the parent phase cells (αo) from the closest neighbourhood (von
Neumann neighbourhood) of the cellular automaton, on which the new phase was formed,
are transformed into frontal cells (RF) according to (9) or (12) rules, and their growth length
(li

cell) in subsequent steps is calculated according to Equation (5).
The essence of solving the problem of modelling the phase transformation of discon-

tinuous precipitation by the method of cellular automata is to apply the mathematical
Equations (3)–(12) to calculate the growth kinetics and the concentration of the solute in
the α phase lamella. The results of computing these parameters are assigned to internal
variables from the state space of the cellular automaton. Afterward, based on the values of
these variables in the considered cell and its vicinity, i.e., the nearest neighbourhood with
an assumed range, the state transition rules that determine the evolution of the system
are defined. The presented description of the two-dimensional discrete model, based on
the cellular automata method, was implemented in the C++ language using an object-
oriented programming (OOP) technique in the form of a computer program with graphical
user interface.

2.7. Time Step Definition and Speed Up of Computations

In order to ensure the stability of the numerical calculation, during the simulation
of the discontinuous precipitation phase transformation, the time step was dynamically
adjusted according to the velocity of the migrating reaction front, the boundary diffusion
coefficient of the solute, and the side width of the cellular automata, according to the
following equation:

∆t = 0.9·min

{
LCA

v
,
(LCA)

2

4Db

}
(13)

Thus, any change in chemical composition and structure in the grain volume and at
migrating boundaries of discontinuous precipitates is directly reflected in the kinetics of
phase transformation during numerical simulations. Additionally, a proprietary solution
was introduced in the main loop of the computational algorithm to speed up the computa-
tion by estimating after which time the next increase in the newly formed phase would
occur and, based on this, optimally increasing the phase increment in the transition cells
and the local time step. As a result, bearing in mind that the growth was concerned at the
nanoscale, a significant acceleration of the calculations was obtained (from tens of hours to
several seconds), while retaining the original time step value information resulting from
the application of Equation (13), as well as the hypothetical number of function calls with
CA model transition rules, reaching the value of several hundred billion CA steps (CAs).
Such an approach is only possible if the growth rate of the migrating reaction front is
assumed to be constant and is identical across all frontal cellular automata from the entire
computational domain, which was the case in the proposed approach of modelling DP
reactions with CA.

Since the computation of microstructure evolution in the modelling system is related
only to cellular automata representing interfacial boundaries, the concept of frontal cellular
automata (FCA), proposed by Svyetlichnyy [28], was used in the implementation of the
CA model. The solution relies on selecting from the entire modelling space, the cellular
automata in the so-called transition state, where phase growth calculations at the RF are
performed. Hence, the name frontal cellular automata, in which the direction of information
transfer is the opposite to the classical approach, i.e., the cell under consideration sends out
information about its state to cells in the nearest vicinity, rather than receiving this data. As
a result, significant acceleration of computation time is obtained, which is related to the
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fact that large areas of cellular automata belonging to the interior of the grains, which are
not directly involved in the operations of checking and executing the growth transition
rules of new phases, are omitted.

3. Simulation Setting

Numerical simulations of the steady-state growth of discontinuous precipitates were
performed at the example of Al-22 at.% Zn alloy, which was extensively reported in the lit-
erature in terms of DP reaction, including studies of solute concentration profiles across the
α-lamella and across the reaction front, using analytical electron microscopy (AEM) (FEI,
Hillsboro, OR, USA) [20], and in situ observations by transmission electron microscopy
(TEM) (FEI, Hillsboro, OR, USA) [29]. The initial conditions of the simulation were estab-
lished based on experimental data and numerical tests presented in [30]. Hence, it was
assumed that the simulations of the DP reaction would be performed for the isothermal
conditions at 400 K (~127 ◦C). Based on the phase equilibrium diagram of the Al-Zn sys-
tem [31], the relevant Zn concentrations in the α and β phases were: xα/β = 4.4 at.% Zn
and xβ = 99 at.% Zn, respectively. In order to smoothly control the simulation process of
discontinuous precipitates growth, the values of the parameter C, as a function of time,
were introduced in the code of the computer program with the implemented CA model for
the DP reaction, using the data submitted in [30]. This made it possible to run numerical
simulations for the assumed constant RF migration velocity over a certain observation
time, taking into account the go-and-stop motion during movement of the interface.

The initial microstructure used in the numerical simulations of the DP reaction was
generated according to the DMR concept on a two-dimensional grid of cellular automata, in
the shape of squares, which was presented previously in Figure 4c with a schematic section
of the microstructure. It was assumed that in the modelling space only a set containing the
single α phase lamellae with two neighbouring β phase lamellae and the surrounding αo
parent phase was considered. The growth of the precipitates occurs in the y-axis according
to the Cartesian coordinate system. The discontinuous precipitate lamellae are found to be
at an early stage of growth (just after nucleation), so their height is small and occupies the
size of only one cellular automaton (LCA). Taking the width of the α lamella as equal to
100 nm (see Table 1 in [30]) and the width of lamella β as 8 times smaller, the resulting width
of the modelling area was 125 nm. The modelling area was assumed to be square-shaped
(Figure 5) and therefore its height was also 125 nm.

