Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = capillary gas chromatography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1153 KiB  
Review
Unlocking Plant Resilience: Metabolomic Insights into Abiotic Stress Tolerance in Crops
by Agata Głuchowska, Bartłomiej Zieniuk and Magdalena Pawełkowicz
Metabolites 2025, 15(6), 384; https://doi.org/10.3390/metabo15060384 - 9 Jun 2025
Viewed by 728
Abstract
Background/Objectives: In the context of accelerating climate change and growing food insecurity, improving crop resilience to abiotic stresses such as drought, salinity, heat, and cold is a critical agricultural and scientific challenge. Understanding the biochemical mechanisms that underlie plant stress responses is essential [...] Read more.
Background/Objectives: In the context of accelerating climate change and growing food insecurity, improving crop resilience to abiotic stresses such as drought, salinity, heat, and cold is a critical agricultural and scientific challenge. Understanding the biochemical mechanisms that underlie plant stress responses is essential for developing resilient crop varieties This review aims to provide an integrative overview of how metabolomics can elucidate biochemical mechanisms underlying stress tolerance and guide the development of stress-resilient crops. Methods: We reviewed the recent literature on metabolomic studies addressing abiotic stress responses in various crop species, focusing on both targeted and untargeted approaches using platforms such as nuclear magnetic resonance (NMR), liquid chromatography–mass spectrometry (LC-MS), and gas chromatography–mass spectrometry (GC-MS). We also included emerging techniques such as capillary electrophoresis–mass spectrometry (CE-MS), ion mobility spectrometry (IMS-MS), Fourier transform infrared spectroscopy (FT-IR), and data-independent acquisition (DIA). Additionally, we discuss the integration of metabolomics with transcriptomics and physiological data to support system-level insights. Results: The reviewed studies identify common stress-responsive metabolites, including osmoprotectants, antioxidants, and signaling compounds, which are consistently linked to enhanced tolerance. Novel metabolic biomarkers and putative regulatory hubs are highlighted as potential targets for molecular breeding and bioengineering. We also address ongoing challenges related to data standardization and reproducibility across analytical platforms. Conclusions: Metabolomics is a valuable tool for advancing our understanding of plant abiotic stress responses. Its integration with other omics approaches and phenotypic analyses offers promising avenues for improving crop resilience and developing climate-adaptive agricultural strategies. Full article
(This article belongs to the Special Issue Climate Change-Related Stresses and Plant Metabolism)
Show Figures

Figure 1

24 pages, 1653 KiB  
Article
Multiplatform Metabolomic Profiling of the Unilateral Ureteral Obstruction Murine Model of CKD
by Paula Cuevas-Delgado, Verónica Miguel, Santiago Lamas, Coral Barbas and Francisco J. Rupérez
Int. J. Mol. Sci. 2025, 26(10), 4933; https://doi.org/10.3390/ijms26104933 - 21 May 2025
Viewed by 607
Abstract
In chronic kidney disease (CKD) research, animal models such as the unilateral ureteral obstruction (UUO) rodent model are crucial to understanding disease progression, particularly renal fibrosis. Despite its widespread use, the molecular mechanisms driving CKD remain incompletely understood. Given the interplay between metabolism [...] Read more.
In chronic kidney disease (CKD) research, animal models such as the unilateral ureteral obstruction (UUO) rodent model are crucial to understanding disease progression, particularly renal fibrosis. Despite its widespread use, the molecular mechanisms driving CKD remain incompletely understood. Given the interplay between metabolism and fibrosis, a comprehensive metabolomic analysis of UUO renal tissue is necessary. This study involved untargeted multiplatform analysis using liquid chromatography (LC), gas chromatography (GC), and capillary electrophoresis (CE) coupled with mass spectrometry (MS) to examine murine kidney tissue from the UUO model. The results highlight metabolic changes associated with tubulointerstitial fibrosis, which affect pathways such as the tricarboxylic acid (TCA) cycle, the urea cycle, and lipid metabolism. In particular, fibrosis impacts the lipidomic profile, with decreases in most lipid classes and increases in specific glycerophospholipids, hexosylceramides, and cholesterol esters. These findings demonstrate the value of a multiplatform approach in elucidating metabolic alterations in CKD, providing information on the underlying molecular mechanisms and paving the way for further research. Full article
(This article belongs to the Topic Animal Models of Human Disease 3.0)
Show Figures

