Chemical Stabilization behind Cardamom Pickering Emulsion Using Nanocellulose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Emulsion Preparation
2.3. Characterization
2.3.1. Optical Microscopy
2.3.2. Stability under Storage and Towards Centrifugation
2.3.3. Zeta Potential
2.3.4. Fourier Transform Infrared Spectroscopy
2.3.5. FT-Raman
2.3.6. Nuclear Magnetic Resonance
2.3.7. Scanning Electron Microscopy
3. Results and Discussions
3.1. Droplet Size and Stability
3.2. Rheology
3.3. Zeta Potential
3.4. Fourier Transform Infrared Spectroscopy
3.5. Fourier Transform Raman Spectroscopy
3.6. Nuclear Magnetic Resonance
3.7. Scanning Electron Microscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ashokkumar, K.; Murugan, M.; Dhanya, M.K.; Warkentin, T.D. Botany, traditional uses, phytochemistry and biological activities of cardamom [Elettaria cardamomum (L.) Maton]—A critical review. J. Ethnopharmacol. 2020, 246, 112244–112254. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Kumar, S. Alpha-terpinyl acetate: A natural monoterpenoid from Elettaria cardamomum as multi-target directed ligand in Alzheimer’s disease. J. Funct. Foods 2020, 68, 103892–103904. [Google Scholar] [CrossRef]
- Hamzaa, R.G.; Osman, N.N. Using of Coffee and Cardamom Mixture to Ameliorate Oxidative Stress Induced in γ-irradiated Rats. Biochem. Anal. Biochem. 2012, 1, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Antioxidant activity of spices and their impact on human health: A review. Antioxidants 2017, 6, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anwar, F.; Abbas, A.; Alkharfy, K.M.; Gilani, A. Cardamom (Elettaria cardamomum Maton) Oils Farooq. In Essential Oils in Food Preservation, Flavor and Safety, 1st ed.; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 295–301. [Google Scholar]
- Savan, E.K.; Kuçukbay, F.Z. Essential oil composition of Elettaria cardamomum Maton. J. Appl. Biol. Sci. 2013, 7, 42–45. [Google Scholar]
- Tsai, F.H.; Kitamura, Y.; Kokawa, M. Effect of gum arabic-modified alginate on physicochemical properties, release kinetics, and storage stability of liquid-core hydrogel beads. Carbohydr. Polym. 2017, 174, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- George, A.; Shah, P.A.; Shrivastav, P.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int. J. Pharm. 2019, 561, 244–264. [Google Scholar] [CrossRef]
- Nahr, F.K.; Ghanbarzadeh, B.; Kafil, H.S.; Hamishehkar, H.; Hoseini, M. The colloidal and release properties of cardamom oil encapsulated nanostructured lipid carrier. J. Dispers. Sci. Technol. 2019, 42, 1–9. [Google Scholar] [CrossRef]
- Trujillo-Cayado, L.A.; Santos, J.; Calero, N.; Alfaro-Rodríguez, M.C.; Muñoz, J. Strategies for reducing Ostwald ripening phenomenon in nanoemulsions based on thyme essential oil. J. Sci. Food Agric. 2020, 100, 1671–1677. [Google Scholar] [CrossRef]
- Pickering, S.U. CXCVI.-Emulsions. J. Chem. Soc. Trans. 1907, 91, 2001–2021. [Google Scholar] [CrossRef] [Green Version]
- Ramsden, W. Separation of solids in the surface-layers of solutions and “suspensions” (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation)—Preliminary account. Proc. Roy. Soc. 1903, 72, 156–164. [Google Scholar]
