Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = cartilage friction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7560 KiB  
Article
High-Performance Sodium Alginate Fiber-Reinforced Polyvinyl Alcohol Hydrogel for Artificial Cartilage
by Lingling Cui, Yifan Lu, Jun Wang, Haiqin Ding, Guodong Jia, Zhiwei Li, Guang Ji and Dangsheng Xiong
Coatings 2025, 15(8), 893; https://doi.org/10.3390/coatings15080893 (registering DOI) - 1 Aug 2025
Viewed by 317
Abstract
Hydrogels, especially Polyvinyl alcohols, have received extensive attention as alternative materials for articular cartilage. Aiming at the problems such as low strength and poor toughness of polyvinyl alcohol hydrogels in practical applications, an enhancement and modification strategy is proposed. Sodium alginate fibers were [...] Read more.
Hydrogels, especially Polyvinyl alcohols, have received extensive attention as alternative materials for articular cartilage. Aiming at the problems such as low strength and poor toughness of polyvinyl alcohol hydrogels in practical applications, an enhancement and modification strategy is proposed. Sodium alginate fibers were introduced into polyvinyl alcohol hydrogel network through physical blending and freezing/thawing methods. The prepared composite hydrogels exhibited a three-dimensional porous network structure similar to that of human articular cartilage. The mechanical and tribological properties of hydrogels have been significantly improved, due to the multiple hydrogen bonding interaction between sodium alginate fibers and polyvinyl alcohol. Most importantly, under a load of 2 N, the friction coefficient of the PVA/0.4SA hydrogel can remain stable at 0.02 when lubricated in PBS buffer for 1 h. This work provides a novel design strategy for the development of high-performance polyvinyl alcohol hydrogels. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

56 pages, 2756 KiB  
Review
Articular Cartilage: Structure, Biomechanics, and the Potential of Conventional and Advanced Diagnostics
by Robert Karpiński, Aleksandra Prus, Jacek Baj, Sebastian Radej, Marcin Prządka, Przemysław Krakowski and Kamil Jonak
Appl. Sci. 2025, 15(12), 6896; https://doi.org/10.3390/app15126896 - 18 Jun 2025
Viewed by 1376
Abstract
Articular cartilage (AC) plays an important role in the biomechanics of synovial joints. Its task is to enable smooth movement and transfer of mechanical loads with minimised friction. AC is characterised by unique mechanical properties resulting from its complex structure, in which the [...] Read more.
Articular cartilage (AC) plays an important role in the biomechanics of synovial joints. Its task is to enable smooth movement and transfer of mechanical loads with minimised friction. AC is characterised by unique mechanical properties resulting from its complex structure, in which the dominant components are type II collagen, proteoglycans and water. Healthy articular cartilage shows elasticity in compression, viscoelastic properties, and the ability to relax stresses under the influence of cyclic loads. In response to different loading modes, it shows anisotropic and non-uniform behaviour, which translates into its cushioning and protective function for the subchondral bone. Significant changes occur in the structure and mechanical properties of cartilage with age as a result of mechanical overload or degenerative diseases, such as osteoarthritis. This results in a deterioration of the cushioning and mechanical function, which leads to progressive degradation of joint tissues. Understanding the mechanical properties of AC is crucial for developing effective diagnostic methods. Analysis of changes in mechanical properties contributes to the early detection of pathological changes. The aim of this paper is to review the current state of knowledge regarding the structure and biomechanical properties of articular cartilage, and to analyse conventional and alternative diagnostic methods in the context of their suitability for assessing the state of AC, particularly in the early stages of degenerative processes. Full article
(This article belongs to the Special Issue Orthopaedics and Joint Reconstruction: Latest Advances and Prospects)
Show Figures

