Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = carbon fibre preforms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 11346 KiB  
Article
Heat Transfer Analysis in Double Diaphragm Preforming Process of Dry Woven Carbon Fibres
by Srikara Dandangi, Sadegh Ghanei, Mohammad Ravandi, Jamal Naser and Adriano Di Pietro
Energies 2025, 18(6), 1471; https://doi.org/10.3390/en18061471 - 17 Mar 2025
Viewed by 422
Abstract
Double diaphragm forming (DDF) represents an efficient manufacturing technique leveraging vacuum pressure and heat to form composite material stacks between flexible diaphragms. This study focuses on the critical role of thermal management during preforming, essential for material integrity, defect mitigation, and process efficiency. [...] Read more.
Double diaphragm forming (DDF) represents an efficient manufacturing technique leveraging vacuum pressure and heat to form composite material stacks between flexible diaphragms. This study focuses on the critical role of thermal management during preforming, essential for material integrity, defect mitigation, and process efficiency. A comprehensive three-dimensional finite element model (FEM) is developed to investigate the heat transfer dynamics in DDF, incorporating temperature-dependent material properties such as specific heat and thermal conductivity under compaction and varying density conditions. A novel approach is introduced to predict thermal contact conductance (TCC) across multilayer carbon fabric interfaces, validated using four laminate configurations. The resulting effective thermal conductivity of the laminates is applied in production-scale simulations, enabling accurate predictions of temperature distributions, which are corroborated by experimental data. The findings highlight the significant impact of mesoscale interactions, such as yarn-level deformation and surface asperities, on TCC variation. The study provides an enhanced understanding of heat transfer mechanisms in DDF, offering insights to optimise process parameters, improve product quality, and advance manufacturing capabilities for complex geometries. Full article
(This article belongs to the Special Issue Advanced Analysis of Heat Transfer and Energy Conversion 2024)
Show Figures

Figure 1

17 pages, 9263 KiB  
Article
Development and Manufacturing of a Fibre Reinforced Thermoplastic Composite Spar Produced by Oven Vacuum Bagging
by Helena Rocha, Agnieszka Rocha, Joana Malheiro, Bruno Sousa, Andreia Vilela, Filipa Carneiro and Paulo Antunes
Polymers 2024, 16(15), 2216; https://doi.org/10.3390/polym16152216 - 3 Aug 2024
Viewed by 1994
Abstract
The limited recyclability of fibre-reinforced thermoset composites has fostered the development of alternative thermoplastic-based composites and their manufacturing processes. The most common thermoplastic-based composites are often costly due to their availability in the form of prepreg materials and to the high pressure and [...] Read more.
The limited recyclability of fibre-reinforced thermoset composites has fostered the development of alternative thermoplastic-based composites and their manufacturing processes. The most common thermoplastic-based composites are often costly due to their availability in the form of prepreg materials and to the high pressure and temperatures required for their manufacturing. Yet, the manufacturing of economic and recyclable composites, made of semi-preg composite materials using traditional composite manufacturing technologies, has only been proved at a laboratory scale through the manufacturing of flat plates. This work reports the manufacturing of a real structural part, a wing spar section with complex geometry, made of commingled polyamide 12 (PA12) fibres and carbon fibres (CFs) semi-preg and by oven vacuum bagging (OVB). The composite layup was studied using finite element analysis, and processing simulation assisted in the determination of the PA12/CF preform for OVB. Processing of two forms of semi-preg materials was first evaluated and optimised. The material selection for part manufacturing was mainly defined by the materials’ processability. The spar section was manufactured in two OVB stages and was then mechanically tested. The mechanical test showed a linear strain response of the prototype up to the maximum load and validated the optimised layup configuration of the composite structure. Full article
Show Figures

