Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = carbon fiber-reinforced polymer (CFRP) rod

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7897 KiB  
Article
Prestressed Concrete T-Beams Strengthened with Near-Surface Mounted Carbon-Fiber-Reinforced Polymer Rods Under Monotonic Loading: A Finite Element Analysis
by Laurencius Nugroho, Yanuar Haryanto, Hsuan-Teh Hu, Fu-Pei Hsiao, Gandjar Pamudji, Bagus Hario Setiadji, Chiao-Ning Hsu, Pu-Wen Weng and Chia-Chen Lin
Eng 2025, 6(2), 36; https://doi.org/10.3390/eng6020036 - 12 Feb 2025
Cited by 4 | Viewed by 1345
Abstract
Prestressed concrete structures, designed to enhance the compressive strength of concrete through internal pretension, are increasingly susceptible to serviceability issues caused by rising live loads, material degradation, and environmental impacts. Strengthening or retrofitting offers a practical and cost-effective alternative to full replacement. This [...] Read more.
Prestressed concrete structures, designed to enhance the compressive strength of concrete through internal pretension, are increasingly susceptible to serviceability issues caused by rising live loads, material degradation, and environmental impacts. Strengthening or retrofitting offers a practical and cost-effective alternative to full replacement. This study investigated the flexural strengthening of prestressed concrete T-beams in the negative moment region using near-surface mounted (NSM) carbon-fiber-reinforced polymer (CFRP) rods. Validation against experimental results from the literature demonstrated high accuracy, with an average numerical-to-experimental ultimate load ratio of 0.97 for reinforced concrete T-beams strengthened with NSM-CFRP rods, a negligible difference of 0.49% for prestressed concrete I-beams, and a minimal error of 1.30% for prestressed concrete slabs strengthened with CFRP laminates. Parametric studies examined the effects of CFRP rod embedment depths and initial prestressing levels. In certain cases, achieving the minimum embedment depth is not feasible due to design or construction constraints. The results showed that fully embedded CFRP rods increased the ultimate load by up to 14.02% for low prestressing levels and 16.36% for high levels, while half-embedded rods provided comparable improvements of 11.20% and 15.76%, respectively. These findings confirm the effectiveness of NSM-CFRP systems and highlight the potential of partial embedment as a practical solution in design-constrained scenarios. Full article
(This article belongs to the Special Issue Emerging Trends in Inorganic Composites for Structural Enhancement)
Show Figures

Figure 1

14 pages, 5872 KiB  
Article
Analysis of the Tensile Properties and Probabilistic Characteristics of Large-Tow Carbon Fiber-Reinforced Polymer Composites
by Anni Wang, Ruiheng Li and Xiaogang Liu
Polymers 2024, 16(15), 2197; https://doi.org/10.3390/polym16152197 - 1 Aug 2024
Cited by 3 | Viewed by 2254
Abstract
Large-tow carbon fiber-reinforced polymer composites (CFRP) have great application potential in civil engineering due to their low price, but their basic mechanical properties are still unclear. The tensile properties of large-tow CFRP rods and plates were investigated in this study. First, the tensile [...] Read more.
Large-tow carbon fiber-reinforced polymer composites (CFRP) have great application potential in civil engineering due to their low price, but their basic mechanical properties are still unclear. The tensile properties of large-tow CFRP rods and plates were investigated in this study. First, the tensile properties of unidirectional CFRP rods and plates were studied, and the test results of the relevant mechanical properties were statistically analyzed. The tensile strength of the CFRP rod and plate are 2005.97 MPa and 2069.48 MPa. Second, the surface of the test specimens after failure was observed using a scanning electron microscope to analyze the type of failure and damage evolution process. Finally, the probabilistic characteristics of the mechanical properties were analyzed using normal, lognormal, and Weibull distributions for parameter fitting. Quasi-optimality tests were performed, and a probability distribution model was proposed for the mechanical properties of large-tow CFRP rods and plates. Full article
(This article belongs to the Special Issue Fiber Reinforced Polymers: Manufacture, Properties and Applications)
Show Figures