Figure 1

31 pages, 2546 KiB  
Review
Evaluation of Patellar Groove Prostheses in Veterinary Medicine: Review of Technological Advances, Technical Aspects, and Quality Standards
by Mateusz Pawlik, Piotr Trębacz, Anna Barteczko, Aleksandra Kurkowska, Agata Piątek, Zbigniew Paszenda and Marcin Basiaga
Materials 2025, 18(7), 1652; https://doi.org/10.3390/ma18071652 - 3 Apr 2025
Cited by 1 | Viewed by 1251
Abstract
This review explores the technological advancements in, engineering considerations regarding, and quality standards of veterinary patellar groove replacement implants. Veterinary-specific regulations for these implants are currently lacking. Therefore, human knee implant benchmarks are used as references. These benchmarks guide evaluation of the surface [...] Read more.
This review explores the technological advancements in, engineering considerations regarding, and quality standards of veterinary patellar groove replacement implants. Veterinary-specific regulations for these implants are currently lacking. Therefore, human knee implant benchmarks are used as references. These benchmarks guide evaluation of the surface quality, material selection, biocompatibility, and mechanical performance of the implant to ensure reliability and longevity. Patellar luxation is a common orthopedic disorder in small animals which leads to patellofemoral joint instability and cartilage degeneration, and is often caused by angular limb deformities that disrupt patellar alignment. In severe cases, patellar groove replacement is necessary to restore function and alleviate pain. The implant materials must provide durability, mechanical strength, and biocompatibility to withstand joint forces while ensuring minimal wear. High-quality surface finishes reduce the friction experienced by these materials, improving their long-term performance. Advances in 3D printing allow the creation of patient-specific implants. These implants offer an enhanced anatomical fit and enhanced functionality, which is especially beneficial in complex cases. However, challenges remain in achieving consistent manufacturing quality and economic feasibility. While custom implants are invaluable for difficult cases, standardized designs are sufficient for routine applications. Combining human implant standards with new manufacturing technologies improves veterinary orthopedic solutions. This integration expands the treatment options for patellar luxation and enhances the quality and accessibility of implants. Full article
(This article belongs to the Special Issue Biomaterials for Bone Tissue Engineering (Second Edition))
Show Figures

Figure 1

18 pages, 1602 KiB  
Review
Prg4 and Osteoarthritis: Functions, Regulatory Factors, and Treatment Strategies
by Peng-Jie Fu, Sheng-Yuan Zheng, Yan Luo, Zhuo-Qun Ren, Zi-Han Li, Ya-Ping Wang and Bang-Bao Lu
Biomedicines 2025, 13(3), 693; https://doi.org/10.3390/biomedicines13030693 - 12 Mar 2025
Cited by 1 | Viewed by 1490
Abstract
Proteoglycan 4 (PRG4), also known as lubricin, plays a critical role in maintaining joint homeostasis by reducing friction between articular cartilage surfaces and preventing cartilage degradation. Its deficiency leads to early-onset osteoarthritis (OA), while overexpression can protect against cartilage degeneration. Beyond its lubricating [...] Read more.
Proteoglycan 4 (PRG4), also known as lubricin, plays a critical role in maintaining joint homeostasis by reducing friction between articular cartilage surfaces and preventing cartilage degradation. Its deficiency leads to early-onset osteoarthritis (OA), while overexpression can protect against cartilage degeneration. Beyond its lubricating properties, PRG4 exerts anti-inflammatory effects by interacting with Toll-like receptors, modulating inflammatory responses within the joint. The expression of Prg4 is regulated by various factors, including mechanical stimuli, inflammatory cytokines, transcription factors such as Creb5 and FoxO, and signaling pathways like TGF-β, EGFR, and Wnt/β-catenin. Therapeutic strategies targeting PRG4 in OA have shown promising results, including recombinant PRG4 protein injections, gene therapies, and small molecules that enhance endogenous Prg4 expression or mimic its function. Further research into the molecular mechanisms regulating Prg4 expression will be essential in developing more effective OA treatments. Understanding the interplay between Prg4 and other signaling pathways could reveal novel therapeutic targets. Additionally, advancements in gene therapy and biomaterials designed to deliver PRG4 in a controlled manner may hold potential for the long-term management of OA, improving patient outcomes and delaying disease progression. Full article
(This article belongs to the Special Issue New Insights into Bone and Cartilage Biology)
Show Figures