Figure 1

23 pages, 10146 KiB  
Article
Experimental Characterization of Screw-Extruded Carbon Fibre-Reinforced Polyamide: Design for Aeronautical Mould Preforms with Multiphysics Computational Guidance
by Juan Carlos Antolin-Urbaneja, Haritz Vallejo Artola, Eduard Bellvert Rios, Jorge Gayoso Lopez, Jose Ignacio Hernández Vicente and Ana Isabel Luengo Pizarro
J. Manuf. Mater. Process. 2024, 8(1), 34; https://doi.org/10.3390/jmmp8010034 - 9 Feb 2024
Cited by 5 | Viewed by 2518
Abstract
In this research work, the suitability of short carbon fibre-reinforced polyamide 6 in pellet form for printing an aeronautical mould preform with specific thermomechanical requirements is investigated. This research study is based on an extensive experimental characterization campaign, in which the principal mechanical [...] Read more.
In this research work, the suitability of short carbon fibre-reinforced polyamide 6 in pellet form for printing an aeronautical mould preform with specific thermomechanical requirements is investigated. This research study is based on an extensive experimental characterization campaign, in which the principal mechanical properties of the printed material are determined. Furthermore, the temperature dependency of the material properties is characterized by testing samples at different temperatures for bead printing and stacking directions. Additionally, the thermal properties of the material are characterized, including the coefficient of thermal expansion. Moreover, the influence of printing machine parameters is evaluated by comparing the obtained tensile moduli and strengths of several manufactured samples at room temperature. The results show that the moduli and strengths can vary from 78% to 112% and from 55% to 87%, respectively. Based on a real case study of its aeronautical use and on the experimental data from the characterization stage, a new mould design is iteratively developed with multiphysics computational guidance, considering 3D printing features and limitations. Specific design drivers are identified from the observed material’s thermomechanical performance. The designed mould, whose mass is reduced around 90% in comparison to that of the original invar design, is numerically proven to fulfil thermal and mechanical requirements with a high performance. Full article
(This article belongs to the Topic Advanced Composites Manufacturing and Plastics Processing)
Show Figures

Figure 1

15 pages, 5408 KiB  
Communication
On the Analyses of Cure Cycle Effects on Peel Strength Characteristics in Carbon High-Tg Epoxy/Plasma-Activated Carbon PEEK Composite Interfaces: A Preliminary Inquiry
by Henri Perrin, Régis Vaudemont and Masoud Bodaghi
Materials 2023, 16(23), 7340; https://doi.org/10.3390/ma16237340 - 25 Nov 2023
Cited by 1 | Viewed by 1560
Abstract
In this study, a high-Tg aerospace-grade epoxy composite plate was co-curing welded using a unidirectional PEEK thermoplastic carbon fibre tape to develop advanced composite joints. To account for the surface roughness and the weldability of carbon–epoxy/carbon–PEEK composites, plasma treatments were performed. [...] Read more.
In this study, a high-Tg aerospace-grade epoxy composite plate was co-curing welded using a unidirectional PEEK thermoplastic carbon fibre tape to develop advanced composite joints. To account for the surface roughness and the weldability of carbon–epoxy/carbon–PEEK composites, plasma treatments were performed. The co-curing was conducted by the following steps: each treated thermoplastic tape was first placed in the mould, and followed by nine layers of dry-woven carbon fabrics. The mould was sealed using a vacuum bag, and a bi-component thermoset (RTM6) impregnated the preform. To understand the role of curing kinetics, post-curing, curing temperature, and dwell time on the quality of joints, five cure cycles were programmed. The strengths of the welded joints were investigated via the interlayer peeling test. Furthermore, cross-sections of welded zones were assessed using scanning electron microscopy in terms of the morphology of the PEEK/epoxy interphase after co-curing. The preliminary results showed that the cure cycle is an important controlling parameter for crack propagation. A noticeable distinction was evident between the samples cured first at 140 °C for 2 h and then at 180 °C for 2 h, and those cured initially at 150 °C for 2 h followed by 180 °C for 2 h. In other words, the samples subjected to the latter curing conditions exhibited consistently reproducible results with minimal errors compared to different samples. The reduced errors confirmed the reproducibility of these samples, indicating that the adhesion between CF/PEEK and CF/RTM6 tends to be more stable in this curing scenario. Full article
(This article belongs to the Special Issue Fusion Bonding/Welding of Polymer Composites)
Show Figures

