Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = cellular polyurethane (PUR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10763 KiB  
Article
Influence of Long-Term Storage and UV Light Exposure on Characteristics of Polyurethane Foams for Cryogenic Insulation
by Beatrise Sture, Vladimir Yakushin, Laima Vevere and Ugis Cabulis
Materials 2023, 16(22), 7071; https://doi.org/10.3390/ma16227071 - 7 Nov 2023
Cited by 5 | Viewed by 2128
Abstract
Rigid polyurethane (PUR) foams have been the most effective insulation material used in space launchers since the beginning of cryogenic fuel use, due to their outstanding thermal and mechanical properties. In this study, spray-applied PUR foams using different ratios of amine-based catalysts were [...] Read more.
Rigid polyurethane (PUR) foams have been the most effective insulation material used in space launchers since the beginning of cryogenic fuel use, due to their outstanding thermal and mechanical properties. In this study, spray-applied PUR foams using different ratios of amine-based catalysts were produced. Due to climate change, several restrictions have been made regarding the usage of blowing agents used for PUR foam production. Lately, hydrofluoroolefins (HFOs) have been suggested as an alternative for PUR foam production due to their low global warming potential (GWP) and ozone depletion potential (ODP), replacing the hydrofluorocarbons (HFCs) so far used. This change in blowing agents naturally altered the usage of catalysts. Reactive amine-based catalysts are less hazardous because of their low volatility and ability to react successfully with isocyanate or polyols. Spray-applied PUR foams with a potential application for cryogenic insulation were produced and tested for long-term storage, analyzing parameters such as the pH value of polyol composition, foaming kinetics (trise, tcream), etc. Athermal analysis (TG, DSC) was also applied to developed materials, as well as artificial ageing by exposing samples to UV light. It was discovered that PUR foams obtained using reactive amine-based catalysts, such as Polycat 203 and 218, have a higher integral heat capacity, but polyol mixtures containing these catalysts cannot exceed a storage time of more than 4 months. It was also observed from artificial ageing tests of PUR cryogenic insulation by exposure to UV light that the thickness of the degraded layer reached 0.8 mm (after 1000 h), but no significant destruction of cellular structure deeper in the material was observed. Full article
(This article belongs to the Special Issue Advances in Development and Characterization of Polyurethane Foams)
Show Figures

Figure 1

18 pages, 16592 KiB  
Article
Effect of Selected Bio-Components on the Cell Structure and Properties of Rigid Polyurethane Foams
by Aleksander Prociak, Michał Kucała, Maria Kurańska and Mateusz Barczewski
Polymers 2023, 15(18), 3660; https://doi.org/10.3390/polym15183660 - 5 Sep 2023
Cited by 4 | Viewed by 1694
Abstract
New rigid polyurethane foams (RPURFs) modified with two types of bio-polyols based on rapeseed oil were elaborated and characterized. The effect of the bio-polyols with different functionality, synthesized by the epoxidation and oxirane ring-opening method, on the cell structure and selected properties of [...] Read more.
New rigid polyurethane foams (RPURFs) modified with two types of bio-polyols based on rapeseed oil were elaborated and characterized. The effect of the bio-polyols with different functionality, synthesized by the epoxidation and oxirane ring-opening method, on the cell structure and selected properties of modified foams was evaluated. As oxirane ring-opening agents, 1-hexanol and 1.6-hexanediol were used to obtain bio-polyols with different functionality and hydroxyl numbers. Bio-polyols in different ratios were used to modify the polyurethane (PUR) composition, replacing 40 wt.% petrochemical polyol. The mass ratio of the used bio-polyols (1:0, 3:1, 1:1, 1:3, 0:1) affected the course of the foaming process of the PUR composition as well as the cellular structure and the physical and mechanical properties of the obtained foams. In general, the modification of the reference PUR system with the applied bio-polyols improved the cellular structure of the foam, reducing the size of the cells. Replacing the petrochemical polyol with the bio-polyols did not cause major differences in the apparent density (40–43 kg/m3), closed-cell content (87–89%), thermal conductivity (25–26 mW⋅(m⋅K)−1), brittleness (4.7–7.5%), or dimensional stability (<0.7%) of RPURFs. The compressive strength at 10% deformation was in the range of 190–260 and 120–190 kPa, respectively, for directions parallel and perpendicular to the direction of foam growth. DMA analysis confirmed that an increase in the bio-polyol of low functionality in the bio-polyol mixture reduced the compressive strength of the modified foams. Full article
(This article belongs to the Special Issue Polyols and Polyurethane Foams Based on Natural Resources)
Show Figures