Figure 1

26 pages, 4652 KiB  
Review
Lubrication for Osteoarthritis: From Single-Function to Multifunctional Lubricants
by Wen Chen, Qianwen Ye, Mingshuo Zhang, Renjian Xie and Chunming Xu
Int. J. Mol. Sci. 2025, 26(5), 1856; https://doi.org/10.3390/ijms26051856 - 21 Feb 2025
Viewed by 1697
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that progressively destroys articular cartilage, leading to increased joint friction and severe pain. Therefore, OA can be treated by restoring the lubricating properties of cartilage. In this study, recent advances in lubricants for the treatment [...] Read more.
Osteoarthritis (OA) is a common degenerative joint disease that progressively destroys articular cartilage, leading to increased joint friction and severe pain. Therefore, OA can be treated by restoring the lubricating properties of cartilage. In this study, recent advances in lubricants for the treatment of OA are reviewed for both single-function and multifunctional lubricants. Single-function lubricants mainly include glycosaminoglycans, lubricin, and phospholipids, whereas multifunctional lubricants are composed of lubricating and anti-inflammatory bifunctional hydrogels, stem cell-loaded lubricating hydrogels, and drug-loaded lubricating nanoparticles. This review emphasizes the importance of restoring joint lubrication capacity for the treatment of OA and explores the structural features, lubrication properties, and role of these lubricants in modulating intracellular inflammatory responses and metabolism. Current challenges and future research directions in this field are also discussed, with the aim of providing a scientific basis and new ideas for the clinical treatment of OA. Full article
(This article belongs to the Special Issue Osteoarthritis: From Molecular Mechanism to Novel Therapy)
Show Figures

Figure 1

18 pages, 5155 KiB  
Article
Antibacterial UV-Curable Gel with Hydroxyapatite Nanoparticles for Regenerative Medicine in the Field of Orthopedics
by Julia A. Burunkova, Valeria V. Semykina, Vera E. Sitnikova, Dmitry M. Dolgintsev, Faliya F. Zaripova, Alina A. Ponomareva, Diana R. Mizina, Attila Csick, Sandor Kokenyesi and Anton Zhilenkov
J. Compos. Sci. 2025, 9(2), 65; https://doi.org/10.3390/jcs9020065 - 1 Feb 2025
Cited by 1 | Viewed by 1050
Abstract
The development and analysis of the properties of a new material based on UV-curable acrylate monomers with silicon-containing hydroxyapatite and zinc oxide nanoparticles as an antibacterial component and gelatin was carried out. Using this material in orthopedics and dentistry is very convenient because [...] Read more.
The development and analysis of the properties of a new material based on UV-curable acrylate monomers with silicon-containing hydroxyapatite and zinc oxide nanoparticles as an antibacterial component and gelatin was carried out. Using this material in orthopedics and dentistry is very convenient because it covers any surface geometry of metal implants and hardens under ultraviolet light. In this work, sorption properties, changes in porosity, and mechanical properties of the material were investigated. The conditions for obtaining hydroxyapatite (HA) nanoparticles and the presence of silicon oxide nanoparticles and organic for the shell in an aqueous medium were studied for the pH of the medium, the sequence of administration and concentration of the material components, as well as antibacterial properties. This polymer material is partially resorbable. That supports not only the growth of bone cells but also serves as a protective layer. It reduces friction between organic tissues and a metal implant and can be a solution to the problem of the aseptic instability of metal implants. The material can also be used to repair damaged bones and cartilage tissues, especially in cases where the application and curing procedure is performed using laparoscopic methods. In this work, the authors propose a simple and quite cheap method for obtaining material based on photopolymerizable acrylates and natural gelatin with nanoparticles of HA, zinc oxide, and silicon oxide. The method allows one to obtain a composite material with different nanoparticles in a polymer matrix which retain the requisite properties needed such as active-sized HA, antibacterial ZnO, and structure-forming and stability-improving SiO2 nanoparticles. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

13 pages, 5846 KiB  
Article
The Low Friction Coefficient and High Wear Resistance UHMWPE: The Effect of Pores on Properties of Artificial Joint Materials
by Chunmin Yang, Junhua Zhang, Honglin Yue and Xueqin Kang
Lubricants 2025, 13(1), 31; https://doi.org/10.3390/lubricants13010031 - 13 Jan 2025
Cited by 1 | Viewed by 1428
Abstract
Ultrahigh-molecular-weight-polyethylene (UHMWPE) is extensively applied to make bone and cartilage implants in the field of biomaterial application. UHMWPE matched with a metal or ceramic component withstands the long-term effect of cyclic stress, which induces UHMWPE serious wear, and affects the service life of [...] Read more.
Ultrahigh-molecular-weight-polyethylene (UHMWPE) is extensively applied to make bone and cartilage implants in the field of biomaterial application. UHMWPE matched with a metal or ceramic component withstands the long-term effect of cyclic stress, which induces UHMWPE serious wear, and affects the service life of the artificial joint. This investigation focuses on the influence of pores on the mechanical and tribological property of UHMWPE. The porosity, crystallinity, yield strength, tensile strength, hardness, compression yield strength, creep resistance, wettability, friction performance, and wear mechanism of solid and porous UHMWPE were evaluated and compared. The research results indicated that the pore had a remarkable influence on the mechanical, friction, and wear property of UHMWPE. The porosity of porous UHMWPE was 29.7% when 50 wt. % sodium chloride (NaCl) was added and the pore size was about 200 μm. The crystallinity, hardness, creep resistance, strength, and elongation decreased after NaCl was added and dissolved. However, the yield strength in the tensile and compression test was closer to that of the natural cartilage. The friction coefficient and wear loss of porous UHMWPE were higher than that of solid UHMWPE in dry conditions, but these values of porous UHMWPE were lower than that of solid UHMWPE in the calf serum lubrication condition. The main wear mechanism of porous and solid UHMWPE was abrasive. The lubricity of calf serum reduced wear surface scratches and furrows, especially for porous UHMWPE. Full article
(This article belongs to the Special Issue Tribology in Artificial Joints)
Show Figures