Figure 1

14 pages, 7926 KiB  
Article
Thermal Qualification of the UHTCMCs Produced Using RF-CVI Technique with VMK Facility at DLR
by Vinothini Venkatachalam, Sergej Blem, Ali Gülhan and Jon Binner
J. Compos. Sci. 2022, 6(1), 24; https://doi.org/10.3390/jcs6010024 - 11 Jan 2022
Cited by 12 | Viewed by 3168
Abstract
Ultra high-temperature ceramic matrix composites (UHTCMCs) based on carbon fibre (Cf) have been shown to offer excellent temperature stability exceeding 2000 °C in highly corrosive environments, which are prime requirements for various aerospace applications. In C3Harme, a recent European Union-funded Horizon [...] Read more.
Ultra high-temperature ceramic matrix composites (UHTCMCs) based on carbon fibre (Cf) have been shown to offer excellent temperature stability exceeding 2000 °C in highly corrosive environments, which are prime requirements for various aerospace applications. In C3Harme, a recent European Union-funded Horizon 2020 project, an experimental campaign has been carried out to assess and screen a range of UHTCMC materials for near-zero ablation rocket nozzle and thermal protection systems. Samples with ZrB2-impregnated pyrolytic carbon matrices and 2.5D woven continuous carbon fibre preforms, produced by slurry impregnation and radio frequency aided chemical vapour infiltration (RF-CVI), were tested using the vertical free jet facility at DLR, Cologne using solid propellants. When compared to standard CVI, RFCVI accelerates pyrolytic carbon densification, resulting in a much shorter manufacturing time. The samples survived the initial thermal shock and subsequent surface temperatures of >2000 °C with a minimal ablation rate. Post-test characterisation revealed a correlation between surface temperature and an accelerated catalytic activity, which lead to an understanding of the crucial role of preserving the bulk of the sample. Full article
(This article belongs to the Special Issue Ceramic-Matrix Composites)
Show Figures

Figure 1

16 pages, 5342 KiB  
Article
Effect of the Fibre Orientation Distribution on the Mechanical and Preforming Behaviour of Nonwoven Preform Made of Recycled Carbon Fibres
by Jean Ivars, Ahmad Rashed Labanieh and Damien Soulat
Fibers 2021, 9(12), 82; https://doi.org/10.3390/fib9120082 - 8 Dec 2021
Cited by 18 | Viewed by 5217
Abstract
Recycling carbon-fibre-reinforced plastic (CFRP) and recovering high-cost carbon fibre (CF) is a preoccupation of scientific and industrial committees due to the environmental and economic concerns. A commercialised nonwoven mat, made of recycled carbon fibre and manufactured using carding and needle-punching technology, can promote [...] Read more.
Recycling carbon-fibre-reinforced plastic (CFRP) and recovering high-cost carbon fibre (CF) is a preoccupation of scientific and industrial committees due to the environmental and economic concerns. A commercialised nonwoven mat, made of recycled carbon fibre and manufactured using carding and needle-punching technology, can promote second-life opportunities for carbon fibre. This paper aims to evaluate the mechanical and preforming behaviour of this nonwoven material. We focus on the influence that the fibre orientation distribution in the nonwoven material has on its mechanical and preforming behaviour at the preform scale, as well as the tensile properties at composite scale. The anisotropy index induced by fibre orientation is evaluated by analysing SEM micrographs using the fast Fourier transform (FFT) method. Then, the anisotropy in the tensile, bending, and preforming behaviour of the preform is inspected, as well as in the tensile behaviour of the composite. Additionally, we evaluate the impact of the stacking order of multi-layers of the nonwoven material, associated with its preferred fibre orientation (nonwoven anisotropy), on its compaction behaviour. The nonwoven anisotropy, in terms of fibre orientation, induces a strong effect on the preform mechanical and preforming behaviour, as well as the tensile behaviour of the composite. The tensile behaviour of the nonwoven material is governed by the inter-fibre cohesion, which depends on the fibre orientation. The low inter-fibre cohesion, which characterises this nonwoven material, leads to poor resistance to tearing. This type of defect rapidly occurs during preforming, even at too-low membrane tension. Otherwise, the increase in nonwoven layer numbers leads to a decrease in the impact of the nonwoven anisotropy behaviour under compaction load. Full article
(This article belongs to the Special Issue Fiber Composite Process)
Show Figures

