Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = cardamom essential oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 735 KiB  
Article
The Essential Oil Component Terpinyl Acetate Alters Honey Bee Energy Levels and Foraging Behavior
by Trey Mathews, Ella Joyce, Charles I. Abramson, Harrington Wells and Robert J. Sheaff
Insects 2025, 16(6), 561; https://doi.org/10.3390/insects16060561 - 26 May 2025
Viewed by 582
Abstract
Essential oils have been utilized in the health, learning/memory, and agricultural fields, but not much is known about the biological activity of their individual components. Terpinyl acetate is a p-menthane monoterpenoid commonly found in cardamom, pine, cajeput, pine needle, and other essential oils. [...] Read more.
Essential oils have been utilized in the health, learning/memory, and agricultural fields, but not much is known about the biological activity of their individual components. Terpinyl acetate is a p-menthane monoterpenoid commonly found in cardamom, pine, cajeput, pine needle, and other essential oils. Using a cell culture model system, we found that terpinyl acetate is a potent and specific inhibitor of mitochondrial ATP production, suggesting it might function as a plant toxin. Remarkably, however, terpinyl acetate was not cytotoxic because cells switched to glycolysis to maintain ATP levels. Based on these findings, we hypothesized that terpinyl acetate might be employed to benefit plant survival by modulating metabolism/behavior of plant pollinators such as the honey bee. This hypothesis was tested by investigating terpinyl acetate’s effect on honey bee foraging. Free-flying honey bee flower color choice was recorded when visiting a blue-white dimorphic artificial flower patch of 36 flowers. The nectar–reward difference between flower colors was varied in a manner in which both learning and reversal learning could be measured. Terpinyl acetate ingestion disrupted reversal learning but not initial learning: this change caused bees to remain faithful to a flower color longer than was energetically optimal. Full article
Show Figures

Figure 1

20 pages, 2932 KiB  
Article
An Assessment of the Cyto-Genotoxicity Effects of Green-Synthesized Silver Nanoparticles and ATCBRA Insecticide on the Root System of Vicia faba
by May A. Al-Saleh, Hanan F. Al-Harbi, L. A. Al-Humaid and Manal A. Awad
Nanomaterials 2025, 15(1), 77; https://doi.org/10.3390/nano15010077 - 6 Jan 2025
Cited by 2 | Viewed by 1156
Abstract
We aimed to synthesize silver nanoparticles (AgNPs) using Elettaria cardamomum (cardamom) extracts and assess the cytotoxicity and genotoxicity of the cardamom extract, cardamom–AgNPs, and the insecticide ATCBRA—commonly used for pest control—on the root system of Vicia faba (broad bean). The chemical composition [...] Read more.
We aimed to synthesize silver nanoparticles (AgNPs) using Elettaria cardamomum (cardamom) extracts and assess the cytotoxicity and genotoxicity of the cardamom extract, cardamom–AgNPs, and the insecticide ATCBRA—commonly used for pest control—on the root system of Vicia faba (broad bean). The chemical composition of the aqueous cardamom extract was identified and quantified using GC-MS, revealing a variety of bioactive compounds also present in cardamom essential oil. These included α-terpinyl acetate (21.3–44.3%), 1,8-cineole (10.7–28.4%), and linalool (6.4–8.6%). The successful green synthesis of AgNPs was confirmed through various micro-spectroscopic techniques, including UV-Vis spectroscopy, transmission electron microscopy (TEM), and energy-dispersive spectroscopy (EDS). UV-Vis analysis showed a strong peak between 420 and 430 nm, indicating the presence of AgNPs. TEM imaging revealed that the synthesized cardamom–AgNPs were monodispersed, primarily spherical, and semi-uniform in shape, with minimal aggregation. EDS analysis further confirmed the composition of the nanoparticles, with cardamom–AgNPs comprising around 60.5% by weight. Cytotoxicity was evaluated by measuring the mitotic index (MI), and genotoxicity was assessed by observing chromosomal aberrations (CAs). The roots of Vicia faba were treated for 24 and 48 h with varying concentrations of ATCBRA pesticide (0.1%, 0.3%, 0.5%, and 0.7%), aqueous cardamom extract (3%, 4%, 5%, and 6%), and green-synthesized cardamom–AgNPs (12, 25, and 60 mg). The cytogenetic analysis of MI and CA in the meristematic root tips indicated an improvement in the evaluated parameters with the cardamom extract. However, a marked reduction in mitotic activity was observed with both ATCBRA and cardamom–AgNP treatments across both time points, highlighting potential cytotoxic and genotoxic effects. Full article
Show Figures