The modelling system determines the adoption of reflective (mirror) boundary condi-
tions at the edges of the CA grid to ensure the stability of the solution and to avoid different
phases coming into contact on opposite sides of the CA grid edges, which would lead to
undesirable modelling effects. Some phases present in the modelling space were assigned
with a homogeneous solute concentration, as shown in Figure 5b,d. It was assumed that the
Zn-content in the αo parent phase was constant and equal to the average zinc concentration
(xo) in the Al-Zn alloy. Similarly, in the β-phase lamellae the zinc concentration did not
change during the simulation and was equal to xβ. In turn, the initial zinc concentration in
the α phase lamella (xα) was determined using Equation (3) and based on the preliminary
conditions for each simulation. In the initial microstructure in the FCA representing the
interfacial boundaries, the internal variables with volume fractions of the individual phases
were assumed to be established on the basis of adopting 100% of a given phase from the
nearest Moore neighbourhood in which that phase globally had the largest surface contri-
bution. According to this relationship, the zinc concentration in the transition cells was
specified following a mass balance, from which results that in the immobile β/α interfacial
boundary the zinc concentration was the same as that in the α-phase lamella (xα). On the
other hand, in the cells in contact with RF (β/αo, α/αo, β/αo/α), the zinc concentration
takes the value xo as in the αo parent phase grain. In order to facilitate the interpretation
of the results in 2D maps with the redistribution of the solute, the zinc concentration in
the β-phase lamellae was set to be represented by a single colour, maroon, due to the fact
that the zinc concentration in the β-phase does not change during the simulation and is



Materials 2021, 14, 4985 11 of 17

very high (~99 at.% Zn). The zinc concentration in the other phases was presented in a
range from blue (lowest Zn concentration) to red (highest Zn concentration). The value of
the zinc diffusion coefficient in the Al-Zn alloy was determined based on the Arrhenius
equation and the diffusion parameters (after conversion to SI units: DZn

b0 = 3.2 × 10−6 m2/s,
QZn

b = 56 103 J/mol) presented in Hässner’s work [32].
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Simulations of the DP transformation were performed for different RF migration
velocities (v = 10 nm/s, 20 nm/s), according to the data taken from Table 1 in [30]. The
results obtained from the simulations were used to initially verify the assumptions made in
the developed CA model for the DP transformation. Simulations were carried out for two
discretisation cases on a CA grid to check how the size of the cellular automaton will affect
the computational accuracy and execution time. Depending on the adopted side width
of the cellular automaton of LCA = 2.5 nm or LCA = 0.5 nm, the size of the CA space and,
thus, the discretisation density changed, as shown in the DMR images with the visible cell
grid in Figure 5a,c. In the first case, the physical region of modelling of 125 × 125 nm2 was
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discretised into a CA grid of size 50 × 50, i.e., 2500 cells, and in the second case the CA grid
size was 250 × 250, i.e., 62,500 cells.

4. Results and Discussion

Figure 6 presents the results of the numerical simulations of phase transformations at
the boundaries of discontinuous precipitates migrating at a constant velocity of v = 20 nm/s
at 400 K (~127 ◦C) for 8 s. Figure 6a,c,e, show the successive stages of microstructure evolu-
tion in the form of DMR images (grid size 250 × 250 cells) with visible phases and grain
boundaries after 1, 4, and 8 s, respectively. The corresponding zinc redistribution maps in
Figure 6b,d,f, show the changes in chemical composition occurring during the discontinu-
ous precipitation reaction. Due to the compilation of the DMR images in Figure 6, which
were generated using a computer program with the implemented CA model, it is possible
to directly observe the changes in chemical composition in the α lamella with the migration
of discontinuous precipitates and stopping this process for a certain period of time, the
so-called go-and-stop motion cycle. The presented simulation results demonstrated two
complete cycles with RF displacement and stop, during which the zinc concentration
relaxed along the α/αo boundary at the fourth and eighth second of the DP transformation.
During the simulation of one cycle, the zinc concentration profile across the α phase lamella,
parallel to the migrating reaction front, changed stepwise between specific time intervals,
depending on the adopted value of the C parameter.

