Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = carbonyl iron particle size

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4459 KB  
Article
Microstructure (EBSD-KAM)-Informed Selection of Single-Powder Soft Magnetics for Molded Inductors
by Chang-Ting Yang, Yu-Fang Huang, Chun-Wei Tien, Kun-Yang Wu, Hung-Shang Huang and Hsing-I Hsiang
Materials 2025, 18(21), 5016; https://doi.org/10.3390/ma18215016 - 4 Nov 2025
Viewed by 285
Abstract
This study systematically benchmarks the performance of four single soft magnetic powders—water-atomized Fe–Si–Cr (FeSiCr), silica-coated reduced iron powder (RIP), silica-coated carbonyl iron powder (CIP), and phosphate-coated CIP (CIP-P)—to establish quantitative relationships between powder attributes, deformation substructure, and high-frequency loss for molded power inductors [...] Read more.
This study systematically benchmarks the performance of four single soft magnetic powders—water-atomized Fe–Si–Cr (FeSiCr), silica-coated reduced iron powder (RIP), silica-coated carbonyl iron powder (CIP), and phosphate-coated CIP (CIP-P)—to establish quantitative relationships between powder attributes, deformation substructure, and high-frequency loss for molded power inductors (100 kHz–1 MHz). We prepared toroidal compacts at 200 MPa and characterized them by initial permeability (μi), core-loss (Pcv(f)), partitioning (Pcv(f) = Khf + Kef2, Kh, Ke: hysteresis and eddy-current loss coefficients), and EBSD (electron backscatter diffraction)-derived microstrain metrics (Kernel Average Misorientation, KAM; low-/high-angle grain-boundary fractions). Corrosion robustness was assessed using a 5 wt% NaCl, 35 °C, 24 h salt-spray protocol. Our findings reveal that FeSiCr achieves the highest μi across the frequency band, despite its lowest compaction density. This is attributed to its coarse particle size (D50 ≈ 18 µm) and the resulting lower intragranular pinning. The loss spectra are dominated by hysteresis over this frequency range, with FeSiCr exhibiting the largest Kh, while the fine, silica-insulated Fe powders (RIP/CIP) most effectively suppress Ke. EBSD analysis shows that the high coercivity and hysteresis loss in CIP (and, to a lesser extent, RIP) are correlated with dense, deformation-induced subgrain networks, as evidenced by higher mean KAM and a lower low-angle grain boundary fraction. In contrast, FeSiCr exhibits the lowest KAM, with strain confined primarily to particle contact regions. Corrosion testing ranked durability as FeSiCr ≳ CIP ≈ RIP ≫ CIP-P, which is consistent with the Cr-rich passivation of FeSiCr and the superior barrier properties of the SiO2 shells compared to low-dose phosphate. At 15 A, inductance retention ranks CIP (67.9%) > RIP (55.7%) > CIP-P (48.8%) > FeSiCr (33.2%), tracking a rise in effective anisotropy and—for FeSiCr—lower Ms that precipitate earlier roll-off. Collectively, these results provide a microstructure-informed selection map for single-powder formulations. We demonstrate that particle size and shell chemistry are the primary factors governing eddy currents (Ke), while the KAM-indexed substructure dictates hysteresis loss (Kh) and DC-bias superposition characteristics. This framework enables rational trade-offs between magnetic permeability, core loss, and environmental durability. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

20 pages, 5119 KB  
Article
Research on Rotary Magnetorheological Finishing of the Inner Surface of Stainless Steel Slender Tubes
by Zhaoyang Luo, Chunya Wu, Ziyuan Jin, Bing Guo, Shengdong Gao, Kailei Luo, Huiyong Liu and Mingjun Chen
Micromachines 2025, 16(7), 763; https://doi.org/10.3390/mi16070763 - 29 Jun 2025
Viewed by 669
Abstract
316L stainless steel slender tubes with smooth inner surfaces play an important role in fields such as aerospace and medical testing. In order to solve the challenge of difficult machining of their inner surfaces, this paper introduces a novel rotary magnetorheological finishing (RMRF) [...] Read more.
316L stainless steel slender tubes with smooth inner surfaces play an important role in fields such as aerospace and medical testing. In order to solve the challenge of difficult machining of their inner surfaces, this paper introduces a novel rotary magnetorheological finishing (RMRF) method specifically designed for processing the inner surfaces of slender tubes. This method does not require frequent replacement of the polishing medium during the processing, which helps to simplify the processing technology. By combining the rotational motion of a magnetic field with the linear reciprocating movement of the workpiece, uniform material removal on the inner surfaces of 316L stainless steel tubes was achieved. Initially, a finite element model coupling the magnetic and flow fields was developed to investigate the flow behavior of the MPF under a rotating magnetic field, to examine the theoretical feasibility of the proposed polishing principle. Subsequently, experimental validation was performed using a custom-designed polishing apparatus. Through processing experiments, with surface quality designated as the index, the influences of key parameters such as the volume content and sizes of carbonyl iron particles and abrasive particles in the MPF were comprehensively evaluated, and the composition and ratio of the MPF were optimized. Based on the optimized formulation, the optimal processing time was established, reducing the inner surface roughness from an initial Sa of approximately 320 nm to 28 nm, and effectively eliminating the original defects. Full article
Show Figures