Figure 1

16 pages, 2837 KiB  
Article
Dry Fibre Placement: The Influence of Process Parameters on Mechanical Laminate Properties and Infusion Behaviour
by Benjamin Grisin, Stefan Carosella and Peter Middendorf
Polymers 2021, 13(21), 3853; https://doi.org/10.3390/polym13213853 - 8 Nov 2021
Cited by 10 | Viewed by 3655
Abstract
Within the dry fibre placement (DFP) process, spread and pre-bindered carbon fibre rovings are automatically processed into dry textile preforms using 2-D and 3-D laying systems. The aim was to automate existing hand lay-up processes, reducing the complexity, increasing robustness, and facilitating the [...] Read more.
Within the dry fibre placement (DFP) process, spread and pre-bindered carbon fibre rovings are automatically processed into dry textile preforms using 2-D and 3-D laying systems. The aim was to automate existing hand lay-up processes, reducing the complexity, increasing robustness, and facilitating the handling of the DFP technology. Process reliability, low waste rates, and flexible production are demonstrated. In this publication, the influences of the process parameters, 2 mm wide gaps and the percentage of 90° plies in the laminate, are investigated with regard to the mechanical properties, the permeability, and the infusion times in the preform z-direction (thickness). The effects on stiffness and strength are compared for several use cases. An approach to determine the infusion times as a function of the laminate thickness, the ply structure, and 2 mm wide gaps is demonstrated and analysed using vacuum-assisted process (VAP) infusion tests. The investigations are performed with carbon fibre tows (24 k), a reactive epoxy-based binder system, and a thermoset infusion resin system. Full article
Show Figures

Figure 1

23 pages, 26104 KiB  
Article
Second-Generation Implants for Load Introduction into Thin-Walled CFRP-Reinforced UHPC Beams: Implant Optimisation and Investigations of Production Technologies
by Benjamin Kromoser, Oliver Gericke, Mathias Hammerl and Werner Sobek
Materials 2019, 12(23), 3973; https://doi.org/10.3390/ma12233973 - 30 Nov 2019
Cited by 7 | Viewed by 4038
Abstract
Combining two high-performance materials—ultra-high-performance concrete (UHPC) as the matrix and carbon-fibre-reinforced composites (CFRP) as the reinforcement—opens up new possibilities for achieving very lightweight thin-walled concrete elements. This strategy, however, leads to a higher degree of material utilisation, resulting in the generation of higher [...] Read more.
Combining two high-performance materials—ultra-high-performance concrete (UHPC) as the matrix and carbon-fibre-reinforced composites (CFRP) as the reinforcement—opens up new possibilities for achieving very lightweight thin-walled concrete elements. This strategy, however, leads to a higher degree of material utilisation, resulting in the generation of higher forces around load introduction points and supports. The authors present a solution for increasing the performance of supports of very slender CFRP-reinforced UHPC beams by using metal implants. Implants are used in place of concrete in regions of stress concentrations and significant deviation forces. These are able to transfer high stresses and forces efficiently due to their ability to sustain both tension and compression in equal measure. A key issue in their development is the interface between the reinforced concrete and metal implant. Building on previous research, this paper deals with the conceptual design of three types of implants manufactured from different metals and with three different types of automated production technologies (water-jet cutting, metal casting with a 3D-printed plastic formwork and binder jetting of steel components). For this paper, tests were carried out to determine the load-bearing behaviour of beams with the three different types of support implants used for load introduction at the supports. A carbon rod served as bending reinforcement and a pre-formed textile reinforcement cage served as shear and constructive reinforcement. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