Figure 1

28 pages, 11953 KiB  
Article
Development and Characterization of Tailored Polyurethane Foams for Shock Absorption
by Boumdouha Noureddine, Safidine Zitouni, Boudiaf Achraf, Chabane Houssém, Duchet-Rumeau Jannick and Gerard Jean-François
Appl. Sci. 2022, 12(4), 2206; https://doi.org/10.3390/app12042206 - 20 Feb 2022
Cited by 21 | Viewed by 7303
Abstract
In this paper, different types of polyurethane foams (PUR) having various chemical compositions have been produced with a specific density to monitor the microstructure as much as possible. The foam may have a preferential orientation in the cell structure. The cellular polyurethane tends [...] Read more.
In this paper, different types of polyurethane foams (PUR) having various chemical compositions have been produced with a specific density to monitor the microstructure as much as possible. The foam may have a preferential orientation in the cell structure. The cellular polyurethane tends to have stubborn, typical cellular systems with strong overlap reversibility. Free expansion under atmospheric pressure enables formulas to grow until they are refined. Moreover, the physicochemical characterization of the developed foams was carried out. They later are described by apparent density, Shore hardness, Raman spectroscopy analysis, X-ray diffraction analysis, FTIR, TGA, DSC, and compression tests. The detailed structural characterization was used by scanning electron microscope (SEM) and an optical microscope (MO) to visualize the alveolar polymer’s semi-opened cells, highlighting the opened-cell morphology and chemical irregularities. Polyurethane foams with different structural variables have a spectrum characterization that influences the phase separation and topography of polyurethane foam areas because their bonding capability with hydrogen depends on chain extender nature. These studies may aid in shock absorption production; a methodology of elaboration and characterization of filled polyurethane foams is proposed. Full article
Show Figures

Graphical abstract

14 pages, 4672 KiB  
Article
Waste Wood Particles from Primary Wood Processing as a Filler of Insulation PUR Foams
by Radosław Mirski, Dorota Dukarska, Joanna Walkiewicz and Adam Derkowski
Materials 2021, 14(17), 4781; https://doi.org/10.3390/ma14174781 - 24 Aug 2021
Cited by 19 | Viewed by 3130
Abstract
A significant part of the work carried out so far in the field of production of biocomposite polyurethane foams (PUR) with the use of various types of lignocellulosic fillers mainly concerns rigid PUR foams with a closed-cell structure. In this work, the possibility [...] Read more.
A significant part of the work carried out so far in the field of production of biocomposite polyurethane foams (PUR) with the use of various types of lignocellulosic fillers mainly concerns rigid PUR foams with a closed-cell structure. In this work, the possibility of using waste wood particles (WP) from primary wood processing as a filler for PUR foams with open-cell structure was investigated. For this purpose, a wood particle fraction of 0.315–1.25 mm was added to the foam in concentrations of 0, 5, 10, 15 and 20%. The foaming course of the modified PUR foams (PUR-WP) was characterized on the basis of the duration of the process’ successive stages at the maximum foaming temperature. In order to explain the observed phenomena, a cellular structure was characterized using microscopic analysis such as SEM and light microscope. Computed tomography was also applied to determine the distribution of wood particles in PUR-WP materials. It was observed that the addition of WP to the open-cell PUR foam influences the kinetics of the foaming process of the PUR-WP composition and their morphology, density, compressive strength and thermal properties. The performed tests showed that the addition of WP at an the amount of 10% leads to the increase in the PUR foam’s compressive strength by 30% (parallel to foam’s growth direction) and reduce the thermal conductivity coefficient by 10%. Full article
(This article belongs to the Special Issue Advanced Eco-friendly Wood-Based Composites)
Show Figures