Figure 1

15 pages, 5426 KB  
Article
Mechanical Performance Enhancement of Self-Decoupling Magnetorheological Damper Enabled by Double-Graded High-Performance Magnetorheological Fluid
by Fei Guo, Hanbo Cui, Xiaojun Huang, Chengbin Du, Zongyun Mo and Xiaoguo Lin
Appl. Sci. 2025, 15(11), 6305; https://doi.org/10.3390/app15116305 - 4 Jun 2025
Cited by 1 | Viewed by 827
Abstract
Conventional magnetorheological fluids (MRFs) exhibit a constrained shear strength that restricts their deployment in high-performance damping systems. This study introduces a dual-axis innovation strategy combining material science and device physics to fundamentally redefine MRF capabilities. We develop a hierarchical particle architecture through the [...] Read more.
Conventional magnetorheological fluids (MRFs) exhibit a constrained shear strength that restricts their deployment in high-performance damping systems. This study introduces a dual-axis innovation strategy combining material science and device physics to fundamentally redefine MRF capabilities. We develop a hierarchical particle architecture through the controlled integration of micro/nano-sized carbonyl iron particles (CIPs), enhanced by polyethylene glycol/oleic acid surface engineering to optimize magnetic chain formation and interfacial bonding. The engineered MRF demonstrates a shear yield strength of 99.6 kPa at 0.757 T, surpassing conventional single-component MRFs by a significant margin. Integrated with a self-decoupling damper that isolates magnetic flux from mechanical motion, this synergistic design achieves exceptional force modulation: damping forces scale from 281.5 kN (5 mm stroke) to 300 kN (60 mm stroke), with current-regulated adjustability factors reaching 3.34. The system exhibits substantial improvements in both maximum damping force (93.9 kN enhancement) and energy dissipation efficiency compared to standard MRF dampers. Through co-optimization of the particle architecture and magnetic circuit design, this work establishes new performance benchmarks for smart fluid technology. The achieved force capacity and dynamic response characteristics directly address critical challenges in seismic engineering and industrial vibration control, where extreme load-bearing requirements demand simultaneous high strength and tunable damping capabilities. Full article
Show Figures

Figure 1

13 pages, 5103 KB  
Article
Back Propagation Neural Network-Based Predictive Model for Magnetorheological–Chemical Polishing of Silicon Carbide
by Huazhuo Liang, Wenjie Chen, Youzhi Fu, Wenjie Zhou, Ling Mo, Yue Jian, Qi Wen, Dawei Liu and Junfeng He
Micromachines 2025, 16(3), 271; https://doi.org/10.3390/mi16030271 - 27 Feb 2025
Cited by 1 | Viewed by 803
Abstract
Magnetorheological–chemical-polishing tests are carried out on single-crystal silicon carbide (SiC) to study the influence of the process parameters on the polishing effect, predict the polishing results via a back propagation (BP) neural network, and construct a model of the processing parameters to predict [...] Read more.
Magnetorheological–chemical-polishing tests are carried out on single-crystal silicon carbide (SiC) to study the influence of the process parameters on the polishing effect, predict the polishing results via a back propagation (BP) neural network, and construct a model of the processing parameters to predict the material removal rate (MRR) and surface quality. Magnetorheological–chemical polishing employs mechanical removal coupled with chemical action, and the synergistic effect of both actions can achieve an improved polishing effect. The results show that with increasing abrasive particle size, hydrogen peroxide concentration, workpiece rotational speed, and polishing disc rotational speed, the MRR first increases and then decreases. With an increasing abrasive concentration and carbonyl iron powder concentration, the MRR continues to increase. With an increasing machining gap, the MRR shows a continuous decrease, and the corresponding changes in surface roughness tend to decrease first and then increase. The prediction models of the MRR and surface quality are constructed via a BP neural network, and their average absolute percentage errors are less than 2%, which is important for the online monitoring of processing and process optimisation. Full article
Show Figures