Figure 1

15 pages, 2725 KiB  
Article
Chemical Compositions and Fumigation Effects of Essential Oils Derived from Cardamom, Elettaria cardamomum (L.) Maton, and Galangal, Alpinia galanga (L.) Willd, against Red Flour Beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae)
by Ruchuon Wanna, Parinda Khaengkhan and Hakan Bozdoğan
Plants 2024, 13(13), 1845; https://doi.org/10.3390/plants13131845 - 4 Jul 2024
Cited by 1 | Viewed by 1636
Abstract
This study explores the use of essential oils from cardamom (Elettaria cardamomum (L.) Maton) and galangal (Alpinia galanga (L.) Willd) as alternatives to synthetic insecticides for controlling the red flour beetle, Tribolium castaneum (Herbst). The chemical compositions of these oils were [...] Read more.
This study explores the use of essential oils from cardamom (Elettaria cardamomum (L.) Maton) and galangal (Alpinia galanga (L.) Willd) as alternatives to synthetic insecticides for controlling the red flour beetle, Tribolium castaneum (Herbst). The chemical compositions of these oils were analyzed using GC-MS, and their fumigation effects were tested in a vapor-phase bioassay. The experiment followed a factorial design with four types of essential oils, namely, those manually extracted from cardamom leaves (MCL) and galangal leaves (MGL) and those commercially produced from cardamom seeds (CCS) and galangal rhizomes (CGR), at seven concentrations (0, 50, 100, 150, 200, 250, and 300 µL/L air). The manually extracted oils yielded 0.6% from cardamom leaves and 0.25% from galangal leaves. MCL contained 28 components, with eucalyptol (25.2%) being the most abundant, while CCS had 34 components, primarily α-terpinyl acetate (46.1%) and eucalyptol (31.2%). MGL included 25 components, mainly caryophyllene (28.7%) and aciphyllene (18.3%), whereas CGR comprised 27 components, with methyl cis-cinnamate (47.3%) and safrole (19.8%) as the major constituents. The fumigation bioassay results revealed that CGR was the most effective, demonstrating the highest mortality rates of T. castaneum across all the tested periods and concentrations, achieving up to 96% mortality at 168 h with a concentration of 300 µL/L air. Statistical analyses showed significant differences in mortality based on the type and concentration of essential oil, particularly after 96 h. These findings highlight the potential of CGR, with its advantages and differences in chemical composition, as an effective biopesticide against T. castaneum, with increasing efficacy over time and at higher concentrations. Full article
(This article belongs to the Special Issue Emerging Topics in Botanical Biopesticides—2nd Edition)
Show Figures