- Albert, C.; Beladjine, M.; Tsapis, N.; Fattal, E.; Agnely, F.; Huang, N. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. J. Control. Release 2019, 309, 302–332. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Ortiz, D.; Pochat-Bohatier, C.; Cambedouzou, J.; Bechelany, M.; Miele, P. Current Trends in Pickering Emulsions: Particle Morphology and Applications. Engineering 2020, 6, 468–482. [Google Scholar] [CrossRef]
- Costa, C.; Medronho, B.; Filipe, A.; Mira, I.; Lindman, B.; Edlund, H.; Norgren, M. Emulsion formation and stabilization by biomolecules: The leading role of cellulose. Polymers 2019, 11, 1570. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Sheng, Y.; Ngai, T. Pickering emulsions: Versatility of colloidal particles and recent applications. Curr. Opin. Colloid Interface Sci. 2020, 49, 1–15. [Google Scholar] [CrossRef]
- Trache, D.; Tarchoun, A.F.; Derradji, M.; Hamidon, T.S.; Masruchin, N.; Brosse, N.; Hussin, M.H. Nanocellulose: From Fundamentals to Advanced Applications. Front. Chem. 2020, 8, 392–425. [Google Scholar] [CrossRef]
- Habibi, Y. Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 2014, 43, 1519–1542. [Google Scholar] [CrossRef]
- Khalil, H.P.S.; Jummaat, F.; Yahya, E.B.; Olaiya, N.G.; Adnan, A.S.; Abdat, M.; NAM, N.; Halim, A.S.; Kumar, U.S.U.; Bairwan, R.; et al. A Review on Micro- to Nanocellulose Biopolymer Scaffold Forming for Tissue Engineering Applications. Polymers 2020, 12, 2043. [Google Scholar] [CrossRef]
- Bertsch, P.; Fischer, P. Adsorption and interfacial structure of nanocelluloses at fluid interfaces. Adv. Colloid Interface Sci. 2020, 276, 102089–102104. [Google Scholar] [CrossRef]
- Ma, T.; Cui, R.; Lu, S.; Hu, X.; Xu, B.; Song, Y.; Hu, X. High internal phase Pickering emulsions stabilized by cellulose nanocrystals for 3D printing. Food Hydrocoll. 2022, 125, 107418–107428. [Google Scholar] [CrossRef]
- Li, X.; Kuang, Y.; Jiang, Y.; Dong, H.; Han, W.; Ding, Q.; Lou, J.; Wang, Y.; Cao, T.; Li, Y.; et al. In vitro gastrointestinal digestibility of corn oil-in-water Pickering emulsions stabilized by three types of nanocellulose. Carbohydr. Polym. 2022, 277, 118835–118843. [Google Scholar] [CrossRef] [PubMed]
- Bergfreund, J.; Sun, Q.; Fischer, P.; Bertsch, P. Adsorption of charged anisotropic nanoparticles at oil-water interfaces. Nanoscale Adv. 2019, 1, 4308–4312. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Ogawa, Y.; Nishiyama, Y.; Ismail, A.E.; Mazeau, K. Linear, Non-Linear and Plastic Bending Deformation of Cellulose Nanocrystals. Phys. Chem. Chem. Phys. 2016, 18, 19880–19887. [Google Scholar] [CrossRef]
- Cherhal, F.; Cousin, F.; Capron, I. Structural Description of the Interface of Pickering Emulsions Stabilized by Cellulose Nanocrystals. Biomacromolecules 2016, 17, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Lima, G.F.; Souza, A.G.; Rosa, D.S. Effect of adsorption of polyethylene glycol (PEG), in aqueous media, to improve cellulose nanostructures stability. J. Mol. Liq. 2018, 268, 415–424. [Google Scholar] [CrossRef]
- Souza, A.G.; Lima, G.F.; Rosa, D.S. Cellulose Nanostructures from Lignocellulosic Residues, 1st ed.; LAP LAMBERT Academic Publishing: Chisinau, Moldova, 2019. [Google Scholar]
- Lima, G.F.; Souza, A.G.; Bauli, C.R.; Barbosa, R.F.S.; Rocha, D.B.; Rosa, D.S. Surface modification effects on the thermal stability of cellulose nanostructures obtained from lignocellulosic residues. J. Therm. Anal. Calorim. 2020, 141, 1263–1277. [Google Scholar] [CrossRef]