Figure 1

12 pages, 3542 KB  
Article
Study on the Magnetic Contact Mechanical Properties of Polyurethane-Based Magnetorheological Elastomer Sealing Materials
by Xiuxu Zhao, Emmanuel Appiah and Haile Tang
Lubricants 2025, 13(2), 88; https://doi.org/10.3390/lubricants13020088 - 16 Feb 2025
Cited by 1 | Viewed by 1265
Abstract
In order to meet the dual requirements of hydraulic dynamic sealing to ensure a reduction in friction, this study prepared polyurethane-based magnetorheological elastomers (MREs). The compression performance of isotropic and anisotropic samples under a magnetic field was tested in samples containing carbonyl iron [...] Read more.
In order to meet the dual requirements of hydraulic dynamic sealing to ensure a reduction in friction, this study prepared polyurethane-based magnetorheological elastomers (MREs). The compression performance of isotropic and anisotropic samples under a magnetic field was tested in samples containing carbonyl iron powder (CIP) particles with different volume contents and particle sizes. The compression performance of isotropic and anisotropic samples under the magnetic field was tested under static loading, and the friction coefficient changes in isotropic and anisotropic samples under a magnetic field were analyzed by a friction testing machine. The test results show that under static compression load, the contact stress of isotropic and anisotropic specimens increases with the increase in magnetic field strength, and the magnitude of the contact stress changes when the increase in magnetic field strength is proportional to the CIP content and CIP particle size of the specimen. The friction test results of the samples showed that an increase in magnetic field strength, CIP particle diameter, and CIP content reduces the friction coefficient of the CIP particle polyurethane-based magnetorheological elastomer samples, and the variation in the magnetic friction coefficient of anisotropic samples is greater than that of isotropic samples. This research result indicates that utilizing the magneto-mechanical properties of polyurethane-based magnetorheological elastomers can provide an innovative solution to the inherent contradiction between increasing contact stress and avoiding wear in the dynamic sealing of hydraulic systems, which can provide controllable sealing performance for hydraulic dynamic sealing components in specific application scenarios, enabling them to have a better sealing ability while reducing the friction coefficient of the sealing pair. Full article
Show Figures

Figure 1

14 pages, 4427 KB  
Article
Synthesis and Characterization of Iron Nanoparticles from a Bioflocculant Produced by Pichia kudriavzevii Isolated from Kombucha Tea SCOBY
by Phakamani H. Tsilo, Albertus K. Basson, Zuzingcebo G. Ntombela, Nkosinathi G. Dlamini and V. S. R. Rajasekhar Pullabhotla
Bioengineering 2024, 11(11), 1091; https://doi.org/10.3390/bioengineering11111091 - 30 Oct 2024
Cited by 2 | Viewed by 2282
Abstract
The intriguing characteristics of nanoparticles have fueled recent advancement in the field of nanotechnology. In the current study, a microbial-based bioflocculant made from the SCOBY of Kombucha tea broth was purified, profiled, and utilized to biosynthesize iron nanoparticles as a capping and reducing [...] Read more.
The intriguing characteristics of nanoparticles have fueled recent advancement in the field of nanotechnology. In the current study, a microbial-based bioflocculant made from the SCOBY of Kombucha tea broth was purified, profiled, and utilized to biosynthesize iron nanoparticles as a capping and reducing agent. UV–visible absorption spectroscopy, transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), and TGA were used to characterize the Fe nanoparticles. The FT-IR spectra showed functional groups such as hydroxyl, a halogen (C-Br), and carbonyl, and the alkane (C-H) functional groups were present in both samples (bioflocculant and FeNPs) with the exception of the Fe-O bond, which represented the successful biosynthesis of FeNPs. The TEM investigation revealed that the sizes of the produced iron nanoparticles were between 2.6 and 6.2 nm. The UV-vis spectra revealed peaks at 230 nm for the bioflocculant and for the as-fabricated FeNPs, peaks were around 210, 265, and 330 nm, which confirms the formation of FeNPs. X-ray diffraction presented planes (012), (104), (110), (113), (024), (116), and (533) and these planes correspond to 17.17, 32.58, 33.75, 38.18, 45.31, 57.40, and 72.4° at 2Ө. The presence of Fe nanoparticles presented with 0.82 wt% from the EDX spectrum of the biosynthesized FeNPs. However, Fe content was not present from the bioflocculant. SEM images reported cumulus-like particles of the bioflocculant, while that of FeNPs were agglomerated and hexagonal with sizes between 18 and 50 nm. The TGA of FeNPs showed thermal stability by retaining above 60% of its weight at high temperatures. It can therefore be deduced that the purified bioflocculant produced by a yeast Pichia kudraivzevii can be utilized to synthesize FeNPs with the current simple and effective method. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Figure 1