Figure 1

16 pages, 4386 KiB  
Article
Evaluation of the Antioxidant Activity of Three Formulations of Hair Cosmetic Products Containing the Essential Oil of Clinopodium bolivianum (Benth.) Kuntze “inca muña”
by Raymí Celeste Obispo-Huamani, James Calva, Luis Miguel V. Félix-Veliz, Haydee Chávez, Josefa Bertha Pari-Olarte, Javier Hernán Chavez-Espinoza, Johnny Aldo Tinco-Jayo, Edwin Carlos Enciso-Roca and Oscar Herrera-Calderon
Cosmetics 2025, 12(3), 88; https://doi.org/10.3390/cosmetics12030088 - 28 Apr 2025
Viewed by 2305
Abstract
Clinopodium bolivianum (Benth.) Kuntze, commonly known as muña, inca muña or koa, has traditionally been used for its medicinal properties in digestive disorders. Some studies have revealed its antioxidant potential and antibacterial activity. This study determined the volatile components, evaluated the antioxidant capacity [...] Read more.
Clinopodium bolivianum (Benth.) Kuntze, commonly known as muña, inca muña or koa, has traditionally been used for its medicinal properties in digestive disorders. Some studies have revealed its antioxidant potential and antibacterial activity. This study determined the volatile components, evaluated the antioxidant capacity of C. bolivianum essential oil and its incorporation into three hair cosmetic formulations: shampoo, combing cream, and capillary lotion. Gas Chromatography–Mass Spectrometry (GC–MS) confirmed pulegone as the main component, accounting for 66.85% of the essential oil. The antioxidant activity was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, with Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) as a reference compound. The essential oil exhibited significant radical scavenging activity, with IC50 values of 1344.0 ± 12.23 µg/mL for DPPH and 40.125 ± 1.25 µg/mL for ABTS. Among the formulated cosmetic products, the combing cream containing 0.5% of the essential oil demonstrated the highest antioxidant activity, with IC50 values of 0.72 µg/mL (DPPH) and 0.068 µg/mL (ABTS). In contrast, the shampoo and capillary lotion showed lower antioxidant potential. The stability evaluation confirmed that all formulations maintained their physicochemical properties under accelerated conditions. These findings highlight the potential application of C. bolivianum essential oil as a natural antioxidant in cosmetic formulations, contributing to its protective and functional properties. Full article
Show Figures

Figure 1

26 pages, 12159 KiB  
Review
Research Progress on the Development and Application of Cyclodextrin-Based Chromatographic Stationary Phases
by Wenlanqi Du, Jia Jia, Yinghong Zhao, Ailing Ning and Rongfu Huang
Separations 2025, 12(4), 97; https://doi.org/10.3390/separations12040097 - 14 Apr 2025
Cited by 1 | Viewed by 997
Abstract
This review systematically summarizes the novel preparation methods of cyclodextrin-based chromatographic stationary phases and their applications for chiral recognition in separation techniques such as capillary gas chromatography and high-performance liquid chromatography. Aiming at the current situation that enantiomers of chiral compounds present significant [...] Read more.
This review systematically summarizes the novel preparation methods of cyclodextrin-based chromatographic stationary phases and their applications for chiral recognition in separation techniques such as capillary gas chromatography and high-performance liquid chromatography. Aiming at the current situation that enantiomers of chiral compounds present significant differences at the pharmacological, pharmacodynamic, and toxicological levels, the core value of chromatographic chiral separation technology in the field of drug discovery and development is emphasized. By analyzing the unique cavity structure and excellent stereoselective properties of cyclodextrins, the mechanism of their action as a chromatographic stationary phase was elaborated. Combined with the typical applications of different derivatized cyclodextrin stationary phases in drug analysis, environmental testing, and biological samples, the value and potential of cyclodextrin stationary phases in stereoisomer separation are systematically demonstrated. Full article
(This article belongs to the Topic Advances in Chromatographic Separation)
Show Figures