- Souza, A.G.; Ferreira, R.R.; Paula, L.C.; Setz, L.F.G.; Rosa, D.S. The effect of essential oil chemical structures on Pickering emulsion stabilized with cellulose nanofibrils. J. Mol. Liq. 2020, 320, 114458–114468. [Google Scholar] [CrossRef]
- de Souza, A.G.; Ferreira, R.R.; Aguilar, E.S.F.; Zanata, L.; dos Santos Rosa, D. Cinnamon Essential Oil Nanocellulose-Based Pickering Emulsions: Processing Parameters Effect on Their Formation, Stabilization, and Antimicrobial Activity. Polysaccharides 2021, 2, 608–625. [Google Scholar] [CrossRef]
- Gestranius, M.; Stenius, P.; Kontturi, E.; Sjöblom, J.; Tammelin, T. Phase behaviour and droplet size of oil-in-water Pickering emulsions stabilised with plant-derived nanocellulosic materials. Colloids Surf. A Physicochem. Eng. Asp. 2016, 519, 60–70. [Google Scholar] [CrossRef]
- Razavi, M.S.; Golmohammadi, A.; Nematollahzadeh, A.; Fiori, F.; Rovera, C.; Farris, S. Preparation of cinnamon essential oil emulsion by bacterial cellulose nanocrystals and fish gelatin. Food Hydrocoll. 2020, 109, 106111–106118. [Google Scholar] [CrossRef]
- Pandey, A.; Derakhshandeh, M.; Kedzior, S.A.; Pilapil, B.; Shomrat, N.; Segal-Peretz, T.; Bryant, S.L.; Trifkovic, M. Role of interparticle interactions on microstructural and rheological properties of cellulose nanocrystal stabilized emulsions. J. Colloid Interface Sci. 2018, 532, 808–818. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Na, K.; Shin, S.; Seo, S.M.; Youn, H.J.; Park, I.K.; Hyun, J. Biological activity of thyme white essential oil stabilized by cellulose nanocrystals. Biomolecules 2019, 9, 799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiong, A.C.Y.; Tan, I.S.; Foo, H.C.Y.; Lam, M.K.; Mahmud, H.B.; Lee, K.T. Macroalgae-derived regenerated cellulose in the stabilization of oil-in-water Pickering emulsions. Carbohydr. Polym. 2020, 249, 116875–116886. [Google Scholar] [CrossRef]
- Cano-Sarmiento, C.; Téllez-Medina, D.I.; Viveros-Contreras, R.; Cornejo-Mazón, M.; Figueroa-Hernández, C.Y.; García-Armenta, E.; Alamilla-Beltrán, L.; García, H.S.; Gutiérrez-López, G.F. Zeta Potential of Food Matrices. Food Eng. Rev. 2018, 10, 113–138. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocoll. 2015, 43, 547–556. [Google Scholar] [CrossRef]
- Ni, Y.; Li, J.; Fan, L. Production of nanocellulose with different length from ginkgo seed shells and applications for oil in water Pickering emulsions. Int. J. Biol. Macromol. 2020, 149, 617–626. [Google Scholar] [CrossRef]
- Truzzi, E.; Marchetti, L.; Bertelli, D.; Benvenuti, S. Attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy coupled with chemometric analysis for detection and quantification of adulteration in lavender and citronella essential oils. Phytochem. Anal. 2021, 32, 907–920. [Google Scholar] [CrossRef]
- Cebi, N.; Arici, M.; Sagdic, O. The famous Turkish rose essential oil: Characterization and authenticity monitoring by FTIR, Raman and GC–MS techniques combined with chemometrics. Food Chem. 2021, 354, 129495–129505. [Google Scholar] [CrossRef]
- Karimi, N.; Jabbari, V.; Nazemi, A.; Ganbarov, K.; Karimi, N.; Tanomand, A.; Karimi, S.; Abbasi, A.; Yousefi, B.; Khodadadi, E.; et al. Thymol, cardamom and Lactobacillus plantarum nanoparticles as a functional candy with high protection against Streptococcus mutans and tooth decay. Microb. Pathog. 2020, 148, 104481–104489. [Google Scholar] [CrossRef]