Figure 1

12 pages, 3250 KiB  
Article
The Effect of Fatigue Test on the Mechanical Properties of the Cellular Polyurethane Mats Used in Tram and Railway Tracks
by Juliusz Sołkowski, Jarosław Górszczyk, Konrad Malicki and Dariusz Kudła
Materials 2021, 14(15), 4118; https://doi.org/10.3390/ma14154118 - 23 Jul 2021
Cited by 12 | Viewed by 2998
Abstract
The use of modern synthetic materials is an important element in the development of railway tracks. Their use is a response to the growing requirements regarding the durability of structures and environmental protection against traffic noise and vibrations. In this paper, the results [...] Read more.
The use of modern synthetic materials is an important element in the development of railway tracks. Their use is a response to the growing requirements regarding the durability of structures and environmental protection against traffic noise and vibrations. In this paper, the results of the laboratory tests of selected mechanical properties of cellular polyurethane (PUR) mats which are applied in tram and railway tracks are presented in this study. The aim of the research was to determine the effect of fatigue loading on the mechanical performance of polyurethane mats. A series of samples made of two types of materials with different pore structures were tested. Static and fatigue laboratory tests were carried out on a specially prepared test stand. The values of selected mechanical parameters (the vertical static bedding modulus, the vertical dynamic bedding modulus, and the loss factor) were evaluated. The results of laboratory tests and analyses showed a significant influence of high-cycle fatigue loading on the values of mechanical parameters of the tested mats, which were quantified as a result of the study. For both types of materials, the phenomenon of cyclic hardening was observed. Additionally, for one of the materials, an undesired dynamic creep phenomenon was observed. It was also shown that the pore structure of polyurethane influences the mechanical performance of the mats. Therefore, the findings of the research may have practical significance for the quality evaluation of such materials, especially in the context of their durability and mechanical stability under real loading conditions. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

20 pages, 7175 KiB  
Article
Casein/Apricot Filler in the Production of Flame-Retardant Polyurethane Composites
by Sylwia Członka, Agnė Kairytė, Karolina Miedzińska and Anna Strąkowska
Materials 2021, 14(13), 3620; https://doi.org/10.3390/ma14133620 - 29 Jun 2021
Cited by 20 | Viewed by 3236
Abstract
Polyurethane (PUR) composites reinforced with 1, 2, and 5 wt.% of apricot filler modified with casein were synthesized in the following study. The impact of 1, 2, and 5 wt.% of casein/apricot filler on the cellular structure and physico-mechanical performances of reinforced PUR [...] Read more.
Polyurethane (PUR) composites reinforced with 1, 2, and 5 wt.% of apricot filler modified with casein were synthesized in the following study. The impact of 1, 2, and 5 wt.% of casein/apricot filler on the cellular structure and physico-mechanical performances of reinforced PUR composites were determined. It was found that the incorporation of 1 and 2 wt.% of casein/apricot filler resulted in the production of PUR composites with improved selected physical, thermal, and mechanical properties, while the addition of 5 wt.% of casein/apricot filler led to some deterioration of their physico-mechanical performance. The best results were obtained for PUR composites reinforced with 2 wt.% of casein/apricot filler. Those composites were characterized by a uniform structure and a high content of closed cells. Compared with the reference foam, the incorporation of 2 wt.% of casein/apricot filler resulted in improvement in compressive strength, flexural strength, impact strength, and dynamic mechanical properties—such as glass transition temperature and storage modulus. Most importantly, PUR composites showed better fire resistance and thermal stability due to the good thermal performance of casein. The main aim of this article is to determine the influence of the natural combination of the apricot filler and casein on the mechanical properties and flammability of the obtained composites. Full article
(This article belongs to the Special Issue New Advances in Characterization of Cellular Materials)
Show Figures

Figure 1

16 pages, 6229 KiB  
Article
Biobased Polyurethane Composite Foams Reinforced with Plum Stones and Silanized Plum Stones
by Karolina Miedzińska, Sylwia Członka, Anna Strąkowska and Krzysztof Strzelec
Int. J. Mol. Sci. 2021, 22(9), 4757; https://doi.org/10.3390/ijms22094757 - 30 Apr 2021
Cited by 20 | Viewed by 3279
Abstract
In the following study, ground plum stones and silanized ground plum stones were used as natural fillers for novel polyurethane (PUR) composite foams. The impact of 1, 2, and 5 wt.% of fillers on the cellular structure, foaming parameters, and mechanical, thermomechanical, and [...] Read more.
In the following study, ground plum stones and silanized ground plum stones were used as natural fillers for novel polyurethane (PUR) composite foams. The impact of 1, 2, and 5 wt.% of fillers on the cellular structure, foaming parameters, and mechanical, thermomechanical, and thermal properties of produced foams were assessed. The results showed that the silanization process leads to acquiring fillers with a smoother surface compared to unmodified filler. The results also showed that the morphology of the obtained materials is affected by the type and content of filler. Moreover, the modified PUR foams showed improved properties. For example, compared with the reference foam (PUR_REF), the foam with the addition of 1 wt.% of unmodified plum filler showed better mechanical properties, such as higher compressive strength (~8% improvement) and better flexural strength (~6% improvement). The addition of silanized plum filler improved the thermal stability and hydrophobic character of PUR foams. This work shows the relationship between the mechanical, thermal, and application properties of the obtained PUR composites depending on the modification of the filler used during synthesis. Full article
(This article belongs to the Special Issue Biopolymer Composites: Synthesis, properties and Applications)
Show Figures