Figure 1

22 pages, 5088 KiB  
Article
An Analysis of BTEX Occurrence in Stored Rainwater and Rainwater Runoff in Urban Environment
by Joanna Bąk, Andrzej Bielski, Sondre Meland, Katarzyna Pala and Anna Wassilkowska
Sustainability 2025, 17(4), 1607; https://doi.org/10.3390/su17041607 - 15 Feb 2025
Cited by 1 | Viewed by 963
Abstract
Climate change and its effects, for instance drought, drive the search for alternative water sources. One of these sources is rainwater, especially the runoff from various roof surfaces in cities. In turn, its use in the city for the production of food as [...] Read more.
Climate change and its effects, for instance drought, drive the search for alternative water sources. One of these sources is rainwater, especially the runoff from various roof surfaces in cities. In turn, its use in the city for the production of food as part of hydroponic and aquaponic systems requires knowledge of possible pollutants and their varied concentrations. In this article, the concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX) in rainwater collected in cities from various surfaces and stored in various types of tanks (open and closed) are analysed. Tests were carried out on extracted specimens using gas chromatography with a flame ionisation detector (FID). BTEX compounds were determined using a chromatograph with a FID sensor and a capillary column. Organic substances were extracted from the water with dichloromethane. The possibility of occurrence of BTEX compounds in rainwater flowing down from various roof surfaces in the city was confirmed. The obtained results suggest future research directions for mitigating BTEX rainwater pollution in order to expand the scope of its subsequent use. Preliminary guidelines for its treatment based on the literature were proposed. The possibility of using urban rainwater for hydroponic and aquaponic systems was assessed in terms of BTEX content. Full article
Show Figures

Figure 1

14 pages, 2617 KiB  
Article
Headspace Determination of Acetone and Aromatic Hydrocarbons in Soil Using a Homebuilt, Inexpensive Gas Chromatograph with Photoionization Detection
by Cameron Shane, Carly M. Kennell, Michael J. Geyer, Thomas N. Loegel and Neil D. Danielson
Separations 2025, 12(2), 46; https://doi.org/10.3390/separations12020046 - 12 Feb 2025
Viewed by 880
Abstract
We have designed, built, and characterized an inexpensive gas chromatograph with photoionization detection using readily commercially available components. These include a home carbonation CO2 cylinder for the carrier gas, headspace sampling using a low pressure six port valve, a standard 30 m [...] Read more.
We have designed, built, and characterized an inexpensive gas chromatograph with photoionization detection using readily commercially available components. These include a home carbonation CO2 cylinder for the carrier gas, headspace sampling using a low pressure six port valve, a standard 30 m wide-bore capillary column, a consumer convection oven including added insulation with a thermocouple, and a photoionization sensor enclosed in a flow cell. The chromatography retention time reproducibility is good due to temperature control within 0.5 °C. The headspace linearity response using a 0.5 mL injection of benzene was from 10 to 250 ppm, with the limit of detection estimated at 4 ppm. The application of this instrument to the headspace monitoring of four soil samples spiked with a commercial adhesive cleaner containing acetone, ethyl benzene, and xylenes was possible. The interaction of acetone with the two different potting soil samples, likely due to their high organic content, was persistent for at least 30 min, even above an ambient temperature (60 °C). A comparison of linear plots of the signal versus volatilization time over the first 20 min showed substantially larger slopes for the two yard soil samples, indicating the rapid volatilization of acetone from these lower organic content soils, as compared to the two potting soil samples. This GC-PID instrument can be considered portable because it can be easily taken apart, transported, and reassembled. One viable option for the extension of the applications of this instrument is to provide hands-on teaching of GC. Full article
(This article belongs to the Section Chromatographic Separations)
Show Figures