Figure 1

17 pages, 336 KiB  
Article
In Vitro Evaluation of Synergistic Essential Oils Combination for Enhanced Antifungal Activity against Candida spp.
by Lukáš Hleba, Miroslava Hlebová and Ivana Charousová
Life 2024, 14(6), 693; https://doi.org/10.3390/life14060693 - 28 May 2024
Cited by 9 | Viewed by 2956
Abstract
In recent years, a significant number of infections have been attributed to non-albicidal Candida species (NAC), mainly due to the increasing resistance of NAC to antifungal agents. As only a few antifungal agents are available (azoles, echinocandins, polyenes, allylamines and nucleoside analogues), it [...] Read more.
In recent years, a significant number of infections have been attributed to non-albicidal Candida species (NAC), mainly due to the increasing resistance of NAC to antifungal agents. As only a few antifungal agents are available (azoles, echinocandins, polyenes, allylamines and nucleoside analogues), it is very important to look for possible alternatives to inhibit resistant fungi. One possibility could be essential oils (EOs), which have been shown to have significant antifungal and antibacterial activity. Therefore, in this study, the efficacy of 12 EOs and their combinations was evaluated against four yeasts of the genus Candida (C. albicas, C. glabrata, C. tropicalis and C. parapsilosis). GC-MS and GC-MS FID techniques were used for the chemical analysis of all EOs. VITEK-2XL was used to determine the antifungal susceptibility of the tested Candida spp. strains. The agar disc diffusion method was used for primary screening of the efficacy of the tested EOs. The broth dilution method was used to determine the minimum inhibitory concentrations (MICs) of the most potent EOs. After MIC cultivation, the minimum fungicidal concentration (MFC) was determined on Petri dishes (60 mm). The synergistic effect of combined EOs was evaluated using the checkerboard method and expressed as a fractional inhibitory concentration index (FICI). The results showed that ginger > ho-sho > absinth > dill > fennel > star anise > and cardamom were the most effective EOs. For all Candida species tested, the synergy was mainly observed in these combinations: ginger/fennel for C. albicans FICI 0.25 and C. glabrata, C. tropicalis and C. parapsilosis FICI 0.5 and absinth/fennel for C. albicans FICI 0.3125, C. tropicalis FICI 0.3125 and C. parapsilosis FICI 0.375. Our results suggest that the resistance of fungal pathogens to available antifungals could be reduced by combining appropriate EOs. Full article
17 pages, 2166 KiB  
Article
The Influence of a Nanoemulsion of Cardamom Essential Oil on the Growth Performance, Feed Utilization, Carcass Characteristics, and Health Status of Growing Rabbits under a High Ambient Temperature
by Rehab F. S. A. Ismail, Mahmoud A. E. Hassan, Mahmoud Moustafa, Mohammed Al-Shehri, Reem S. Alazragi, Hanan Khojah, Ali Ali El-Raghi, Sameh A. Abdelnour and Alaa M. A. Gad
Animals 2023, 13(18), 2990; https://doi.org/10.3390/ani13182990 - 21 Sep 2023
Cited by 10 | Viewed by 2558
Abstract
Recently, nanotechnology approaches have been employed to enhance the solubility, availability, and efficacy of phytochemicals, overcoming some industrial obstacles and natural biological barriers. In this regard, 120 clinically healthy growing V-line rabbits (5 weeks old) reared during the summer season were divided randomly [...] Read more.
Recently, nanotechnology approaches have been employed to enhance the solubility, availability, and efficacy of phytochemicals, overcoming some industrial obstacles and natural biological barriers. In this regard, 120 clinically healthy growing V-line rabbits (5 weeks old) reared during the summer season were divided randomly into four equal experimental groups (30 rabbits each). The first group received a basal diet without the supplementation of the nanoemulsion of cardamom essential oil (NCEO) (0 g/kg diet) and served as a control (NCEO 0). The other groups were given diets containing NCEO at levels of 150 (NCEO 150), 300 (NCEO 300), and 600 (NCEO 600) mg/kg diet, respectively. The growth performance (higher LBW and ADG), feed utilization (lower FCR), dressing percentage, and relative weight of the liver were improved significantly in the NCEO-treated groups compared to the control group. Moreover, the dietary treatment significantly decreased the rectum temperature and respiration rate, minimizing the 350 and 325 mg NECO/kg diets. The erythrocyte count, hematocrit, and hemoglobin concentration were significantly increased (p < 0.05), while white blood cells were significantly diminished (p = 0.0200) in the NCEO300 and NCEO600 groups compared to the control group. Treatment with 300 or 600 mg NCEO/kg significantly increased the blood serum total protein and albumin compared to the control group. Meanwhile, the liver enzymes (AST and ALT), uric acid, and creatinine concentrations decreased significantly in the NCEO300 group compared to the control group. The concentrations of triglycerides and total cholesterol were reduced significantly by the dietary treatment. The total antioxidant capacity, dismutase activity, and glutathione concentration were significantly higher, while the malondialdehyde and protein carbonyl levels were significantly lower in the NCEO300 group than in the control. The inflammatory responses and immunity statuses were improved in the blood serum of the NCEO-treated rabbits compared to the control. Heat-stress-induced pathological perturbations in renal/hepatic tissues and NCEO co-treatment successfully re-established and recovered near-control renal–hepatic morphology. In conclusion, a dietary supplementation of NCEO (300 mg/kg) could effectively enhance growing rabbits’ growth indices, feed efficiency, redox balance, immunity, and inflammatory responses during the summer. Full article
(This article belongs to the Collection Nanotechnology in Animal Science)
Show Figures