Figure 1

17 pages, 4324 KiB  
Article
The Impact of Hemp Shives Impregnated with Selected Plant Oils on Mechanical, Thermal, and Insulating Properties of Polyurethane Composite Foams
by Sylwia Członka, Anna Strąkowska and Agnė Kairytė
Materials 2020, 13(21), 4709; https://doi.org/10.3390/ma13214709 - 22 Oct 2020
Cited by 32 | Viewed by 3298
Abstract
Polyurethane (PUR) foams reinforced with 2 wt.% hemp shives (HS) fillers were successfully synthesized. Three different types of HS fillers were evaluated—non-treated HS, HS impregnated with sunflower oil (SO) and HS impregnated with tung oil (TO). The impact of each type of HS [...] Read more.
Polyurethane (PUR) foams reinforced with 2 wt.% hemp shives (HS) fillers were successfully synthesized. Three different types of HS fillers were evaluated—non-treated HS, HS impregnated with sunflower oil (SO) and HS impregnated with tung oil (TO). The impact of each type of HS fillers on cellular morphology, mechanical performances, thermal stability, and flame retardancy was evaluated. It has been shown that the addition of HS fillers improved the mechanical characteristics of PUR foams. Among all modified series, the greatest improvement was observed after the incorporation of non-treated HS filler—when compared with neat foams, the value of compressive strength increased by ~13%. Moreover, the incorporation of impregnated HS fillers resulted in the improvement of thermal stability and flame retardancy of PUR foams. For example, the addition of both types of impregnated HS fillers significantly decreased the value of heat peak release (pHRR), total smoke release (TSR), and limiting oxygen index (LOI). Moreover, the PUR foams containing impregnated fillers were characterized by improved hydrophobicity and limited water uptake. The obtained results confirmed that the modification of PUR foams with non-treated and impregnated HS fillers may be a successful approach in producing polymeric composites with improved properties. Full article
(This article belongs to the Special Issue Environmentally Friendly Polymeric Blends from Renewable Sources)
Show Figures

Figure 1

13 pages, 3832 KiB  
Article
Implementation of Circular Economy Principles in the Synthesis of Polyurethane Foams
by Maria Kurańska, Milena Leszczyńska, Elżbieta Malewska, Aleksander Prociak and Joanna Ryszkowska
Polymers 2020, 12(9), 2068; https://doi.org/10.3390/polym12092068 - 12 Sep 2020
Cited by 25 | Viewed by 3421
Abstract
The main strategy of the European Commission in the field of the building industry assumes a reduction of greenhouse gas emissions by up to 20% by 2020 and by up to 80% by 2050. In order to meet these conditions, it is necessary [...] Read more.
The main strategy of the European Commission in the field of the building industry assumes a reduction of greenhouse gas emissions by up to 20% by 2020 and by up to 80% by 2050. In order to meet these conditions, it is necessary to develop not only efficient thermal insulation materials, but also more environmentally friendly ones. This paper describes an experiment in which two types of bio-polyols were obtained using transesterification of used cooking oil with triethanolamine (UCO_TEA) and diethylene glycol (UCO_DEG). The bio-polyols were next used to prepare low-density rigid polyurethane (PUR) foams. It was found that the bio-polyols increased the reactivity of the PUR systems, regardless of their chemical structures. The reactivity of the system modified with 60% of the diethylene glycol-based bio-polyol was higher than in the case of the reference system. The bio-foams exhibited apparent densities of 41–45 kg/m3, homogeneous cellular structures and advantageous values of the coefficient of thermal conductivity. It was observed that the higher functionality of bio-polyol UCO_TEA compared with UCO_DEG had a beneficial effect on the mechanical and thermal properties of the bio-foams. The most promising results were obtained in the case of the foams modified in 60% with the bio-polyol based on triethanoloamine. In conclusion, this approach, utilizing used cooking oil in the synthesis of high-value thermal insulating materials, provides a sustainable municipal waste recycling solution. Full article
(This article belongs to the Special Issue Plastics)
Show Figures