Figure 1

18 pages, 6179 KiB  
Article
Porcine-Derived Chondroitin Sulfate Sodium Alleviates Osteoarthritis in HTB-94 Cells and MIA-Induced SD Rat Models
by Hyelim Kim, Jinhee Kim, Seong-Hoo Park, Jinhak Kim, Yuri Gwon, Minhee Lee and Soo-Jeung Park
Int. J. Mol. Sci. 2025, 26(2), 521; https://doi.org/10.3390/ijms26020521 - 9 Jan 2025
Viewed by 1509
Abstract
Osteoarthritis (OA) is a chronic disease characterized by cartilage degradation, leading to bone friction, inflammation, stiffness, pain, and reduced mobility. This study investigates the therapeutic effects of porcine-derived chondroitin sulfate sodium (CS) on OA symptoms at both cellular and animal levels. In vitro [...] Read more.
Osteoarthritis (OA) is a chronic disease characterized by cartilage degradation, leading to bone friction, inflammation, stiffness, pain, and reduced mobility. This study investigates the therapeutic effects of porcine-derived chondroitin sulfate sodium (CS) on OA symptoms at both cellular and animal levels. In vitro study, HTB-94 chondrocytes were treated with inflammatory stimuli and CS (10, 50, 100, and 200 μg/mL) to assess the release of inflammatory mediators and the expression of genes and proteins related to cartilage synthesis and degradation. In vivo study, an MIA-induced OA rat model was used, and CS (62, 124, and 248 mg/kg b.w.) was orally administered for 4 weeks. Key parameters, such as exercise capacity, micro-CT, histological evaluation of joint tissues, serum inflammatory markers, and the expression of mRNA and proteins (inflammatory, cartilage synthesis and degradation, and apoptosis markers), were analyzed. Porcine-derived CS significantly reduced PGE2, NO, and extracellular matrix degradation marker (COMP and CTX-II) levels and increased the expression of cartilage synthesis-related genes and proteins in both HTB-94 cells and the MIA-induced rats. Additionally, CS modulated cartilage degradation pathways and notably inhibited apoptosis in vivo. The effects of porcine CS were comparable to the NSAID ibuprofen, demonstrating its potential as an anti-inflammatory and chondroprotective agent for OA management and dietary supplementation. Full article
Show Figures