Graphical abstract

10 pages, 590 KiB  
Article
Fingerprint Profile Analysis of Eupolyphaga steleophaga Polypeptide Based on UHPLC-MS and Its Application
by Xin Lai, Hongwei Song, Guangli Yan, Junling Ren and Xijun Wang
Pharmaceuticals 2025, 18(2), 166; https://doi.org/10.3390/ph18020166 - 26 Jan 2025
Viewed by 1264
Abstract
Background and Objectives: As a medicinal and food homologous substance, Eupolyphaga steleophaga is renowned for its potential health benefits, including anti-tumor effects, immune system support, and anti-inflammatory properties. Eupolyphaga steleophaga polypeptides have demonstrated significant biological activity, including the regulation of coagulation and lipid [...] Read more.
Background and Objectives: As a medicinal and food homologous substance, Eupolyphaga steleophaga is renowned for its potential health benefits, including anti-tumor effects, immune system support, and anti-inflammatory properties. Eupolyphaga steleophaga polypeptides have demonstrated significant biological activity, including the regulation of coagulation and lipid metabolism. However, the peptide composition of Eupolyphaga steleophaga requires further clarification to facilitate quality control improvements and a deeper investigation into its pharmacological effects. Therefore, this study aimed to simulate the digestive absorption process of Eupolyphaga steleophaga following oral administration and identify its enzymatic components to enhance quality control. Methods: The digestive absorption process was simulated using artificial gastric fluid and pepsin. A fingerprinting method based on ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS)(Acquire UPLC-Synapt G2-Si HDMS, Waters Corporation, Milford, MA, USA) was developed to identify 63 enzymatic components. The enzymolysis polypeptide fingerprint detection method was used to analyze 10 batches of Eupolyphaga steleophaga sourced from Harbin No. 4 Traditional Chinese Medicine Factory. Chromatographic collection was performed using an ACQUITY UPLC BHE C18 column. Gradient elution was carried out using a mixture of 0.1% formic acid with acetonitrile and 0.1% formic acid with water, with an average flow rate of 0.3 mL/min, a column temperature of 40 °C, and an injection volume of 2 μL. The mass spectrometry (MS) conditions were set as follows: the ion source was operated in positive electrospray ionization (ESI+) mode, with a capillary voltage of 2.8 kV and a sampling cone voltage of 40 V. The ion-source temperature was maintained at 110 °C, while the desolvation temperature was set to 400 °C. The cone gas flow rate was 50 L/h, and the desolvation gas flow rate was 800 L/h. The range for the collection of mass-to-charge ratios (m/z) was between 50 and 1200. Results: The UHPLC-MS method demonstrated high accuracy, repeatability, and stability, successfully identifying 63 enzymatic components of Eupolyphaga steleophaga. Furthermore, polypeptide markers for 63 selected components were identified in all 10 batches of Eupolyphaga steleophaga medicinal materials. This approach was validated by including numerical values such as retention times and peak areas, confirming its reliability for quality control enhancement. Conclusions: This novel UHPLC-MS approach serves as a powerful tool for advancing quality control strategies in veterinary medicine, particularly for animal-derived medicines. It lays a solid foundation for subsequent pharmacological studies of Eupolyphaga steleophaga polypeptides, offering a more reliable means to explore their biological activities and therapeutic potential. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