Figure 1

17 pages, 4487 KiB  
Article
Novel Sustainable Composites Incorporating a Biobased Thermoplastic Matrix and Recycled Aerospace Prepreg Waste: Development and Characterization
by José Antonio Butenegro, Mohsen Bahrami, Yentl Swolfs, Jan Ivens, Miguel Ángel Martínez and Juana Abenojar
Polymers 2023, 15(16), 3447; https://doi.org/10.3390/polym15163447 - 18 Aug 2023
Cited by 7 | Viewed by 2607
Abstract
Carbon fiber-reinforced polymer (CFRP) composite materials are widely used in engineering applications, but their production generates a significant amount of waste. This paper aims to explore the potential of incorporating mechanically recycled aerospace prepreg waste in thermoplastic composite materials to reduce the environmental [...] Read more.
Carbon fiber-reinforced polymer (CFRP) composite materials are widely used in engineering applications, but their production generates a significant amount of waste. This paper aims to explore the potential of incorporating mechanically recycled aerospace prepreg waste in thermoplastic composite materials to reduce the environmental impact of composite material production and promote the use of recycled materials. The composite material developed in this study incorporates a bio−based thermoplastic polymer, polyamide 11 (PA11), as the matrix material and recycled aerospace prepreg waste quasi-one-dimensionally arranged as reinforcement. Mechanical, thermal, and thermomechanical characterizations were performed through tensile, flexural, and impact tests, as well as differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Compared to previous studies that used a different recycled CFRP in the shape of rods, the results show that the recycled prepregs are a suitable reinforcement, enhancing the reinforcement-matrix adhesion and leading to higher mechanical properties. The tensile results were evaluated by SEM, and the impact tests were evaluated by CT scans. The results demonstrate the potential of incorporating recycled aerospace prepreg waste in thermoplastic composite materials to produce high-performance and sustainable components in the aerospace and automotive industries. Full article
(This article belongs to the Special Issue Sustainable and Eco-Innovative Polymer Materials)
Show Figures

Figure 1

19 pages, 8243 KiB  
Article
The Aging Behavior and Life Prediction of CFRP Rods under a Hygrothermal Environment
by Xiaodong Liu, Qingyong Su, Jing Zhu and Xiaopeng Song
Polymers 2023, 15(11), 2490; https://doi.org/10.3390/polym15112490 - 28 May 2023
Cited by 15 | Viewed by 2540
Abstract
Carbon fiber-reinforced polymer (CFRP) composites have been widely used in civil engineering structures due to their excellent mechanical and durability properties. The harsh service environment of civil engineering leads to significant degradation of the thermal and mechanical performances of CFRP, which then reduces [...] Read more.
Carbon fiber-reinforced polymer (CFRP) composites have been widely used in civil engineering structures due to their excellent mechanical and durability properties. The harsh service environment of civil engineering leads to significant degradation of the thermal and mechanical performances of CFRP, which then reduces its service reliability, service safety, and life. Research on the durability of CFRP is urgently needed to understand the long-term performance degradation mechanism. In the present study, the hygrothermal aging behavior of CFRP rods was investigated experimentally through immersion in distilled water for 360 days. The water absorption and diffusion behavior, the evolution rules of short beam shear strength (SBSS), and dynamic thermal mechanical properties were obtained to investigate the hygrothermal resistance of CFRP rods. The research results show that the water absorption behavior conforms to Fick’s model. The ingression of water molecules leads to a significant decrease in SBSS and glass transition temperature (Tg). This is attributed to the plasticization effect of the resin matrix and interfacial debonding. Furthermore, the Arrhenius equation was used to predict the long-term life of SBSS in the actual service environment based on the time–temperature equivalence theory, obtaining a stable strength retention of SBSS of 72.78%, which was meaningful to provide a design guideline for the long-term durability of CFRP rods. Full article
Show Figures