This effect is even more clearly demonstrated by the three-dimensional surface plots
in Figure 7a,b, as well as by the map with the linear zinc concentration determination
(analogous to those from the AEM studies), made parallel and perpendicular to the migrat-
ing reaction front, which is presented in Figure 7c. On the basis of the data presented in
Figures 5 and 6, the simulation results can be considered to be in qualitative agreement
with the observations of discontinuous precipitation by means of [19–21,29,30], while
maintaining the appropriate proportions that resulted from the adopted simplifications,
namely considering a schematic modelling region consisting of a microstructure slice in
which only two β-phase lamellae and one α-phase lamella grow parallel to the y-axis
(according to the Cartesian coordinate system). This provides a positive verification of
the assumptions made in building a two-dimensional discrete model, based on the CA
method, for the simulation of solid-state phase transformations at migrating boundaries of
discontinuous precipitates.
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Figure 6. Simulation results in the form of DMR images (250 × 250 cell CA grid) with visible phases (left column) and maps
with zinc redistribution (right column), which show the microstructure evolution and chemical composition changes during
the DP reaction at 400 K (~127 ◦C), for a fixed RF migration velocity, v = 20 nm/s, after time: 1 s (a,b); 4 s (c,d); and 8 s (e,f).

Figure 8 shows the simulation results of the DP transformation for a migrating RF with
constant velocity v = 10 nm/s at 400 K (~127 ◦C), after a time of 9 and 12 s. Simulations were
performed for two CA space discretisation cases (50 × 50 with LCA = 2.5 nm and 250 × 250
with LCA = 0.5 nm), the results of which are presented as DMR images behind the zinc
redistribution maps. Comparing the results in the left column with those on the right, there
was a noticeable difference in the resolution of the presented zinc concentration values
in the α-phase lamella as a colour gradient, which is a direct result of the discretisation
density of the modelling area. In the first case with a lower discretisation density, jumps
between Zn concentration values were visible, making it easier to see changes in the zinc
concentration profile, e.g., at the stage of relaxation of the Zn concentration during the
stopping period of the migrating RF. On the other hand, for the case of discretisation with
a higher degree of density, smoother changes in the values of zinc concentration in the
microstructure could be observed.
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The density degree of the discretisation of the modelling area also affected the size of
the time step through the CA cell size used in its determination according to Equation (13),
and, thus, the number of function calls with CA transition rules in the main computation
loop, and consequently the actual time of the numerical simulations performed. The higher
the discretisation density, the smaller the time step and thus the higher the number of CA
transition rule calls and the longer the computation time, which is confirmed in Table 1 by
the collation of the simulation results. Furthermore, the compilation of data in Table 1 is
significant in that it gives an outlook of the computational complexity when formulating
a second approximation to model the DP reaction using the CA method including solute
diffusion calculations according to Fick’s 2nd law with a numerical solution, e.g., using the
FD method, as the much larger simulation times are to be expected. Then, the diffusion
calculations will have to be performed on the whole CA grid at each transition step with a
very small time step, and the solutions adopted in the presented CA model for accelerating
the calculations, such as local time step increase and global estimation of the number of CA
transitions, would not be applicable.
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Table 1. Summary of results informing computational complexity of the CA model, depending on the discretisation density
of the modelling area, after simulations of the DP transformation under RF migration conditions with constant velocity
v = 10 nm/s at 400 K (~127 ◦C).

Modelling Area Magnitude of the Space
of Cellular Automata

Size of the Cellular
Automaton Time Step Estimated Number of

CA Steps

125 × 125 nm2 50 × 50 cells 2.5 nm 2.25 × 10−10 s 28,702,076,558

250 × 250 cells 0.5 nm 4.50 × 10−11 s 136,269,166,798

5. Conclusions

This paper presents the description of a two-dimensional discrete model based on
the cellular automata method, which was used for the modelling of solid-state phase
transformations at migrating boundaries of discontinuous precipitates. In the proposed CA
model, cell states, internal variables, equations, and transition rules were defined to predict
the manner of mass transport during discontinuous precipitation and to relate changes
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in microstructure during discontinuous precipitation with the changes in chemical com-
position. In the CA model, the concept of digital material representation was introduced,
which allowed schematic images of the microstructure to be used as starting structures
in the modelling of the DP reaction. As a result, it was possible to initiate the simulation
under conditions as close as possible to the experimental observations.

The preliminary assumptions adopted in the proposed CA model for the DP reaction
were verified by numerical simulations of the growth of discontinuous precipitates at a
steady-state on the example of Al-22 at.% Zn alloy. The outcomes achieved from the CA
simulations were presented in a different form than that most commonly used previously
(single concentration profiles), namely as the 2D maps showing changes in Zn content
accompanying the successive stages of the growth of the discontinuous precipitates. By
discretising the modelling area in two spatial dimensions, the results were recorded in
the form of matrices on which linear analyses were carried out with quantitative deter-
minations of zinc concentration (Figure 7c), performed parallel and perpendicular to the
migrating reaction front (analogous to studies using AEM). In effect, a qualitative and
quantitative comparison of simulation results with experimental outcomes was possible.
The model used for the description of the solute diffusion along the reaction front allowed
two-dimensional systems at the nano-scale to be treated within a reasonable simulation
time. The obtained results indicate that the developed CA model is able to realistically
simulate the DP reaction, which is confirmed by the visualisation of migrating RFs together
with the associated chemical composition changes in the microstructure.
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