27 pages, 2993 KiB  
Article
Effect of Amino Acid, Sugar, Ca2+, and Mg2+ on Maillard Reaction-Associated Products in Modified Sparkling Base Wines During Accelerated Aging
by Hannah M. Charnock, Gary J. Pickering and Belinda S. Kemp
Molecules 2025, 30(3), 535; https://doi.org/10.3390/molecules30030535 - 24 Jan 2025
Cited by 2 | Viewed by 1171
Abstract
The Maillard reaction (MR) between sugars and amino acids, peptides, or proteins is understood to occur gradually during the production and aging of sparkling wines, where it contributes to caramel, roasted, and toasted aromas. Divalent metal ions can accelerate the MR, although this [...] Read more.
The Maillard reaction (MR) between sugars and amino acids, peptides, or proteins is understood to occur gradually during the production and aging of sparkling wines, where it contributes to caramel, roasted, and toasted aromas. Divalent metal ions can accelerate the MR, although this has not been previously reported in wine or wine-like conditions. In this work, the effect of calcium (Ca) and magnesium (Mg) ions on the concentration of 10 Maillard reaction-associated products (MRPs) was measured in modified sparkling base wine during accelerated aging at 50 °C for four weeks. Chardonnay base wine was modified by the addition of fructose (0.02 M) and a single amino acid (lysine, glycine, cysteine; 0.01 M) in combination with Ca2+ or Mg2+ at zero, low (10 mg/L), or high (50 mg/L) dose levels. MRPs were quantified by headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME-GC/MS), sugar concentration was measured by enzymatic assay, and amino acids and free metal ions were monitored by capillary electrophoresis. Fructose levels did not substantially decrease during aging despite increases in all MRPs, suggesting that trace sugars or α-dicarbonyl species present in the wine matrix likely play a greater role in MRP formation than fructose. Aging duration and amino acid content had a greater effect than metal addition on the composition of the MRPs. Treatments containing cysteine and 50 mg/L Ca2+ had elevated concentrations of benzaldehyde and furfural ethyl ether following 4 weeks of accelerated aging. This work identified key MRPs that increase during base wine accelerated aging and informs future research on the relationship between wine composition and aging markers. Full article
(This article belongs to the Special Issue Advances in Wine Chemistry)
Show Figures

Figure 1

10 pages, 859 KiB  
Communication
Some Aspects of the Use of Carbon Dioxide as a Carrier and Makeup Gas in GC–FID Analysis
by Łukasz Dąbrowski
Separations 2024, 11(12), 347; https://doi.org/10.3390/separations11120347 - 8 Dec 2024
Cited by 1 | Viewed by 1067
Abstract
The paper presents the possibility of using carbon dioxide as a carrier gas in capillary gas chromatography (with a stationary liquid phase) to analyze semi-volatile compounds (boiling points of up to 400 °C). Based on the experiments carried out for compounds from the [...] Read more.
The paper presents the possibility of using carbon dioxide as a carrier gas in capillary gas chromatography (with a stationary liquid phase) to analyze semi-volatile compounds (boiling points of up to 400 °C). Based on the experiments carried out for compounds from the group of organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), the maximum volumetric flow rate (2.4 mL/min for CO2) was determined, enabling the correct separation of the tested standard mixtures (except for two compounds from the OCP group: 4,4′-DDD and Endrin aldehyde and two other pairs of compounds with Rs slightly less than 1.5). Compared to using helium as a carrier gas (and makeup), carbon dioxide produces wider (about 1.6 times) and lower (about 1.8 times) peaks of analytes; these values can vary depending on the separation efficiency of the column. Carbon dioxide can also be effectively used as a makeup gas for the FID detector. The signal increase is comparable to that obtained with helium used as makeup (on average 40–50% depending on the carrier gas). When high sensitivity and high resolution are not required, CO2 can be an alternative carrier and makeup gas to helium under the same flow conditions. The paper also describes practical aspects related to the implementation of CO2 as a carrier and makeup gas in GC. Full article
Show Figures