Graphical abstract

21 pages, 3996 KiB  
Article
Application of Walnut Shells-Derived Biopolyol in the Synthesis of Rigid Polyurethane Foams
by Sylwia Członka, Anna Strąkowska and Agnė Kairytė
Materials 2020, 13(12), 2687; https://doi.org/10.3390/ma13122687 - 12 Jun 2020
Cited by 37 | Viewed by 3932
Abstract
This study aimed to examine rigid polyurethane (PUR) foam properties that were synthesized from walnut shells (WS)-based polyol. The Fourier Transform Infrared Spectroscopy (FTIR) results revealed that the liquefaction of walnut shells was successfully performed. The three types of polyurethane (PUR) foams were [...] Read more.
This study aimed to examine rigid polyurethane (PUR) foam properties that were synthesized from walnut shells (WS)-based polyol. The Fourier Transform Infrared Spectroscopy (FTIR) results revealed that the liquefaction of walnut shells was successfully performed. The three types of polyurethane (PUR) foams were synthesized by replacement of 10, 20, and 30 wt% of a petrochemical polyol with WS-based polyol. The impact of WS-based polyol on the cellular morphology, mechanical, thermal, and insulating characteristics of PUR foams was examined. The produced PUR foams had apparent densities from 37 to 39 kg m−3, depending on the weight ratio of WS-based polyol. PUR foams that were obtained from WS-based polyol exhibited improved mechanical characteristics when compared with PUR foams that were derived from the petrochemical polyol. PUR foams produced from WS-based polyol showed compressive strength from 255 to 310 kPa, flexural strength from 420 to 458 kPa, and impact strength from 340 to 368 kPa. The foams that were produced from WS-based polyol exhibited less uniform cell structure than foams derived from the petrochemical polyol. The thermal conductivity of the PUR foams ranged between 0.026 and 0.032 W m−1K−1, depending on the concentration of WS-based polyol. The addition of WS-based polyol had no significant influence on the thermal degradation characteristics of PUR foams. The maximum temperature of thermal decomposition was observed for PUR foams with the highest loading of WS-based polyol. Full article
(This article belongs to the Special Issue Performance Research of Polyurethane Foams and Composites)
Show Figures

Graphical abstract

22 pages, 50821 KiB  
Article
Fire Phenomena of Rigid Polyurethane Foams
by Martin Günther, Alessandra Lorenzetti and Bernhard Schartel
Polymers 2018, 10(10), 1166; https://doi.org/10.3390/polym10101166 - 19 Oct 2018
Cited by 78 | Viewed by 9901
Abstract
Rigid polyurethane foams (RPUFs) typically exhibit low thermal inertia, resulting in short ignition times and rapid flame spread. In this study, the fire phenomena of RPUFs were investigated using a multi-methodological approach to gain detailed insight into the fire behaviour of pentane- and [...] Read more.
Rigid polyurethane foams (RPUFs) typically exhibit low thermal inertia, resulting in short ignition times and rapid flame spread. In this study, the fire phenomena of RPUFs were investigated using a multi-methodological approach to gain detailed insight into the fire behaviour of pentane- and water-blown polyurethane (PUR) as well as pentane-blown polyisocyanurate polyurethane (PIR) foams with densities ranging from 30 to 100 kg/m3. Thermophysical properties were studied using thermogravimetry (TG); flammability and fire behaviour were investigated by means of the limiting oxygen index (LOI) and a cone calorimeter. Temperature development in burning cone calorimeter specimens was monitored with thermocouples inside the foam samples and visual investigation of quenched specimens’ cross sections gave insight into the morphological changes during burning. A comprehensive investigation is presented, illuminating the processes taking place during foam combustion. Cone calorimeter tests revealed that in-depth absorption of radiation is a significant factor in estimating the time to ignition. Cross sections examined with an electron scanning microscope (SEM) revealed a pyrolysis front with an intact foam structure underneath, and temperature measurement inside burning specimens indicated that, as foam density increased, their burning behaviour shifted towards that of solid materials. The superior fire performance of PIR foams was found to be based on the cellular structure, which is retained in the residue to some extent. Full article
(This article belongs to the Special Issue Flame Retardancy of Polymeric Materials)
Show Figures

Graphical abstract

Back to TopTop