Figure 1

9 pages, 2780 KiB  
Article
Morphology of the Calcaneofibular Ligament Reflects Degeneration of the Talonavicular Articular Surface: A Cadaver Study
by Ryuta Tanaka, Daisuke Kiyoshima, Kaori Suyama, Ning Qu, Miyu Inagawa and Shogo Hayashi
J. Clin. Med. 2024, 13(24), 7565; https://doi.org/10.3390/jcm13247565 - 12 Dec 2024
Viewed by 1107
Abstract
Background: Osteoarthritis is caused by damage to the articular cartilage due to bone-on-bone collisions and friction. The length, width, and thickness of the ligaments are expected to change in order to regulate excessive bone-to-bone movement. We aimed to clarify the relationship between ligament [...] Read more.
Background: Osteoarthritis is caused by damage to the articular cartilage due to bone-on-bone collisions and friction. The length, width, and thickness of the ligaments are expected to change in order to regulate excessive bone-to-bone movement. We aimed to clarify the relationship between ligament morphology and joint surface degeneration in the ankle joints using macroscopic observations and measurements. Methods: The participants were 50 feet of 45 Japanese cadavers. The lengths, widths, and thicknesses of the tibionavicular, tibiospring, tibiocalcaneal, posterior tibiotalar, anterior tibiotalar, and calcaneofibular ligaments (CFLs) were measured. The degeneration of the talonavicular joint surface was investigated macroscopically and classified into two groups: the Degeneration (+) group and Degeneration (−) group. Unpaired t-tests were performed for each measurement. Logistic regression analysis was performed on the significantly different items to obtain cutoff values, sensitivity, and specificity. Results: Only the width of the CFL differed significantly between the Degeneration (+) (20 feet) and Degeneration (−) groups (p < 0.001). In the logistic regression analysis, the width of the CFL had an R2 of 0.262, sensitivity of 75.0%, and specificity of 83.3%, with a cutoff value of 8.7 mm. Conclusions: A wide CFL indicates a high likelihood of talonavicular articular surface degeneration. Full article
(This article belongs to the Special Issue Clinical Advancements in Foot and Ankle Surgery)
Show Figures

Figure 1

20 pages, 4605 KiB  
Article
Effect of Mild Conditions on PVA-Based Theta Gel Preparation: Thermal and Rheological Characterization
by Simone Pepi, Luigi Talarico, Gemma Leone, Claudia Bonechi, Marco Consumi, Amedeo Boldrini, Alessia Lauro, Agnese Magnani and Claudio Rossi
Int. J. Mol. Sci. 2024, 25(22), 12039; https://doi.org/10.3390/ijms252212039 - 9 Nov 2024
Viewed by 778
Abstract
Polyvinyl alcohol (PVA), possessing a strong ability to form hydrogels, has been widely used for various pharmaceutical and biomedical applications. In particular, the use of PVA-PEG in the form of theta gels for altered cartilage treatment has attracted an enormous amount of attention [...] Read more.
Polyvinyl alcohol (PVA), possessing a strong ability to form hydrogels, has been widely used for various pharmaceutical and biomedical applications. In particular, the use of PVA-PEG in the form of theta gels for altered cartilage treatment has attracted an enormous amount of attention in the last 20 years. In this paper, we prepared 42 PVA-PEG in the form of theta gels at room temperature in an aqueous environment, testing the crystallization occurrence at basic pH (10 or 12). Using a statistical approach, the effect of PEG molecular weight, PVA molecular weight and alkaline pH values on water content and mechanical performance was evaluated. The used procedure permitted the theta gels to maintain swelling properties comparable to those of human cartilage, from 60% to 85%, with both polymers having the same influence. PEG MW mainly affected the hydrophilic properties, whereas the thermal properties were mostly influenced by the PVA. The shear and compression mechanical behavior of the produced materials were affected by both the polymers’ MWs. The sample obtained using PVA 125 kDa with PEG 20 kDa as a porogen appeared to be the most suitable one for cartilage disease treatment, as it had an equilibrium shear modulus in the range of 50–250 kPa, close to that of native articular cartilage, as well as optimal mechanical response under compression along the entire analyzed frequency range with a mean value of 0.12 MPa and a coefficient of friction (COF) which remained under 0.10 for all the tested sliding speeds (mm/s). Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

13 pages, 5008 KiB  
Article
Biomimetic Layered Hydrogel Coating for Enhanced Lubrication and Load-Bearing Capacity
by Xuxu Hu, Yu Zhao, Shuai Cheng, Jinming Zhen, Zhengfeng Jia and Ran Zhang
Coatings 2024, 14(9), 1229; https://doi.org/10.3390/coatings14091229 - 23 Sep 2024
Viewed by 1663
Abstract
Biomimetic hydrogel lubrication coatings with high wettability and low friction show great promise in tissue engineering, wound dressing, drug delivery, and intelligent sensing. Inspired by the hierarchical structure of natural cartilage, a layered hydrogel coating was constructed to functionalize rigid polyetheretherketone (PEEK). The [...] Read more.
Biomimetic hydrogel lubrication coatings with high wettability and low friction show great promise in tissue engineering, wound dressing, drug delivery, and intelligent sensing. Inspired by the hierarchical structure of natural cartilage, a layered hydrogel coating was constructed to functionalize rigid polyetheretherketone (PEEK). The layered hydrogel coating features a structural design comprising a top soft layer and a middle robust layer. The porous structure of the top soft hydrogel layer stores water molecules, providing surface lubrication, while the dense structure of the middle robust hydrogel layer offers load-bearing capacity. These synergistic effects of the gradient hydrogel layer endow the PEEK substrate with an ultra-low coefficient of friction (COF~0.010 at 5 N load), good load-bearing capacity (COF~0.031 at 10 N load), and excellent wear resistance (COF < 0.05 at 5 N load after 20,000 sliding cycles). This study introduces a novel design paradigm for robust hydrogel coatings with exceptional lubricity, displaying the potential application in cartilage replacement materials. Full article
Show Figures