Figure 1

10 pages, 4038 KiB  
Article
In Situ Synthesis of Hypercrosslinked Polymer as Stationary Phase for Capillary Gas Chromatography
by Yan Wu, Chaofan Song, Guanwen Huang, Kaicheng Wu, Yinghong Zhao, Ailin Ning, Wenlanqi Du and Jia Jia
Separations 2024, 11(11), 329; https://doi.org/10.3390/separations11110329 - 18 Nov 2024
Viewed by 935
Abstract
Hypercrosslinked polymers (HCPs) constructed by the Friedel–Crafts alkylation reaction of aromatic compounds have emerged as a new class of porous materials with unique merit. Herein, a HCP named HCP-TPB was coated onto a capillary column through in situ synthesis. The prepared column exhibited [...] Read more.
Hypercrosslinked polymers (HCPs) constructed by the Friedel–Crafts alkylation reaction of aromatic compounds have emerged as a new class of porous materials with unique merit. Herein, a HCP named HCP-TPB was coated onto a capillary column through in situ synthesis. The prepared column exhibited a nonpolar nature, and the column efficiency for n-dodecane was 3003 plates m−1. Moreover, the relative standard deviations of retention time and peak area for six replicate injections of the C3–C6 were lower than 0.1% and 1.5%, respectively. The results of this study showed that it is very promising to utilize HCPs as stationary phases for the separation of C3–C6. Full article
(This article belongs to the Topic Advances in Separation Engineering)
Show Figures

Figure 1

19 pages, 2771 KiB  
Article
Salivary Metabolic Pathway Alterations in Brazilian E-Cigarette Users
by Bruna Fernandes do Carmo Carvalho, Natalia de Carvalho Faria, Kethilyn Chris Sousa Silva, Ellen Greenfield, Mônica Ghislaine Oliveira Alves, Meriellen Dias, Maria Anita Mendes, Mario Pérez-Sayáns and Janete Dias Almeida
Int. J. Mol. Sci. 2024, 25(21), 11750; https://doi.org/10.3390/ijms252111750 - 1 Nov 2024
Cited by 1 | Viewed by 2623
Abstract
In recent years, the use of electronic cigarettes (e-cigs) has increased. However, their long-term effects on oral health and saliva remain poorly understood. Therefore, this study aimed to evaluate the saliva of e-cig users and investigate possible biomarkers. Participants were divided into two [...] Read more.
In recent years, the use of electronic cigarettes (e-cigs) has increased. However, their long-term effects on oral health and saliva remain poorly understood. Therefore, this study aimed to evaluate the saliva of e-cig users and investigate possible biomarkers. Participants were divided into two groups: the Electronic Cigarette Group (EG)—25 regular and exclusive e-cig users—and Control Group (CG)—25 non-smokers and non-e-cig users, matched in sex and age to the EG. The clinical analysis included the following parameters: age, sex, heart rate, oximetry, capillary blood glucose, carbon monoxide (CO) concentration in exhaled air, and alcohol use disorder identification test (AUDIT). Qualitative and quantitative analyses of saliva included sialometry, viscosity, pH, and cotinine concentrations. Furthermore, the EG and CG salivary metabolomes were compared using gas chromatography coupled with mass spectrometry (GC-MS). Data were analyzed using the Mann–Whitney test. The MetaboAnalyst 6.0 software was used for statistical analysis and biomarker evaluation. The EG showed high means for exhaled CO concentration and AUDIT but lower means for oximetry and salivary viscosity. Furthermore, 10 metabolites (isoleucine, 2-hydroxyglutaric acid, 3-phenyl-lactic acid, linoleic acid, 3-hydroxybutyric acid, 1,6-anhydroglucose, glucuronic acid, valine, stearic acid, and elaidic acid) were abundant in EG but absent in CG. It was concluded that e-cig users had high rates of alcohol consumption and experienced significant impacts on their general health, including increased cotinine and CO concentration in exhaled air, decreased oximetry, and low salivary viscosity. Furthermore, they showed a notable increase in salivary metabolites, especially those related to inflammation, xenobiotic metabolism, and biomass-burning pathways. Full article
(This article belongs to the Special Issue Omics Sciences for Salivary Diagnostics—2nd Edition)
Show Figures