Figure 1

18 pages, 6522 KiB  
Article
Experimental Investigation of Fatigue Capacity of Bending-Anchored CFRP Cables
by Jingyu Wu, Yongquan Zhu and Chenggao Li
Polymers 2023, 15(11), 2483; https://doi.org/10.3390/polym15112483 - 27 May 2023
Cited by 47 | Viewed by 3092
Abstract
In this study, the variation of fatigue stiffness, fatigue life, and residual strength, as well as the macroscopic damage initiation, expansion, and fracture of CFRP (carbon fiber reinforced polymer) rods in bending-anchored CFRP cable, were investigated experimentally to verify the anchoring performance of [...] Read more.
In this study, the variation of fatigue stiffness, fatigue life, and residual strength, as well as the macroscopic damage initiation, expansion, and fracture of CFRP (carbon fiber reinforced polymer) rods in bending-anchored CFRP cable, were investigated experimentally to verify the anchoring performance of the bending anchoring system and evaluate the additional shear effect caused by bending anchoring. Additionally, the acoustic emission technique was used to monitor the progression of critical microscopic damage to CFRP rods in a bending anchoring system, which is closely related to the compression-shear fracture of CFRP rods within the anchor. The experimental results indicate that after the fatigue cycles of two million, the residual strength retention rate of CFRP rod was as high as 95.1% and 76.7% under the stress amplitudes of 500 MPa and 600 MPa, indicating good fatigue resistance. Moreover, the bending-anchored CFRP cable could withstand 2 million cycles of fatigue loading with a maximum stress of 0.4 σult and an amplitude of 500 MPa without obvious fatigue damage. Moreover, under more severe fatigue-loading conditions, it can be found that fiber splitting in CFRP rods in the free section of cable and compression-shear fracture of CFRP rods are the predominant macroscopic damage modes, and the spatial distribution of macroscopic fatigue damage of CFRP rods reveals that the additional shear effect has become the determining factor in the fatigue resistance of the cable. This study demonstrates the good fatigue-bearing capacity of CFRP cable with a bending anchoring system, and the findings can be used for the optimization of the bending anchoring system to further enhance its fatigue resistance, which further promotes the application and development of CFRP cable and bending anchoring system in bridge structures. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

23 pages, 7740 KiB  
Article
Detection in RC Beams Damaged and Strengthened with NSM CFRP/GFRP Rods by Free Vibration Monitoring
by Elisa Bettucci, Roberto Capozucca, Erica Magagnini and Maria Vittoria Vecchietti
Buildings 2023, 13(4), 979; https://doi.org/10.3390/buildings13040979 - 7 Apr 2023
Cited by 3 | Viewed by 1862
Abstract
This paper intends to deepen the topic of damage detection based on non-destructive tests (NDT) for the assessment of the dynamic behavior of RC beams damaged and strengthened both with near-surface mounted (NSM) Carbon and GlassFRP rods. The NSM strengthening with fiber-reinforced polymer [...] Read more.
This paper intends to deepen the topic of damage detection based on non-destructive tests (NDT) for the assessment of the dynamic behavior of RC beams damaged and strengthened both with near-surface mounted (NSM) Carbon and GlassFRP rods. The NSM strengthening with fiber-reinforced polymer (FRP) rods of damaged reinforced concrete (RC) beams is a viable alternative to the traditional strengthening with externally bonded (EB) FRP strips or sheets. In this paper, static tests were foreseen on RC beams to create cracking, and successively, the RC beams strengthened with NSM CFRP and GFRP rods were still investigated using free vibration tests at different loading levels until failure. The purpose of this research is to compare the response of two different types of strengthening of damaged RC beams based on the strength of CFRP and GFRP rods until failure modes. At different steps of loading, the behavior of beams under experimental vibrations has been monitored by frequency response function (FRF) diagrams. Finally, a discussion of the results is presented. Full article
Show Figures