Figure 1

14 pages, 3878 KiB  
Article
Controlled Size Oils Based Green Fabrication of Silver Nanoparticles for Photocatalytic and Antimicrobial Application
by Seemab Pervaiz, Iram Bibi, Wajid Rehman, Hadil Faris Alotaibi, Ahmad J. Obaidullah, Liaqat Rasheed and Mohammed M. Alanazi
Antibiotics 2023, 12(7), 1090; https://doi.org/10.3390/antibiotics12071090 - 22 Jun 2023
Cited by 7 | Viewed by 2758
Abstract
The particle size at the nanometric level allows the manifestation of remarkable properties, chiefly due to changes in surface-to-volume ratio. This study is attributed to the novel green synthesis of nano silver by using essential oils as a capping and reducing agent. Clove [...] Read more.
The particle size at the nanometric level allows the manifestation of remarkable properties, chiefly due to changes in surface-to-volume ratio. This study is attributed to the novel green synthesis of nano silver by using essential oils as a capping and reducing agent. Clove oil, cinnamon oil, and cardamom oil were selected for the eco-friendly and low-cost fabrication of silver nanoparticles. The prepared nanoparticles were characterized by photoluminescence spectroscopy, FT-IR spectroscopy, X-Ray diffraction, energy dispersive X-ray spectroscopy, dynamic laser light scattering, thermogravimetric analysis, and transmission electron microscopy. It was found that samples prepared by using cinnamon oil (20 nm) and cardamom oil (12 nm) had smaller particle sizes as compared to those synthesized by using clove oil (45 nm). All the prepared samples exhibited very strong antimicrobial activities with a clear zone of inhibition (6–24 mm) against Staphylococcus aureus, Klebsiella pneumoniae, and Candida albicans. Very resilient photocatalytic activities of the samples were observed against Allura red and fast green dyes. It was concluded that the cinnamon oil-based system is the best size reducer and size homogenizer (less chances of agglomeration) as compared to clove oil and cardamom oil (more chances of agglomeration) for the synthesis of silver nanoparticles. Full article
(This article belongs to the Special Issue Antimicrobial Properties of Green Synthesized Nanomaterials)
Show Figures

Figure 1

21 pages, 3573 KiB  
Article
Antioxidant Activity and GC-MS Profile of Cardamom (Elettaria cardamomum) Essential Oil Obtained by a Combined Extraction Method—Instant Controlled Pressure Drop Technology Coupled with Sonication
by Nora E. Torres Castillo, Giselle D. Teresa-Martínez, Maritza Alonzo-Macías, Carmen Téllez-Pérez, José Rodríguez-Rodríguez, Juan Eduardo Sosa-Hernández, Roberto Parra-Saldívar, Elda M. Melchor-Martínez and Anaberta Cardador-Martínez
Molecules 2023, 28(3), 1093; https://doi.org/10.3390/molecules28031093 - 21 Jan 2023
Cited by 10 | Viewed by 6211
Abstract
Cardamom Essential oils are highly demanded because of their antimicrobial, anti-inflammatory, and antioxidant activities. Nonetheless, retrieving quality extracts quickly with efficient energy savings has been challenging. Therefore, green technologies are emerging as possible alternatives. Thus, this study evaluates the yield and quality of [...] Read more.
Cardamom Essential oils are highly demanded because of their antimicrobial, anti-inflammatory, and antioxidant activities. Nonetheless, retrieving quality extracts quickly with efficient energy savings has been challenging. Therefore, green technologies are emerging as possible alternatives. Thus, this study evaluates the yield and quality of the instant controlled pressure drop (DIC) process coupled with ultrasound-assisted extraction (UAE) of cardamom essential oil (CEO). Likewise, the antioxidant activity, chemical profile of CEO, and microstructure of seeds were analyzed. This study analyzed 13 different treatments with varying saturated steam processing temperatures (SSPT), thermal processing times (TPT), and 1 control. The results showed that CEO yield increased significantly by DIC (140 °C and 30 s) and UAE compared to the control (22.53% vs. 15.6%). DIC 2 (165 °C, 30 s) showed the highest DPPH inhibition (79.48%) and the best Trolox equivalent antioxidant capacity (TEAC) by the control with 0.60 uMTE/g. The GC/MS analysis showed 28 volatile constituents, withα-Terpinyl acetate, geranyl oleate, and oleic acid being the most abundant. DIC (140 °C and 30 s) and UAE showed the best yield and chemical profile. The SEM microscopy of untreated seeds revealed collapsed structures before the oil cell layer, which reduced the extraction yield, contrary to DIC-treated seeds, with more porous structures. Therefore, combining innovative extraction methods could solve the drawbacks of traditional extraction methods. Full article
(This article belongs to the Special Issue Essential Oils: Characterization, Biological Activity and Application)
Show Figures