Figure 1

25 pages, 7423 KiB  
Review
Lubricant Strategies in Osteoarthritis Treatment: Transitioning from Natural Lubricants to Drug Delivery Particles with Lubricant Properties
by Agnese Fragassi, Antonietta Greco and Roberto Palomba
J. Xenobiot. 2024, 14(3), 1268-1292; https://doi.org/10.3390/jox14030072 - 19 Sep 2024
Cited by 8 | Viewed by 3007
Abstract
Osteoarthritis (OA) is a debilitating joint disease characterized by cartilage degradation, leading to pain and functional impairment. A key contributor to OA progression is the decline in cartilage lubrication. In physiological conditions, synovial fluid (SF) macromolecules like hyaluronic acid (HA), phospholipids, and lubricin [...] Read more.
Osteoarthritis (OA) is a debilitating joint disease characterized by cartilage degradation, leading to pain and functional impairment. A key contributor to OA progression is the decline in cartilage lubrication. In physiological conditions, synovial fluid (SF) macromolecules like hyaluronic acid (HA), phospholipids, and lubricin play a crucial role in the boundary lubrication of articular cartilage. In early OA, cartilage damage triggers inflammation, altering SF composition and compromising the lubrication layer. This increases friction between mating interfaces, worsening cartilage degradation and local inflammation. Therefore, early-stage restoration of lubrication (by injecting in the joint different classes of compounds and formulations) could alleviate, and potentially reverse, OA progression. In the light of this, a broad variety of lubricants have been investigated for their ability to reduce friction in OA joints and promote cartilage repair in clinical and preclinical studies. This review examines recent advancements in lubricant-based therapy for OA, focusing on natural, bioinspired, and alternative products. Starting from the currently applied therapy, mainly based on natural lubricants as HA, we will present their modified versions, either in hydrogel form or with specific biomimetic moieties with the aim of reducing their clearance from the joint and of enhancing their lubricating properties. Finally, the most advanced and recent formulation, represented by alternative strategies, will be proposed. Particular emphasis will be placed on those ones involving new types of hydrogels, microparticles, nanoparticles, and liposomes, which are currently under investigation in preclinical studies. The potential application of particles and liposomes could foster the transition from natural lubricants to Drug Delivery Systems (DDSs) with lubricant features; transition which could provide more complete OA treatments, by simultaneously providing lubrication replacement and sustained release of different payloads and active agents directly at the joint level. Within each category, we will examine relevant preclinical studies, highlighting challenges and future prospects. Full article
(This article belongs to the Section Nanotoxicology and Nanopharmacology)
Show Figures

Figure 1

14 pages, 3115 KiB  
Article
Facile Preparation of Irradiated Poly(vinyl alcohol)/Cellulose Nanofiber Hydrogels with Ultrahigh Mechanical Properties for Artificial Joint Cartilage
by Yang Chen, Mingcheng Yang, Weiwei Zhang, Wenhui Guo, Xiuqiang Zhang and Benshang Zhang
Materials 2024, 17(16), 4125; https://doi.org/10.3390/ma17164125 - 20 Aug 2024
Cited by 4 | Viewed by 1362
Abstract
In this study, Poly(vinyl alcohol)/cellulose nanofiber (PVA/CNF) hydrogels have been successfully prepared using γ-ray irradiation, annealing, and rehydration processes. In addition, the effects of CNF content and annealing methods on the hydrogel properties, including gel fraction, micromorphology, crystallinity, swelling behavior, and tensile and [...] Read more.
In this study, Poly(vinyl alcohol)/cellulose nanofiber (PVA/CNF) hydrogels have been successfully prepared using γ-ray irradiation, annealing, and rehydration processes. In addition, the effects of CNF content and annealing methods on the hydrogel properties, including gel fraction, micromorphology, crystallinity, swelling behavior, and tensile and friction properties, are investigated. Consequently, the results show that at an absorbed dose of 30 kGy, the increase in CNF content increases the gel fraction, tensile strength, and elongation at break of irradiated PVA/CNF hydrogels, but decreases the water absorption. In addition, the cross-linking density of the PVA/CNF hydrogels is significantly increased at an annealing temperature of 80 °C, which leads to the transition of the cross-sectional micromorphology from porous networks to smooth planes. For the PVA/CNF hydrogel with a CNF content of 0.6%, the crystallinity increases from 19.9% to 25.8% after tensile annealing of 30% compared to the original composite hydrogel. The tensile strength is substantially increased from 65.5 kPa to 21.2 MPa, and the modulus of elasticity reaches 4.2 MPa. Furthermore, it shows an extremely low coefficient of friction (0.075), which suggests that it has the potential to be applied as a material for artificial joint cartilage. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Hydrogels)
Show Figures