- Dehghani, S.; Noshad, M.; Rastegarzadeh, S.; Hojjati, M.; Fazlara, A. Electrospun chia seed mucilage/PVA encapsulated with green cardamonmum essential oils: Antioxidant and antibacterial property. Int. J. Biol. Macromol. 2020, 161, 1–9. [Google Scholar] [CrossRef]
- Adinew, B. GC-MS and FT-IR analysis of constituents of essential oil from Cinnamon bark growing in South-west of Ethiopia. Int. J. Herb. Med. 2014, 1, 22–31. [Google Scholar]
- Li, Y.; Kong, D.; Lin, X.; Xie, Z.; Bai, M.; Huang, S.; Nian, H.; Wu, H. Quality Evaluation for Essential Oil of Cinnamomum verum Leaves at Different Growth Stages Based on GC–MS, FTIR and Microscopy. Food Anal. Methods 2014, 9, 202–212. [Google Scholar] [CrossRef]
- Valderrama, A.C.S.; Rojas, G.C. Traceability of active compounds of essential oils in antimicrobial food packaging using a chemometric method by ATR-FTIR. Am. J. Anal. Chem. 2017, 8, 726–741. [Google Scholar] [CrossRef] [Green Version]
- Siatis, N.G.; Kimbaris, A.C.; Pappas, C.S.; Tarantilis, P.A.; Daferera, D.J.; Polissiou, M.G. Rapid Method for Simultaneous Quantitative Determination of Four Major Essential Oil Components from Oregano (Oreganum sp.) and Thyme (Thymus sp.) Using FT-Raman Spectroscopy. J. Agric. Food Chem. 2005, 53, 202–206. [Google Scholar] [CrossRef]
- Schulz, H.; Baranska, M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 2007, 43, 13–25. [Google Scholar] [CrossRef]
Nomenclature | Solid Phase Concentration | Oil:Water Proportion | Speed | Time |
---|---|---|---|---|
30Car–CNC | 0.5% CNC | 30/70 | 10,000 rpm | 7 min |
20Car–CNC | 0.5% CNC | 20/80 | 10,000 rpm | 7 min |
30Car–CNF | 1% CNF | 30/70 | 12,000 rpm | 7 min |
20Car–CNF | 1% CNF | 20/80 | 12,000 rpm | 7 min |
Peak (cm−1) | Assignment | Reference |
---|---|---|
2973 | CH elongation | [37,38] |
2922, 2883 | carbonyl group elongation | [37,38] |
1729 | C=O carbonyl ester elongation vibrations | [37,38] |
1464, 1446 | CH2 bond | [37,38] |
1366, 1306 | CH2 bond | [37,38] |
1252 | carboxylic acid/acetate elongation | [37,38] |
1212, 1054, 1017 | CO | [39,40] |
1159 | CC vibrations of the molecule skeleton | [39,40] |
1078 | OH group vibrations | [39,40] |
985 | CH bending vibration absorption | [39,40] |
940 | CH vibrations aromatic ring | [39,40] |
918 | CH bond out of plane | [39,40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, A.G.; Ferreira, R.R.; de Oliveira, E.R.; Kato, M.M.; Mitra, S.K.; Rosa, D.d.S. Chemical Stabilization behind Cardamom Pickering Emulsion Using Nanocellulose. Polysaccharides 2022, 3, 200-216. https://doi.org/10.3390/polysaccharides3010010
Souza AG, Ferreira RR, de Oliveira ER, Kato MM, Mitra SK, Rosa DdS. Chemical Stabilization behind Cardamom Pickering Emulsion Using Nanocellulose. Polysaccharides. 2022; 3(1):200-216. https://doi.org/10.3390/polysaccharides3010010
Chicago/Turabian StyleSouza, Alana Gabrieli, Rafaela Reis Ferreira, Eder Ramin de Oliveira, Maurício M. Kato, Sushanta K. Mitra, and Derval dos Santos Rosa. 2022. "Chemical Stabilization behind Cardamom Pickering Emulsion Using Nanocellulose" Polysaccharides 3, no. 1: 200-216. https://doi.org/10.3390/polysaccharides3010010
APA StyleSouza, A. G., Ferreira, R. R., de Oliveira, E. R., Kato, M. M., Mitra, S. K., & Rosa, D. d. S. (2022). Chemical Stabilization behind Cardamom Pickering Emulsion Using Nanocellulose. Polysaccharides, 3(1), 200-216. https://doi.org/10.3390/polysaccharides3010010