Graphical abstract

9 pages, 2185 KiB  
Article
Anti-Microbial Activity of Aliphatic Alcohols from Chinese Black Cardamom (Amomum tsao-ko) against Mycobacterium tuberculosis H37Rv
by So Young Lee, Gauri S. Shetye, So-Ri Son, Hyun Lee, Larry L. Klein, Jeffrey K. Yoshihara, Rui Ma, Scott G. Franzblau, Sanghyun Cho and Dae Sik Jang
Plants 2023, 12(1), 34; https://doi.org/10.3390/plants12010034 - 21 Dec 2022
Cited by 2 | Viewed by 1917
Abstract
The fruits of Amomun tsao-ko (Chinese black cardamom; Zingiberaceae) contain an abundance of essential oils, which have previously demonstrated significant antimicrobial activity. In our preliminary search for natural anti-tuberculosis agents, an acetone extract of A. tsao-ko (AAE) exhibited strong antibacterial [...] Read more.
The fruits of Amomun tsao-ko (Chinese black cardamom; Zingiberaceae) contain an abundance of essential oils, which have previously demonstrated significant antimicrobial activity. In our preliminary search for natural anti-tuberculosis agents, an acetone extract of A. tsao-ko (AAE) exhibited strong antibacterial activity against Mycobacterium tuberculosis H37Rv. Therefore, the aim of this study was to find the principal compounds in an AAE against M. tuberculosis. Nine aliphatic compounds (19) including a new compound (1, tsaokol B) and a new natural unsaturated aliphatic diester (6), together with three acyclic terpenoids (1012), were isolated from an AAE by repetitive chromatography. The structures of the isolates were determined by spectroscopic data analysis. All isolates were evaluated for activity against M. tuberculosis H37Rv. Isolated compounds 16, and 11 had MICs ranging from 0.6–89 µg/mL. In contrast, compounds 7 to 10, and 12 had MICs that were >100 µg/mL. Tsaokol A (3) was the most active compound with MICs of 0.6 µg/mL and 1.4 µg/mL, respectively, against replicating and nonreplicating M. tuberculosis. These results are the first to illustrate the potency of tsaokol A (3) as a natural drug candidate with good selectivity for treating tuberculosis. Full article
(This article belongs to the Special Issue Pharmacological and Toxicological Study of Medicinal Plants)
Show Figures

Graphical abstract

26 pages, 6123 KiB  
Article
GC, GC/MS Analysis, and Biological Effects of Essential Oils from Thymus mastchina and Elettaria cardamomum
by Nenad L. Vukovic, Milena D. Vukic, Ana D. Obradovic, Milos M. Matic, Lucia Galovičová and Miroslava Kačániová
Plants 2022, 11(23), 3213; https://doi.org/10.3390/plants11233213 - 23 Nov 2022
Cited by 3 | Viewed by 2606
Abstract
Spanish marjoram (Thymus mastichina) and cardamom (Elettaria cardamomum) are traditional aromatic plants with which several pharmacological properties have been associated. In this study, the volatile composition, antioxidative and antimigratory effects on human breast cancer (MDA-MB-468 cell line), antimicrobial activity, [...] Read more.
Spanish marjoram (Thymus mastichina) and cardamom (Elettaria cardamomum) are traditional aromatic plants with which several pharmacological properties have been associated. In this study, the volatile composition, antioxidative and antimigratory effects on human breast cancer (MDA-MB-468 cell line), antimicrobial activity, and antibiofilm effect were evaluated. Results obtained via treatment of human breast cancer cells generally indicated an inhibitory effect of both essential oils (EOs) on cell viability (after long-term treatment) and antioxidative potential, as well as the reduction of nitric oxide levels. Antimigratory effects were revealed, suggesting that these EOs could possess significant antimetastatic properties and stop tumor progression and growth. The antimicrobial activities of both EOs were determined using the disc diffusion method and minimal inhibition concentration, while antibiofilm activity was evaluated by means of mass spectrometry. The best antimicrobial effects of T. mastichina EO were found against the yeast Candida glabrata and the G+ bacterium Listeria monocytogenes using the disc diffusion and minimal inhibitory concentration methods. E. cardamomum EO was found to be most effective against Pseudomas fluorescens biofilm using both methods. Similarly, better effects of this oil were observed on G compared to G+ bacterial strains. Our study confirms that T. mastichina and E. cardamomum EOs act to change the protein structure of older P. fluorescens biofilms. The results underline the potential use of these EOs in manufactured products, such as foodstuffs, cosmetics, and pharmaceuticals. Full article
Show Figures