Figure 1

37 pages, 11381 KiB  
Review
Cartilage Integrity: A Review of Mechanical and Frictional Properties and Repair Approaches in Osteoarthritis
by Przemysław Krakowski, Adrian Rejniak, Jakub Sobczyk and Robert Karpiński
Healthcare 2024, 12(16), 1648; https://doi.org/10.3390/healthcare12161648 - 19 Aug 2024
Cited by 79 | Viewed by 6859
Abstract
Osteoarthritis (OA) is one of the most common causes of disability around the globe, especially in aging populations. The main symptoms of OA are pain and loss of motion and function of the affected joint. Hyaline cartilage has limited ability for regeneration due [...] Read more.
Osteoarthritis (OA) is one of the most common causes of disability around the globe, especially in aging populations. The main symptoms of OA are pain and loss of motion and function of the affected joint. Hyaline cartilage has limited ability for regeneration due to its avascularity, lack of nerve endings, and very slow metabolism. Total joint replacement (TJR) has to date been used as the treatment of end-stage disease. Various joint-sparing alternatives, including conservative and surgical treatment, have been proposed in the literature; however, no treatment to date has been fully successful in restoring hyaline cartilage. The mechanical and frictional properties of the cartilage are of paramount importance in terms of cartilage resistance to continuous loading. OA causes numerous changes in the macro- and microstructure of cartilage, affecting its mechanical properties. Increased friction and reduced load-bearing capability of the cartilage accelerate further degradation of tissue by exerting increased loads on the healthy surrounding tissues. Cartilage repair techniques aim to restore function and reduce pain in the affected joint. Numerous studies have investigated the biological aspects of OA progression and cartilage repair techniques. However, the mechanical properties of cartilage repair techniques are of vital importance and must be addressed too. This review, therefore, addresses the mechanical and frictional properties of articular cartilage and its changes during OA, and it summarizes the mechanical outcomes of cartilage repair techniques. Full article
Show Figures

Figure 1

22 pages, 5808 KiB  
Review
Lubricating Polymer Gels/Coatings: Syntheses and Measurement Strategies
by Panpan Zhao and Jacob Klein
Gels 2024, 10(6), 407; https://doi.org/10.3390/gels10060407 - 19 Jun 2024
Cited by 4 | Viewed by 2840
Abstract
Straightforward design and long-term functionality for tribological considerations has prompted an extensive substitution of polymers for metals across various applications, from industrial machinery to medical devices. Lubrication of and by polymer gels/coatings, essential for ensuring the cost-effective operation and reliability of applications, has [...] Read more.
Straightforward design and long-term functionality for tribological considerations has prompted an extensive substitution of polymers for metals across various applications, from industrial machinery to medical devices. Lubrication of and by polymer gels/coatings, essential for ensuring the cost-effective operation and reliability of applications, has gained strong momentum by benefiting from the structural characteristics of natural lubrication systems (such as articular cartilage). The optimal synthetic strategy for lubricating polymer gels/coatings would be a holistic approach, wherein the lubrication mechanism in relation to the structural properties offers a pathway to design tailor-made materials. This review considers recent synthesis strategies for creating lubricating polymer gels/coatings from the molecular level (including polymer brushes, loops, microgels, and hydrogels), and assessing their frictional properties, as well as considering the underlying mechanism of their lubrication. Full article
(This article belongs to the Special Issue Hydrogel Surface/Coating for Smart Drug Delivery and Medical Devices)
Show Figures

Figure 1

Back to TopTop