18 pages, 2586 KB  
Article
Selecting the Most Sustainable Phosphorus Adsorbent for Lake Restoration: Effects on the Photosynthetic Activity of Chlorella sp.
by Inmaculada Álvarez-Manzaneda, Álvaro Castaño-Hidalgo and Inmaculada de Vicente
Sustainability 2024, 16(19), 8305; https://doi.org/10.3390/su16198305 - 24 Sep 2024
Viewed by 1405
Abstract
To promote the conservation of aquatic ecosystems, it is essential to delve into restoration techniques for selecting the most sustainable option for combating eutrophication. Hence, we study the effects of novel phosphorus (P) adsorbents (magnetic carbonyl iron particles, HQ, and two non-magnetic P [...] Read more.
To promote the conservation of aquatic ecosystems, it is essential to delve into restoration techniques for selecting the most sustainable option for combating eutrophication. Hence, we study the effects of novel phosphorus (P) adsorbents (magnetic carbonyl iron particles, HQ, and two non-magnetic P adsorbents: CFH-12® and Phoslock®) on the growth and photosynthetic activity of Chlorella sp. More specifically, the intrinsic photochemical efficiency of PSII (ΦPSII) and the nonphotochemical quenching (NPQ) were measured in Chlorella sp. after different contact times with different concentrations of these adsorbents. Our initial hypothesis was that non-magnetic P adsorbents have more effects on the organisms than magnetic ones. However, our results did not show strong evidence of inhibitory effects caused by HQ nor CFH-12® (no significant effect size on ΦPSII), while Phoslock® showed inhibitory effects on the photosynthetic activity of Chlorella sp. for any of its concentrations (NPQ = 0). Lastly, we compared the effect of the studied P adsorbents in a real application scenery (Honda wetland, Spain). For this study case, it is likely that CFH-12® and HQ doses would not cause any negative effects on photosynthetic efficiency while Phoslock®, by limiting light availability, will drastically reduce it. Full article
(This article belongs to the Special Issue Biodiversity, Biologic Conservation and Ecological Sustainability)
Show Figures

Figure 1

13 pages, 68607 KB  
Article
Enhancement of Magnetorheological Fluids with Size and Morphology—Optimized Fe3O4 Nanoparticles: Impacts on Rheological Properties and Stability
by Liwei Xu and Guangdong Zhou
Materials 2024, 17(12), 2838; https://doi.org/10.3390/ma17122838 - 11 Jun 2024
Cited by 3 | Viewed by 1623
Abstract
In this study, we synthesized Fe3O4 nanoparticles (Fe3O4 NPs) of varying sizes and morphologies using the solvothermal method and incorporated them as additives into carbonyl iron magnetorheological fluids (CI-MRFs). We tested the shear stress, yield stress, viscosity [...] Read more.
In this study, we synthesized Fe3O4 nanoparticles (Fe3O4 NPs) of varying sizes and morphologies using the solvothermal method and incorporated them as additives into carbonyl iron magnetorheological fluids (CI-MRFs). We tested the shear stress, yield stress, viscosity and storage modulus of the MRFs using a magnetorheometer to investigate how the size and morphology of Fe3O4 NPs influence the performance of MRFs. Our results indicate that the size of the additive nanoparticles significantly enhances the MR properties of MRFs more than their morphological attributes. This enhancement results from optimizing and stabilizing the CI magnetic chain structure of the nanoparticles in the presence of a magnetic field. Specifically, MRFs with Fe3O4 NPs averaging 250 nm in size exhibit higher yield stress and storage modulus and show increased resistance to shear strains. Although the nanoparticle morphology has a modest effect on the rheological properties of MRFs, hexahedral and octahedral particles can enhance rheological properties through increased internal friction compared to spherical particles. Additionally, Fe3O4 NPs of different sizes and morphologies improve the sedimentation stability of MRFs, with those around 250 nm being particularly effective at slowing down sedimentation. Both hexahedral and octahedral Fe3O4 NPs slow down sedimentation more effectively than spherical Fe3O4 NPs. This paper investigates the rheological properties of CI-MRFs by controlling the additive particle size and morphological features, providing a research foundation for the design and optimization of MRFs. Full article
(This article belongs to the Section Smart Materials)
Show Figures