Figure 1

15 pages, 4147 KiB  
Article
Cardamom Extract Alleviates the Oxidative Stress, Inflammation and Apoptosis Induced during Acetaminophen-Induced Hepatic Toxicity via Modulating Nrf2/HO-1/NQO-1 Pathway
by Essraa A. R. Alkhalifah, Amjad A. Alobaid, Marwah A. Almajed, Manar K. Alomair, Lama S. Alabduladheem, Sarah F. Al-Subaie, Abdullah Akbar, Mahesh V. Attimarad, Nancy S. Younis and Maged E. Mohamed
Curr. Issues Mol. Biol. 2022, 44(11), 5390-5404; https://doi.org/10.3390/cimb44110365 - 2 Nov 2022
Cited by 18 | Viewed by 3171
Abstract
Acetaminophen (APAP) is the most extensively used and safest analgesic and antipyretic drug worldwide; however, its toxicity is associated with life-threatening acute liver failure. Cardamom (CARD), a sweet, aromatic, commonly used spice, has several pharmacological actions. In the current study, we tried to [...] Read more.
Acetaminophen (APAP) is the most extensively used and safest analgesic and antipyretic drug worldwide; however, its toxicity is associated with life-threatening acute liver failure. Cardamom (CARD), a sweet, aromatic, commonly used spice, has several pharmacological actions. In the current study, we tried to explore the chemical composition and the hepato-protective effect of ethanolic aqueous extract of CARD to mitigate APAP-induced hepatic toxicity and elucidate its underlying mechanism of action. Material and methods: Aqueous CARD extract was subjected to LC-TOF-MS analysis to separate and elucidate some of its components. In vivo animal experiments involved five groups of animals. In the normal and cardamom groups, mice were administered either saline or CARD (200 mg/kg), respectively, orally daily for 16 days. In the APAP group, the animals were administered saline orally daily for 15 days, and on the 16th day, animals were administered APAP (300 mg/kg) IP for the induction of acute hepatic failure. In the CARD 200 + APAP group, mice were administered CARD (200 mg/kg) for 15 days, followed by APAP on the 16th day. Results: The aqueous extract of CARD showed several compounds, belonging to polyphenol, flavonoids, cinnamic acid derivatives and essential oil components. In the in vivo investigations, APAP-induced impaired liver function, several histopathological alterations, oxidative stress and inflammatory and apoptotic status signified severe hepatic failure. Whereas, pretreatment with the CARD extract prior to APAP administration diminished serum levels of the hepatic function test and augmented Nrf2 nucleoprotein and HO-1 and NQO-1. CARD down-regulated MDA, inflammatory mediators (IL-1β, IL-6, TNF-α and NF-κB) and apoptotic markers (caspase 3 and 9 and Bax) and amplified the activities of SOD, catalase, GSH-Px and GSH-R in hepatic tissue samples. Conclusion: CARD extract mitigated the hepatic toxicity induced by APAP. The underlying mechanism of action of such hepato-protective action may be through upregulation of the Nrf2/HO-1/NQO-1 pathway with subsequent alleviation of the oxidative stress, inflammation and apoptosis induced by APAP. Many of the compounds identified in the CARD extract could be attributed to this pharmacological action of the extract. Full article
(This article belongs to the Special Issue Bioactives and Inflammation)
Show Figures

Figure 1

34 pages, 4434 KiB  
Review
Chitosan Nanoparticle Encapsulation of Antibacterial Essential Oils
by Arvind Negi and Kavindra Kumar Kesari
Micromachines 2022, 13(8), 1265; https://doi.org/10.3390/mi13081265 - 6 Aug 2022
Cited by 72 | Viewed by 11790
Abstract
Chitosan is the most suitable encapsulation polymer because of its natural abundance, biodegradability, and surface functional groups in the form of free NH2 groups. The presence of NH2 groups allows for the facile grafting of functionalized molecules onto the chitosan surface, [...] Read more.
Chitosan is the most suitable encapsulation polymer because of its natural abundance, biodegradability, and surface functional groups in the form of free NH2 groups. The presence of NH2 groups allows for the facile grafting of functionalized molecules onto the chitosan surface, resulting in multifunctional materialistic applications. Quaternization of chitosan’s free amino is one of the typical chemical modifications commonly achieved under acidic conditions. This quaternization improves its ionic character, making it ready for ionic–ionic surface modification. Although the cationic nature of chitosan alone exhibits antibacterial activity because of its interaction with negatively-charged bacterial membranes, the nanoscale size of chitosan further amplifies its antibiofilm activity. Additionally, the researcher used chitosan nanoparticles as polymeric materials to encapsulate antibiofilm agents (such as antibiotics and natural phytochemicals), serving as an excellent strategy to combat biofilm-based secondary infections. This paper provided a summary of available carbohydrate-based biopolymers as antibiofilm materials. Furthermore, the paper focuses on chitosan nanoparticle-based encapsulation of basil essential oil (Ocimum basilicum), mandarin essential oil (Citrus reticulata), Carum copticum essential oil (“Ajwain”), dill plant seed essential oil (Anethum graveolens), peppermint oil (Mentha piperita), green tea oil (Camellia sinensis), cardamom essential oil, clove essential oil (Eugenia caryophyllata), cumin seed essential oil (Cuminum cyminum), lemongrass essential oil (Cymbopogon commutatus), summer savory essential oil (Satureja hortensis), thyme essential oil, cinnamomum essential oil (Cinnamomum zeylanicum), and nettle essential oil (Urtica dioica). Additionally, chitosan nanoparticles are used for the encapsulation of the major essential components carvacrol and cinnamaldehyde, the encapsulation of an oil-in-water nanoemulsion of eucalyptus oil (Eucalyptus globulus), the encapsulation of a mandarin essential oil nanoemulsion, and the electrospinning nanofiber of collagen hydrolysate–chitosan with lemon balm (Melissa officinalis) and dill (Anethum graveolens) essential oil. Full article
(This article belongs to the Special Issue Nanoparticles in Biomedical Sciences)
Show Figures