Figure 1

17 pages, 3492 KiB  
Article
Reuse of Carbon Fibers and a Mechanically Recycled CFRP as Rod-like Fillers for New Composites: Optimization and Process Development
by José Antonio Butenegro, Mohsen Bahrami, Miguel Ángel Martínez and Juana Abenojar
Processes 2023, 11(2), 366; https://doi.org/10.3390/pr11020366 - 24 Jan 2023
Cited by 5 | Viewed by 3482
Abstract
The rising amount of carbon fiber reinforced polymer (CFRP) composite waste requires new processes for reintroducing waste into the production cycle. In the present research, the objective is the design and study of a reuse process for carbon fibers and CFRP by mechanical [...] Read more.
The rising amount of carbon fiber reinforced polymer (CFRP) composite waste requires new processes for reintroducing waste into the production cycle. In the present research, the objective is the design and study of a reuse process for carbon fibers and CFRP by mechanical recycling consisting of length and width reduction, obtaining rods and reintegrating them as fillers into a polymeric matrix. Preliminary studies are carried out with continuous and discontinuous unidirectional fibers of various lengths. The processing conditions are then optimized, including the length of the reinforcement, the need for a plasma surface treatment and/or for resin post-curing. The resin is thermally characterized by differential scanning calorimetry (DSC), while the composites are mechanically characterized by tensile strength tests, completed by a factorial design. In addition, the composites tested are observed by scanning electron microscopy (SEM) to study the fracture mechanics. Optimal processing conditions have been found to reduce the reinforcement length to 40 mm while maintaining the mechanical properties of continuous reinforcement. Furthermore, the post-curing of the epoxy resin used as matrix is required, but a low-pressure plasma treatment (LPPT) is not recommended on the reinforcement. Full article
(This article belongs to the Special Issue Design of Adhesive Bonded Joints)
Show Figures

Figure 1

14 pages, 2598 KiB  
Article
Experimental Study on Compressive Behavior of Concrete Cylinders Confined by a Novel Hybrid Fiber-Reinforced Polymer Spiral
by Yu Tang, Xiaowan Lu, Yang Wei and Shitong Hou
Polymers 2022, 14(21), 4750; https://doi.org/10.3390/polym14214750 - 5 Nov 2022
Cited by 3 | Viewed by 2357
Abstract
Modern fiber-reinforced polymer (FRP)-reinforced concrete structures are excepted to achieve superior mechanical performances and long service lives, even in harsh service environments. Hybrid FRP material could potentially meet this goal with its relatively high strength-to-cost ratio. This paper presents an experimental study on [...] Read more.
Modern fiber-reinforced polymer (FRP)-reinforced concrete structures are excepted to achieve superior mechanical performances and long service lives, even in harsh service environments. Hybrid FRP material could potentially meet this goal with its relatively high strength-to-cost ratio. This paper presents an experimental study on the compressive behavior of concrete cylinders confined by a novel hybrid fiber-reinforced polymer (HFRP) spiral. Nine types, forming a total of 27 confined or non-confined concrete cylinders, were subjected to an axial compressive-loading test. Concrete cylinders confined either with different spiral types or different spiral spacings were comparatively studied in the experiment. The results showed that the compressive failure modes and the stress–strain relationships of the HFRP-spiral-confined cylinders were similar to those of basalt-fiber-reinforced polymer (BFRP)-spiral-confined cylinders. The actual fracture strain of the HFRP spiral (tested as a single rod) was larger than that of the corresponding carbon-fiber-reinforced polymer (CFRP) bar, indicating the advantageous composite effect of the HFRP spiral. The maximum strain of the HFRP spiral reached over 70% of its ultimate strain in the cylinders compared to the BFRP spiral, which only reached 50%. Most of the existing models overestimated the ultimate stress and strain of the HFRP-spiral-confined cylinders. Wu’s model was proved to be the most accurate model, yet proper modification was required for predicting the peak strain of the HFRP-confined cylinders. Full article
Show Figures

Figure 1

17 pages, 8628 KiB  
Article
Use of Natural and Synthetic Fiber-Reinforced Composites for Punching Shear of Flat Slabs: A Comparative Study
by Panuwat Joyklad, Ekkachai Yooprasertchai, Pongsak Wiwatrojanagul, Krisada Chaiyasarn, Nazam Ali and Qudeer Hussain
Polymers 2022, 14(4), 719; https://doi.org/10.3390/polym14040719 - 13 Feb 2022
Cited by 7 | Viewed by 2734
Abstract
Over the last two decades, considerable attention has been devoted to the strengthening of sub-standard flat-slab constructions. With the evolution of composite materials and an increasing emphasis on the economical and sustainable use of natural fibers, many researchers have utilized them in the [...] Read more.
Over the last two decades, considerable attention has been devoted to the strengthening of sub-standard flat-slab constructions. With the evolution of composite materials and an increasing emphasis on the economical and sustainable use of natural fibers, many researchers have utilized them in the strengthening of flat flabs mitigating punching failures. This study aims at investigating and comparing the behavior of flat slabs strengthened with post-installed composite and natural reinforcements. An experimental program was devised consisting of eight flat-slab specimens. One specimen was tested in as-built condition to provide a reference. The remaining specimens were strengthened with Carbon Fiber-Reinforced Polymer (CFRP), Aramid Fiber-Reinforced Polymer (AFRP), and sisal rods. The pattern of post-installed rods was varied as single line, double line, and star shapes around the column. The results indicated that the single-line pattern could only enhance the maximum sustained load by up to 6% compared to that of the reference specimen. On the contrary, double line and star shape configurations resulted in a substantial increase in the maximum sustained load. An analytical assessment of ACI 318-19 provisions resulted in an over-estimation of the shear strengths of CFRP- and AFRP-strengthened slabs. Furthermore, the same provisions led to lower yields than experimental shear strengths for sisal-strengthened slabs. Full article
(This article belongs to the Special Issue Polymer Concrete and Composites)
Show Figures