16 pages, 5842 KiB  
Article
Assessing the Damage Tolerance of Out of Autoclave Manufactured Carbon Fibre Reinforced Polymers Modified with Multi-Walled Carbon Nanotubes
by Polyxeni Dimoka, Spyridon Psarras, Christine Kostagiannakopoulou and Vassilis Kostopoulos
Materials 2019, 12(7), 1080; https://doi.org/10.3390/ma12071080 - 2 Apr 2019
Cited by 11 | Viewed by 3712
Abstract
The present study aims to investigate the influence of multi-walled carbon nanotubes (MWCNTs) on the damage tolerance after impact (CAI) of the development of Out of Autoclave (OoA) carbon fibre reinforced polymer (CFRP) laminates. The introduction of MWCNTs into the structure of CFRPs [...] Read more.
The present study aims to investigate the influence of multi-walled carbon nanotubes (MWCNTs) on the damage tolerance after impact (CAI) of the development of Out of Autoclave (OoA) carbon fibre reinforced polymer (CFRP) laminates. The introduction of MWCNTs into the structure of CFRPs has been succeeded by adding carbon nanotube-enriched sizing agent for the pre-treatment of the fibre preform and using an in-house developed methodology that can be easily scaled up. The modified CFRPs laminates with 1.5 wt.% MWCNTs were subjected to low velocity impact at three impact energy levels (8, 15 and 30 J) and directly compared with the unmodified laminates. In terms of the CFRPs impact performance, compressive strength of nanomodified composites was improved for all energy levels compared to the reference material. The test results obtained from C-scan analysis of nano-modified specimens showed that the delamination area after the impact is mainly reduced, without the degradation of compressive strength and stiffness, indicating a potential improvement of damage tolerance compared to the reference material. SEM analysis of fracture surfaces revealed the additional energy dissipation mechanisms; pulled-out carbon nanotubes which is the main reason for the improved damage tolerance of the multifunctional composites. Full article
(This article belongs to the Special Issue Carbon Fiber Reinforced Polymers)
Show Figures

Graphical abstract

12 pages, 4618 KiB  
Article
Development and Application of Eddy Current Sensor Arrays for Process Integrated Inspection of Carbon Fibre Preforms
by Dietrich Berger and Gisela Lanza
Sensors 2018, 18(1), 4; https://doi.org/10.3390/s18010004 - 21 Dec 2017
Cited by 13 | Viewed by 5848
Abstract
This publication presents the realisation of a sensor concept, which is based on eddy current testing, to detect textile defects during preforming of semi-finished carbon fibre parts. The presented system has the potential for 100% control of manufactured carbon fibre based components, allowing [...] Read more.
This publication presents the realisation of a sensor concept, which is based on eddy current testing, to detect textile defects during preforming of semi-finished carbon fibre parts. The presented system has the potential for 100% control of manufactured carbon fibre based components, allowing the immediate exclusion of defective parts from further process steps. The core innovation of this system is given by the high degree of process integration, which has not been implemented in the state of the art. The publication presents the functional principle of the sensor that is based on half-transmission probes as well as the signals that can be gained by its application. Furthermore, a method to determine the optimum sensor resolution is presented as well as the sensor housing and its integration in the preforming process. Full article
(This article belongs to the Special Issue Innovative Smart Sensors for Control Systems)
Show Figures

Figure 1

19 pages, 6034 KiB  
Article
Optimizing Polymer Infusion Process for Thin Ply Textile Composites with Novel Matrix System
by Somen K. Bhudolia, Pavel Perrotey and Sunil C. Joshi
Materials 2017, 10(3), 293; https://doi.org/10.3390/ma10030293 - 15 Mar 2017
Cited by 88 | Viewed by 7141
Abstract
For mass production of structural composites, use of different textile patterns, custom preforming, room temperature cure high performance polymers and simplistic manufacturing approaches are desired. Woven fabrics are widely used for infusion processes owing to their high permeability but their localised mechanical performance [...] Read more.
For mass production of structural composites, use of different textile patterns, custom preforming, room temperature cure high performance polymers and simplistic manufacturing approaches are desired. Woven fabrics are widely used for infusion processes owing to their high permeability but their localised mechanical performance is affected due to inherent associated crimps. The current investigation deals with manufacturing low-weight textile carbon non-crimp fabrics (NCFs) composites with a room temperature cure epoxy and a novel liquid Methyl methacrylate (MMA) thermoplastic matrix, Elium®. Vacuum assisted resin infusion (VARI) process is chosen as a cost effective manufacturing technique. Process parameters optimisation is required for thin NCFs due to intrinsic resistance it offers to the polymer flow. Cycles of repetitive manufacturing studies were carried out to optimise the NCF-thermoset (TS) and NCF with novel reactive thermoplastic (TP) resin. It was noticed that the controlled and optimised usage of flow mesh, vacuum level and flow speed during the resin infusion plays a significant part in deciding the final quality of the fabricated composites. The material selections, the challenges met during the manufacturing and the methods to overcome these are deliberated in this paper. An optimal three stage vacuum technique developed to manufacture the TP and TS composites with high fibre volume and lower void content is established and presented. Full article
(This article belongs to the Special Issue Textile Composites)
Show Figures

Figure 1

Back to TopTop