Figure 1

22 pages, 6811 KiB  
Article
Fabrication and Optimization of Essential-Oil-Loaded Nanoemulsion Using Box–Behnken Design against Staphylococos aureus and Staphylococos epidermidis Isolated from Oral Cavity
by Niamat Ullah, Adnan Amin, Rana A. Alamoudi, Sheikh Abdur Rasheed, Ruaa A. Alamoudi, Asif Nawaz, Muhammad Raza, Touseef Nawaz, Saiqa Ishtiaq and Syed Shakil Abbas
Pharmaceutics 2022, 14(8), 1640; https://doi.org/10.3390/pharmaceutics14081640 - 5 Aug 2022
Cited by 31 | Viewed by 4880
Abstract
Oral bacterial infections are fairly common in patients with diabetes mellitus; however, due to limited treatment options, herbal medicines are considered an alternate solution. This study aimed to formulate a stable essential-oil-loaded nanoemulsion for the treatment of oral bacterial infections. Essential oils from [...] Read more.
Oral bacterial infections are fairly common in patients with diabetes mellitus; however, due to limited treatment options, herbal medicines are considered an alternate solution. This study aimed to formulate a stable essential-oil-loaded nanoemulsion for the treatment of oral bacterial infections. Essential oils from edible sources including coriander, clove, cinnamon and cardamom were extracted by hydrodistillation. The response surface methodology was used to optimize the nanoemulsion formulation by applying the Box–Behnken design. The oil concentration, surfactant concentration and stirring speed were three independent factors, and particle size and polydispersity index were two responses. The particle size, polydispersity index and zeta potential of the optimized formulation were 130 mm, 0.222 and −22.9, respectively. The ATR-FTIR analysis revealed that there was no incompatibility between the active ingredients and the excipients. A significant release profile in active ingredients of nanoemulsion, i.e., 88.75% of the cinnamaldehyde and 89.33% of eugenol, was recorded after 24 h. In the ex vivo goat mucosal permeation study, 71.67% of the cinnamaldehyde permeated and that of the eugenol 70.75% from the nanoemulsion. The optimized formulation of the essential-oil-loaded nanoemulsion showed a 9 mm zone of inhibition against Staphylococcus aureus and Staphylococcus epidermidis, whereas in anti-quorum sensing analysis, the optimized nanoemulsion formulation showed an 18 mm zone of inhibition. It was concluded that formulated essential-oil-loaded nanoemulsion can be used against S. epidermidis and S. aureus infections in oral cavity. Full article
Show Figures