Figure 1

21 pages, 10599 KiB  
Article
Optimizing Low-Cost Gas Analysis with a 3D Printed Column and MiCS-6814 Sensor for Volatile Compound Detection
by Nela Skowronkova, Martin Adamek, Magdalena Zvonkova, Jiri Matyas, Anna Adamkova, Stepan Dlabaja, Martin Buran, Veronika Sevcikova, Jiri Mlcek, Zdenek Volek and Martina Cernekova
Sensors 2024, 24(20), 6594; https://doi.org/10.3390/s24206594 - 13 Oct 2024
Cited by 1 | Viewed by 1477
Abstract
This paper explores an application of 3D printing technology on the food industry. Since its inception in the 1980s, 3D printing has experienced a huge rise in popularity. This study uses cost-effective, flexible, and sustainable components that enable specific features of certain gas [...] Read more.
This paper explores an application of 3D printing technology on the food industry. Since its inception in the 1980s, 3D printing has experienced a huge rise in popularity. This study uses cost-effective, flexible, and sustainable components that enable specific features of certain gas chromatography. This study aims to optimize the process of gas detection using a 3D printed separation column and the MiCS-6814 sensor. The principle of the entire device is based on the idea of utilizing a simple capillary chromatographic column manufactured by 3D printing for the separation of samples into components prior to their measurement using inexpensive chemiresistive sensors. An optimization of a system with a 3D printed PLA block containing a capillary, a mixing chamber, and a measuring chamber with a MiCS-6814 sensor was performed. The optimization distributed the sensor output signal in the time domain so that it was possible to distinguish the peak for the two most common alcohols, ethanol and methanol. The paper further describes some optimization types and their possibilities. Full article
(This article belongs to the Special Issue Gas Recognition in E-Nose System)
Show Figures

Figure 1

8 pages, 531 KiB  
Communication
Chemical Composition, Enantiomeric Distribution, and Physical Properties of the Fruit Essential Oil from Zanthoxylum lepidopteriphilum (Reynel) Rutaceae from Ecuador
by Vladimir Morocho, Yolanda Aguilar, Claudia Cruz, Nixon Cumbicus, Jose Miguel Andrade and Mayra Montalvan
Plants 2024, 13(20), 2834; https://doi.org/10.3390/plants13202834 - 10 Oct 2024
Cited by 1 | Viewed by 1163
Abstract
The essential oil was obtained by steam distillation, using a Clevenger apparatus, from the pericarp of the fruit of Zanthoxylum lepidopteriphilum from Ecuador. The qualitative and quantitative analyses were performed by gas chromatography coupled with mass spectrometry (GC-MS) and flame ionization detection (GC-FID) [...] Read more.
The essential oil was obtained by steam distillation, using a Clevenger apparatus, from the pericarp of the fruit of Zanthoxylum lepidopteriphilum from Ecuador. The qualitative and quantitative analyses were performed by gas chromatography coupled with mass spectrometry (GC-MS) and flame ionization detection (GC-FID) on two capillary columns with non-polar DB-5ms and a polar HP-INNOWax stationary phase. Thirty-three components were identified, accounting for 99.62% and 99.30% total essential oil. The essential oil was dominated by oxygenated monoterpenes (90.21–89.21%), respectively. The main constituents of the essential oil were α-thujone (70.26–70.38%), β-thujone (10.78–10.90%), terpinen-4-ol (4.15–4.06%), and sabinene (3.60–4.02%). Enantioselective analysis by GC was realized on a β-cyclodextrin-based chiral column (2,3-diethyl-6-tert-butyldimethylsilyl-β-cyclodextrin) in this analysis, determining three couples of enantiomers, which exhibited the compound (1R,4S,5S)-(+)-α-thujone with an enantiomeric excess of 84.40%. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