Figure 1

12 pages, 3328 KB  
Article
Enhanced Thermal Stability of Carbonyl Iron Nanocrystalline Microwave Absorbents by Pinning Grain Boundaries with SiBaFe Alloy Nanoparticles
by Yifan Xu, Zhihong Chen, Ziwen Fu, Yuchen Hu, Yunhao Luo, Wei Li and Jianguo Guan
Nanomaterials 2024, 14(10), 869; https://doi.org/10.3390/nano14100869 - 16 May 2024
Cited by 1 | Viewed by 1736
Abstract
Nanocrystalline carbonyl iron (CI) particles are promising microwave absorbents at elevated temperature, whereas their excessive grain boundary energy leads to the growth of nanograins and a deterioration in permeability. In this work, we report a strategy to enhance the thermal stability of the [...] Read more.
Nanocrystalline carbonyl iron (CI) particles are promising microwave absorbents at elevated temperature, whereas their excessive grain boundary energy leads to the growth of nanograins and a deterioration in permeability. In this work, we report a strategy to enhance the thermal stability of the grains and microwave absorption of CI particles by doping a SiBaFe alloy. Grain growth was effectively inhibited by the pinning effect of SiBaFe alloy nanoparticles at the grain boundaries. After heat treatment at 600 °C, the grain size of CI particles increased from ~10 nm to 85.1 nm, while that of CI/SiBaFe particles was only 32.0 nm; with the temperature rising to 700 °C, the grain size of CI particles sharply increased to 158.1 nm, while that of CI/SiBaFe particles was only 40.8 nm. Excellent stability in saturation magnetization and microwave absorption was also achieved in CI/SiBaFe particles. After heat treatment at 600 °C, the flaky CI/SiBaFe particles exhibited reflection loss below −10 dB over 7.01~10.11 GHz and a minimum of −14.92 dB when the thickness of their paraffin-based composite was 1.5 mm. We provided a low-cost and efficient kinetic strategy to stabilize the grain size in nanoscale and microwave absorption for nanocrystalline magnetic absorbents working at elevated temperature. Full article
(This article belongs to the Special Issue Advances in Stimuli-Responsive Nanomaterials: 2nd Edition)
Show Figures