Figure 1

16 pages, 8819 KiB  
Article
Analysis of Long-Term Prestress Loss in Prestressed Concrete (PC) Structures Using Fiber Bragg Grating (FBG) Sensor-Embedded PC Strands
by Sung-Tae Kim, Young-Soo Park, Chul-Hwan Yoo, Soobong Shin and Young-Hwan Park
Appl. Sci. 2021, 11(24), 12153; https://doi.org/10.3390/app112412153 - 20 Dec 2021
Cited by 10 | Viewed by 3008
Abstract
This study aims to develop a prestressed concrete steel (PC) strand with an embedded optical Fiber Bragg Grating (FBG) sensor, which has been developed by the Korea Institute of Civil Engineering and Building Technology since 2013. This new strand is manufactured by replacing [...] Read more.
This study aims to develop a prestressed concrete steel (PC) strand with an embedded optical Fiber Bragg Grating (FBG) sensor, which has been developed by the Korea Institute of Civil Engineering and Building Technology since 2013. This new strand is manufactured by replacing the steel core of the normal PC strand with a carbon-fiber-reinforced polymer (CFRP) rod with excellent tensile strength and durability. Because this new strand is manufactured using the pultrusion method, which is a composite material manufacturing process, with an optical fiber sensor embedded in the inner center of the CFRP Rod, it ensures full composite action as well as proper function of the sensor. In this study, a creep test for maintaining a constant load and a relaxation test for maintaining a constant displacement were performed on the proposed sensor-type PC strand. Each of the two tests was conducted for more than 1000 h, and the long-term performance verification of the sensor-type PC strand was only completed by comparing the performance with that of a normal PC strand. The test specimens were fabricated by applying an optical fiber sensor-embedded PC strand, which had undergone long-term performance verification tests, to a reinforced concrete beam. Depending on whether grout was injected in the duct, the specimens were classified into composite and non-composite specimens. A hydraulic jack was used to prestress the fabricated beam specimens, and the long-term change in the prestress force was observed for more than 1600 days using the embedded optical fiber sensor. The experimental results were compared with the analytical results to determine the long-term prestress loss obtained through finite-element analysis based on various international standards. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

20 pages, 6698 KiB  
Article
Activated Ductile CFRP NSMR Strengthening
by Jacob Wittrup Schmidt, Christian Overgaard Christensen, Per Goltermann and José Sena-Cruz
Materials 2021, 14(11), 2821; https://doi.org/10.3390/ma14112821 - 25 May 2021
Cited by 7 | Viewed by 2584
Abstract
Significant strengthening of concrete structures can be obtained when using adhesively-bonded carbon fiber-reinforced polymer (CFRP) systems. Challenges related to such strengthening methods are; however, the brittle concrete delamination failure, reduced warning, and the consequent inefficient use of the CFRP. A novel ductile near-surface [...] Read more.
Significant strengthening of concrete structures can be obtained when using adhesively-bonded carbon fiber-reinforced polymer (CFRP) systems. Challenges related to such strengthening methods are; however, the brittle concrete delamination failure, reduced warning, and the consequent inefficient use of the CFRP. A novel ductile near-surface mounted reinforcement (NSMR) CFRP strengthening system with a high CFRP utilization is introduced in this paper. It is hypothesized that the tailored ductile enclosure wedge (EW) end anchors, in combination with low E-modulus and high elongation adhesive, can provide significant strengthening and ductility control. Five concrete T-beams were strengthened using the novel system with a CFRP rod activation stress of approximately 980 MPa. The beam responses were compared to identical epoxy-bonded NSMR strengthened and un-strengthened beams. The linear elastic response was identical to the epoxy-bonded NSMR strengthened beam. In addition, the average deflection and yielding regimes were improved by 220% and 300% (average values), respectively, with an ultimate capacity comparable to the epoxy-bonded NSMR strengthened beam. Reproducible and predictable strengthening effect seems obtainable, where a good correlation between the results and applied theory was reached. The brittle failure modes were prevented, where concrete compression failure and frontal overload anchor failure were experienced when failure was initiated. Full article
(This article belongs to the Special Issue Advanced Structural Concrete Materials in Bridges)
Show Figures