22 pages, 1590 KiB  
Review
Advances in Chromatographic Analysis of Phenolic Phytochemicals in Foods: Bridging Gaps and Exploring New Horizons
by Jorge Antonio Custodio-Mendoza, Patryk Pokorski, Havva Aktaş, Alicja Napiórkowska and Marcin Andrzej Kurek
Foods 2024, 13(14), 2268; https://doi.org/10.3390/foods13142268 - 18 Jul 2024
Cited by 6 | Viewed by 3784
Abstract
Chromatographic analysis of phenolic phytochemicals in foods has significantly advanced over the past decade (2014–2024), meeting increasing demands for precision and efficiency. This review covers both conventional and advanced chromatographic techniques used for detecting phenolic phytochemicals in foods. Conventional methods like High-Performance Liquid [...] Read more.
Chromatographic analysis of phenolic phytochemicals in foods has significantly advanced over the past decade (2014–2024), meeting increasing demands for precision and efficiency. This review covers both conventional and advanced chromatographic techniques used for detecting phenolic phytochemicals in foods. Conventional methods like High-Performance Liquid Chromatography, Ultra High-Performance Liquid Chromatography, Thin-Layer Chromatography, and Gas Chromatography are discussed, along with their benefits and limitations. Advanced techniques, including Hydrophilic Interaction Liquid Chromatography, Nano-LC, Multidimensional Liquid Chromatography, and Capillary Electrophoresis, are highlighted for their innovations and improved capabilities. The review addresses challenges in current chromatographic methods, emphasizing the need for standardized and validated procedures according to the Food and Drug Administration, European Cooperation for Accreditation of Laboratories, and The International Organization for Standardization guidelines to ensure reliable and reproducible results. It also considers novel strategies for reducing the environmental impact of chromatographic methods, advocating for sustainable practices in analytical chemistry. Full article
(This article belongs to the Special Issue Extraction Technology and Characters of Bioactive Substances in Foods)
Show Figures

Graphical abstract

13 pages, 3739 KiB  
Article
Novel Study on Chemical Characterization and Antimicrobial, Antioxidant, and Anticholinesterase Activity of Essential Oil from Ecuadorian Bryophyte Syzygiella rubricaulis (Nees) Stephani
by Vladimir Morocho, Ángel Benitez, Bárbara Carrión and Luis Cartuche
Plants 2024, 13(7), 935; https://doi.org/10.3390/plants13070935 - 23 Mar 2024
Cited by 2 | Viewed by 1897
Abstract
Our research focuses on exploring the chemical composition and some biological properties of the essential oil derived from Syzygiella rubricaulis (Nees) Stephani, a bryophyte species. To conduct a comprehensive analysis, we utilized a DB5MS capillary column along with gas chromatography coupled to mass spectrometry [...] Read more.
Our research focuses on exploring the chemical composition and some biological properties of the essential oil derived from Syzygiella rubricaulis (Nees) Stephani, a bryophyte species. To conduct a comprehensive analysis, we utilized a DB5MS capillary column along with gas chromatography coupled to mass spectrometry (GC-MS) and flame ionization (GC-FID). The qualitative and quantitative examination revealed the presence of 50 compounds, with hydrocarbon sesquiterpenes (48.35%) and oxygenated sesquiterpenes (46.89%) being the predominant constituents. Noteworthy compounds identified include bicyclogermacrene (12.004%), cedranone <5-> (9.034%), spathulenol (6.835%), viridiflorol (6.334%), silphiperfol-5,7(14)-diene (6.216%), biotol <β-> (6.075%), guaiol (4.607%), viridiflorene (4.65%), and α-guaienol (3.883%). Furthermore, we assessed the antimicrobial, antioxidant, and anticholinesterase activity of the essential oil, revealing a compelling inhibitory effect against acetylcholinesterase (AChE) with an IC50 value of 26.75 ± 1.03 µg/mL and a moderate antimicrobial (MIC 500 µg/mL, Enterococcus faecium, Lysteria monocytogenes) and antioxidant effect (ABTS: SC50 343.38 and DPPH 2650.23 µg/mL). These findings suggest the potential therapeutic application of the bryophyte essential oil in the treatment of Alzheimer’s disease due to its potent anticholinesterase properties. Full article
(This article belongs to the Topic Natural Compounds in Plants, 2nd Volume)
Show Figures

Figure 1

Back to TopTop