Figure 1

22 pages, 9720 KB  
Article
Selective Removal of Chlorophyll and Isolation of Lutein from Plant Extracts Using Magnetic Solid Phase Extraction with Iron Oxide Nanoparticles
by Jolanta Flieger, Natalia Żuk, Sylwia Pasieczna-Patkowska, Marcin Kuśmierz, Rafał Panek, Wojciech Franus, Jacek Baj, Grzegorz Buszewicz, Grzegorz Teresiński and Wojciech Płaziński
Int. J. Mol. Sci. 2024, 25(6), 3152; https://doi.org/10.3390/ijms25063152 - 9 Mar 2024
Cited by 5 | Viewed by 4123
Abstract
In recent years, there has been a growing interest in plant pigments as readily available nutraceuticals. Photosynthetic pigments, specifically chlorophylls and carotenoids, renowned for their non-toxic antioxidant properties, are increasingly finding applications beyond their health-promoting attributes. Consequently, there is an ongoing need for [...] Read more.
In recent years, there has been a growing interest in plant pigments as readily available nutraceuticals. Photosynthetic pigments, specifically chlorophylls and carotenoids, renowned for their non-toxic antioxidant properties, are increasingly finding applications beyond their health-promoting attributes. Consequently, there is an ongoing need for cost-effective methods of isolation. This study employs a co-precipitation method to synthesize magnetic iron oxide nanoparticles. Scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS) confirms that an aqueous environment and oxidizing conditions yield nanosized iron oxide with particle sizes ranging from 80 to 140 nm. X-ray photoelectron spectroscopy (XPS) spectra indicate the presence of hydrous iron oxide FeO(OH) on the surface of the nanosized iron oxide. The Brunauer–Emmett–Teller (BET) surface area of obtained nanomaterial was 151.4 m2 g−1, with total pore volumes of pores 0.25 cm3 g−1 STP. The material, designated as iron oxide nanoparticles (IONPs), serves as an adsorbent for magnetic solid phase extraction (MSPE) and isolation of photosynthetic pigments (chlorophyll a, lutein) from extracts of higher green plants (Mentha piperita L., Urtica dioica L.). Sorption of chlorophyll a onto the nanoparticles is confirmed using UV–vis spectroscopy, Fourier transform infrared photoacoustic spectroscopy (FT-IR/PAS), and high-performance liquid chromatography (HPLC). Selective sorption of chlorophyll a requires a minimum of 3 g of IONPs per 12 mg of chlorophyll a, with acetone as the solvent, and is dependent on a storage time of 48 h. Extended contact time of IONPs with the acetone extract, i.e., 72 h, ensures the elimination of remaining components except lutein, with a spectral purity of 98%, recovered with over 90% efficiency. The mechanism of chlorophyll removal using IONPs relies on the interaction of the pigment’s carbonyl (C=O) groups with the adsorbent surface hydroxyl (–OH) groups. Based on molecular dynamics (MD) simulations, it has been proven that the selective adsorption of pigments is also influenced by more favorable dispersion interactions between acetone and chlorophyll in comparison with other solutes. An aqueous environment significantly promotes the removal of pigments; however, it results in a complete loss of selectivity. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

17 pages, 5409 KB  
Article
The Magneto–Mechanical Hyperelastic Property of Isotropic Magnetorheological Elastomers with Hybrid-Size Magnetic Particles
by Leizhi Wang, Ke Zhang and Zhaobo Chen
Materials 2023, 16(23), 7282; https://doi.org/10.3390/ma16237282 - 23 Nov 2023
Viewed by 1968
Abstract
Isotropic magnetorheological elastomers (MREs) with hybrid-size particles are proposed to tailor the zero-field elastic modulus and the relative magnetorheological rate. The hyperelastic magneto–mechanical property of MREs with hybrid-size CIPs (carbonyl iron particles) was experimentally investigated under large strain, which showed differential hyperelastic mechanical [...] Read more.
Isotropic magnetorheological elastomers (MREs) with hybrid-size particles are proposed to tailor the zero-field elastic modulus and the relative magnetorheological rate. The hyperelastic magneto–mechanical property of MREs with hybrid-size CIPs (carbonyl iron particles) was experimentally investigated under large strain, which showed differential hyperelastic mechanical behavior with different hybrid-size ratios. Quasi-static magneto–mechanical compression tests corresponding to MREs with different hybrid size ratios and mass fractions were performed to analyze the effects of hybrid size ratio, magnetic flux density, and CIP mass fraction on the magneto–mechanical properties. An extended Knowles magneto–mechanical hyperelastic model based on magnetic energy, coupling the magnetic interaction, is proposed to predict the influence of mass fraction, hybrid size ratio, and magnetic flux density on the magneto–mechanical properties of isotropic MRE. Comparing the experimental and predicted results, the proposed model can accurately evaluate the quasi-static compressive magneto–mechanical properties, which show that the predicted mean square deviations of the magneto–mechanical constitutive curves for different mass fractions are all in the range of 0.9–1. The results demonstrate that the proposed hyperelastic magneto–mechanical model, evaluating the magneto–mechanical properties of isotropic MREs with hybrid-size CIPs, has a significant stress–strain relationship. The proposed model is important for the characterization of magneto–mechanical properties of MRE-based smart devices. Full article
(This article belongs to the Section Smart Materials)
Show Figures