Figure 1

16 pages, 2020 KiB  
Article
Experimental Study of a New Strengthening Technique of RC Beams Using Prestressed NSM CFRP Bars
by Vicente Alcaraz Carrillo de Albornoz, Eva M. García del Toro, M. Isabel Más-López and Alfredo Luizaga Patiño
Sustainability 2019, 11(5), 1374; https://doi.org/10.3390/su11051374 - 5 Mar 2019
Cited by 6 | Viewed by 3254
Abstract
The reinforcement of structural elements subjected to bending with carbon fiber reinforced polymers (CFRP) located on the underside of the element to be reinforced (known as near surface mounted or NSM) is an effective technique that provides environmentally sustainable solutions in the field [...] Read more.
The reinforcement of structural elements subjected to bending with carbon fiber reinforced polymers (CFRP) located on the underside of the element to be reinforced (known as near surface mounted or NSM) is an effective technique that provides environmentally sustainable solutions in the field of civil engineering. Introducing preloads on the reinforcing elements allows us to maximize the high performance of CFRPs, besides recovering deformations. A new technique to perform the pre-stressing of CFRP bars in NSM configuration is described in this paper. The technique introduces the preload on the rods after they have been placed in the grooves, and with a system that acts and reacts against the beam itself. We also present the results of a testing campaign conducted to determine the effectiveness of said technique. Breakage of the control beams (without reinforcement) was ductile, while breakage of reinforced beams was explosive. Pre-stressing the reinforcing elements allowed us to increase the bearing capacity of the beams 170% compared to the control beams, also resulting in an increase in the rigidity of the reinforced elements and a decreased cracking of the beam. The results however are only slightly better than those of a conventional CFRP NSM reinforcement, due to the appearance of cavities in the groove where the adhesive didn’t manage to penetrate. Full article
(This article belongs to the Special Issue Sustainable Construction and Building Materials)
Show Figures

Figure 1

15 pages, 1071 KiB  
Article
Mechanical Analysis of Stress Distribution in a Carbon Fiber-Reinforced Polymer Rod Bonding Anchor
by Peng Feng, Pan Zhang, Xinmiao Meng and Lieping Ye
Polymers 2014, 6(4), 1129-1143; https://doi.org/10.3390/polym6041129 - 11 Apr 2014
Cited by 42 | Viewed by 11512
Abstract
This paper presents an elastic shear stress distribution theoretical model at the carbon fiber-reinforced polymer (CFRP)-adhesive interface of a single-rod and a multi-rod straight-pipe bonding anchor. A comparison between theoretical and finite element analysis results reveals that the accuracy of the theory can [...] Read more.
This paper presents an elastic shear stress distribution theoretical model at the carbon fiber-reinforced polymer (CFRP)-adhesive interface of a single-rod and a multi-rod straight-pipe bonding anchor. A comparison between theoretical and finite element analysis results reveals that the accuracy of the theory can be used to guide the preliminary design of CFRP rod bonding anchors. The mechanical performance of the inner cone bonding anchor for multi-rods are evaluated within different coefficients of friction and inner inclined angles. Numerical results indicate that the straight-parabolic inner cone bonding anchor has a significant effect on reducing the shear force at the loading end. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites in Structural Engineering)
Show Figures

Graphical abstract

Back to TopTop