Figure 1

14 pages, 325 KiB  
Article
Chemical Profile, Antibacterial and Antioxidant Potential of Zingiber officinale Roscoe and Elettaria cardamomum (L.) Maton Essential Oils and Extracts
by Kelthoum Tarfaoui, Najiba Brhadda, Rabea Ziri, Asmaa Oubihi, Hamada Imtara, Sara Haida, Omkulthom M. Al kamaly, Asmaa Saleh, Mohammad Khalid Parvez, Saad Fettach and Mohammed Ouhssine
Plants 2022, 11(11), 1487; https://doi.org/10.3390/plants11111487 - 31 May 2022
Cited by 31 | Viewed by 4712
Abstract
The aim of this work was to study the chemical composition of the essential oil extracted from ginger rhizomes (Zingiber officinale Roscoe) and cardamom seeds (Elettaria cardamomum (L.) Maton). Using gas chromatography coupled with mass spectrometry (GC/MS), a total of 43 [...] Read more.
The aim of this work was to study the chemical composition of the essential oil extracted from ginger rhizomes (Zingiber officinale Roscoe) and cardamom seeds (Elettaria cardamomum (L.) Maton). Using gas chromatography coupled with mass spectrometry (GC/MS), a total of 43 compounds were identified in ginger essential oil and 17 compounds in cardamom. The most abundant components, respectively, were zingiberene (22.18%) and 1.8-cinéol (43.47%). Essential oils, methanol, ethanol and chloroform extracts for both plants were tested against nine bacteria and yeast. The highest sensitivity was noticed against Staphylococcus aureus with a 25 mm inhibition zone. The antioxidant potency of both oils and extracts were measured using DPPH (1,1-diphenyl-2-picryl hydrazyl) free radical scavenging and the ferric reducing power (FRP) method; the ethanolic extract of cardamom fruits exhibited the best results for both tests, with an IC 50 = 0.423 ± 0.015 mg/mL and 95.03 ± 0.076 FRP mg AAE/g. Full article
11 pages, 2095 KiB  
Article
Effect of the Instant Controlled Pressure Drop Technology in Cardamom (Elettaria cardamomum) Essential Oil Extraction and Antioxidant Activity
by Giselle Dení Teresa-Martínez, Anaberta Cardador-Martínez, Carmen Téllez-Pérez, Karim Allaf, Cristian Jiménez-Martínez and Maritza Alonzo-Macías
Molecules 2022, 27(11), 3433; https://doi.org/10.3390/molecules27113433 - 26 May 2022
Cited by 11 | Viewed by 4632
Abstract
Green cardamom (Elettaria cardamomum) is an outspread spice native to Asia, which is well appreciated for its sensory characteristics, delicate aroma, and unique taste. Currently, the main cardamom extracts are essential oils (EOs), and regarding current market tendencies, this market is [...] Read more.
Green cardamom (Elettaria cardamomum) is an outspread spice native to Asia, which is well appreciated for its sensory characteristics, delicate aroma, and unique taste. Currently, the main cardamom extracts are essential oils (EOs), and regarding current market tendencies, this market is in high growth. For this reason, technologies such as the instant controlled pressure drop (DIC) have been applied to reach higher yields and better quality of EO. Then, this study explores the impact of DIC as a pretreatment before hydrodistillation (HD) on the EO yield and their antioxidant activity. Obtained results showed that the coupling of DIC-HD increased the yield of essential oil and also had a positive impact on their antioxidant capacity. The EO yield of DIC-HD (140 °C and 30 s) was 4.43% vs. 2.52% for control; the AOX of DIC-HD (165 °C and 30 s) was 86% inhibition vs. 57.02% for control, and the TEAC of DIC-HD (140 °C and 30 s) was 1.44 uMTE/g EO vs. 13.66 uMTE/g EO. Full article
(This article belongs to the Special Issue Chemical Composition and Bioactivities of Essential Oils)
Show Figures

Figure 1

17 pages, 4947 KiB  
Article
Chemical Stabilization behind Cardamom Pickering Emulsion Using Nanocellulose
by Alana Gabrieli Souza, Rafaela Reis Ferreira, Eder Ramin de Oliveira, Maurício M. Kato, Sushanta K. Mitra and Derval dos Santos Rosa
Polysaccharides 2022, 3(1), 200-216; https://doi.org/10.3390/polysaccharides3010010 - 1 Feb 2022
Cited by 12 | Viewed by 4141
Abstract
Cardamom essential oil (EO) is a rare oil of high scientific and economic interest due to its biofunctionality. This work aims to stabilize the EO by Pickering emulsions with nanocellulose, in the form of nanocrystals (CNC) or nanofibers (CNF), and to investigate the [...] Read more.
Cardamom essential oil (EO) is a rare oil of high scientific and economic interest due to its biofunctionality. This work aims to stabilize the EO by Pickering emulsions with nanocellulose, in the form of nanocrystals (CNC) or nanofibers (CNF), and to investigate the stability and chemical and physical interactions involved in the process. The emulsions were characterized by droplet size, morphology, stability, surface charges, Fourier transform infrared spectroscopy, FT-Raman, nuclear magnetic resonance, and scanning electron microscopy. Stable emulsions were prepared with cellulose morphologies and CNCs resulted in a 34% creaming index, while CNFs do not show instability. Emulsions indicate a possible interaction between nanocellulose, α-terpinyl acetate, and 1,8-cineole active essential oil compounds, where α-terpinyl acetate would be inside the drop and 1,8-cineole is more available to interact with cellulose. The interaction intensity depended on the morphology, which might be due to the nanocellulose’s self-assembly around oil droplets and influence on oil availability and future application. This work provides a systematic picture of cardamomum derived essential oil Pickering emulsion containing nanocellulose stabilizers’ formation and stability, which can further be extended to other value-added oils and can be an alternative for the delivery of cardamom essential oil for biomedical, food, cosmetics, and other industries. Full article
Show Figures

Figure 1

Back to TopTop