Figure 1

10 pages, 3518 KB  
Article
Anomalous Magnetorheological Response for Carrageenan Magnetic Hydrogels Prepared by Natural Cooling
by Masahiro Kaneko, Mika Kawai and Tetsu Mitsumata
Gels 2023, 9(9), 691; https://doi.org/10.3390/gels9090691 - 28 Aug 2023
Cited by 3 | Viewed by 1372
Abstract
The effect of the cooling rate on magnetorheological response was investigated for magnetic hydrogels consisting of carrageenan and carbonyl iron particles with a concentration of 50 wt.%. For magnetic gels prepared via natural cooling, the storage moduli at 0 and 50 mT were [...] Read more.
The effect of the cooling rate on magnetorheological response was investigated for magnetic hydrogels consisting of carrageenan and carbonyl iron particles with a concentration of 50 wt.%. For magnetic gels prepared via natural cooling, the storage moduli at 0 and 50 mT were 3.7 × 104 Pa and 5.6 × 104 Pa, respectively, and the change in the modulus was 1.9 × 104 Pa. For magnetic gels prepared via rapid cooling, the storage moduli at 0 and 50 mT were 1.2 × 104 Pa and 1.8 × 104 Pa, respectively, and the change in the modulus was 6.2 × 103 Pa, which was 1/3 of that for the magnetic gel prepared by natural cooling. The critical strains, where G′ is equal to G″ on the strain dependence of the storage modulus, for magnetic gels prepared by natural cooling and rapid cooling, were 0.023 and 0.034, respectively, indicating that the magnetic gel prepared by rapid cooling has a hard structure compared to that prepared by natural cooling. Opposite to this, the change in the storage modulus at 500 mT for the magnetic gel prepared by rapid cooling was 1.6 × 105 Pa, which was 2.5 times higher than that prepared by natural cooling. SEM images revealed that many small aggregations of the carrageenan network were found in the magnetic gel prepared by natural cooling, and continuous phases of carrageenan network with large sizes were found in the magnetic gel prepared by rapid cooling. It was revealed that magnetic particles in the magnetic gel prepared by rapid cooling can move and form a chain structure at high magnetic fields by breaking the restriction from the continuous phases of carrageenan. Full article
(This article belongs to the Special Issue Advances in Polymer Rheology)
Show Figures

Graphical abstract

15 pages, 4550 KB  
Article
Deposition of Thick SiO2 Coatings to Carbonyl Iron Microparticles for Thermal Stability and Microwave Performance
by Arthur V. Dolmatov, Sergey S. Maklakov, Anastasia V. Artemova, Dmitry A. Petrov, Artem O. Shiryaev and Andrey N. Lagarkov
Sensors 2023, 23(3), 1727; https://doi.org/10.3390/s23031727 - 3 Feb 2023
Cited by 13 | Viewed by 3242
Abstract
Thick dielectric SiO2 shells on the surface of iron particles enhance the thermal and electrodynamic parameters of the iron. A technique to deposit thick, 500-nm, SiO2 shell to the surface of carbonyl iron (CI) particles was developed. The method consists of [...] Read more.
Thick dielectric SiO2 shells on the surface of iron particles enhance the thermal and electrodynamic parameters of the iron. A technique to deposit thick, 500-nm, SiO2 shell to the surface of carbonyl iron (CI) particles was developed. The method consists of repeated deposition of SiO2 particles with air drying between iterations. This method allows to obtain thick dielectric shells up to 475 nm on individual CI particles. The paper shows that a thick SiO2 protective layer reduces the permittivity of the ‘Fe-SiO2—paraffin’ composite in accordance with the Maxwell Garnett medium theory. The protective shell increases the thermal stability of iron, when heated in air, by shifting the transition temperature to the higher oxide. The particle size, the thickness of the SiO2 shells, and the elemental analysis of the samples were studied using a scanning electron microscope. A coaxial waveguide and the Nicholson–Ross technique were used to measure microwave permeability and permittivity of the samples. A vibrating-sample magnetometer (VSM) was used to measure the magnetostatic data. A synchronous thermal analysis was applied to measure the thermal stability of the coated iron particles. The developed samples can be applied for electromagnetic compatibility problems, as well as the active material for various types of sensors. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

16 pages, 3941 KB  
Article
Tunable Head-Conducting Microwave-Absorbing Multifunctional Composites with Excellent Microwave Absorption, Thermal Conductivity and Mechanical Properties
by Zhen Hong, Xingxing Yu, Yun Xing, Mingshan Xue, Yidan Luo, Zuozhu Yin, Chan Xie, Yingbin Yang and Zeming Ren
J. Compos. Sci. 2023, 7(1), 15; https://doi.org/10.3390/jcs7010015 - 6 Jan 2023
Cited by 11 | Viewed by 3261
Abstract
Developing composite materials with both thermal conductivity and microwave absorption is an effective strategy to solve the problems of heat dissipation burden and microwave radiation interference caused by the development of miniaturization and high performance of portable electronic equipment. However, these properties are [...] Read more.
Developing composite materials with both thermal conductivity and microwave absorption is an effective strategy to solve the problems of heat dissipation burden and microwave radiation interference caused by the development of miniaturization and high performance of portable electronic equipment. However, these properties are not easy to simultaneously implement due to the limitation of single type fillers with a single particle size, inspiring the possibility of realizing multifunctional composites with the introduction of composite fillers. In this work, using alumina (Al2O3) and zinc oxide (ZnO) as head-conducting fillers, carbonyl iron (Fe(CO)5) as microwave-absorbing fillers, silicone rubber (SR) composites (Al2O3/ZnO/Fe(CO)5/SR) with enhanced microwave absorption, high thermal conductivity and good mechanical properties were successfully mass prepared. It was found that the composites can achieve a thermal conductivity of 3.61 W·m−1·K−1, an effective microwave absorption bandwidth of 10.86–15.47 GHz. Especially, there is an effective microwave absorption efficiency of 99% at 12.46–14.27 GHz, which can realize the integration of electromagnetic shielding and heat dissipation. The compact microstructure, formed by the overlapping of large particle size fillers and the filling of their gaps by small particle size fillers, is helpful to enhance the thermal conduction path and weaken the microwave reflection. The heat-conducting microwave-absorbing Al2O3/ZnO/Fe(CO)5/SR composites also have the advantages of thermal stability, lightness and flexibility, providing a certain experimental basis for the research and development of high-performance and diversified composites. Full article
(This article belongs to the Special Issue Multifunctional Composites, Volume II)
Show Figures

Figure 1

12 pages, 3196 KB  
Article
Morphological Effects of Strain Localization in the Elastic Region of Magnetorheological Elastomers
by Mohd Aidy Faizal Johari, Saiful Amri Mazlan, Nur Azmah Nordin, Seung-Bok Choi, Siti Aishah Abdul Aziz, Shaari Daud and Irfan Bahiuddin
Materials 2022, 15(23), 8565; https://doi.org/10.3390/ma15238565 - 1 Dec 2022
Cited by 1 | Viewed by 1727
Abstract
Strain localization is a significant issue that poses interesting research challenges in viscoelastic materials because it is difficult to accurately predict the damage evolution behavior. Over time, the damage mechanism in the amorphous structure of viscoelastic materials leads to subsequent localization into a [...] Read more.
Strain localization is a significant issue that poses interesting research challenges in viscoelastic materials because it is difficult to accurately predict the damage evolution behavior. Over time, the damage mechanism in the amorphous structure of viscoelastic materials leads to subsequent localization into a shear band, gradually jeopardizing the materials’ elastic sustainability. The primary goal of this study is to further understand the morphological effects and the role of shear bands in viscoelastic materials precipitated by strain localization. The current study aims to consolidate the various failure mechanisms of a sample and its geometry (surface-to-volume ratio) used in torsional testing, as well as to understand their effects on stress relaxation durability performance. A torsional shear load stress relaxation durability test was performed within the elastic region on an isotropic viscoelastic sample made of silicon rubber and a 70% weight fraction of micron-sized carbonyl iron particles. Degradation was caused by a shear band of localized plasticity that developed microscopically due to stress relaxation durability. The failure pattern deteriorated as the surface-to-volume ratio decreased. A field-emission scanning electron microscope (FESEM) and a tapping-mode atomic force microscope (AFM) were used for further observation and investigation of the sample. After at least 7500 cycles of continuous shearing, the elastic sustainability of the viscoelastic materials microstructurally degraded, as indicated by a decline in stress performance over time. Factors influencing the formation of shear bands were observed in postmortem, which was affected by simple micromanipulation of the sample geometry, making it applicable for practical implementation to accommodate any desired performance and micromechanical design applications. Full article
Show Figures

Figure 1

Back to TopTop